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Abstract

Motivation: The coalescent model is now widely accepted as an effective model for

incorporating variation in the evolutionary histories of individual genes into methods for

phylogenetic inference from genome-scale data. However, because model-based analysis

under the coalescent can be computationally expensive for large data sets, a variety of

inferential frameworks and corresponding algorithms have been proposed for estimation of

species-level phylogenies and the associated parameters, including the speciation times and

effective population sizes.

Results: We consider the problem of estimating the timing of speciation events along a

phylogeny in a coalescent framework. We propose a maximum a posteriori estimator based

on composite likelihood (MAPCL) for inferring these speciation times under a model of

DNA sequence evolution for which exact site pattern probabilities can be computed. We

demonstrate that the MAPCL estimates are statistically consistent and asymptotically

normally distributed, and we show how this result can be used to estimate their asymptotic

variance. We also provide a more computationally efficient estimator of the asymptotic

variance based on the nonparametric bootstrap. We evaluate the performance of our

method using simulation and by application to an empirical dataset for gibbons.

Availability and implementation: The method has been implemented in the PAUP*

program, freely available at https://paup.phylosolutions.com for Macintosh, Windows, and

Linux operating systems.

Contact: peng.650@osu.edu

Supplementary information: Supplementary data are available at Bioinformatics online.
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1 Introduction

Though numerous methods have recently been developed for estimating species tree

topologies, methods for estimating the associated speciation (divergence) times are less

well-developed. Traditionally, divergence times have been obtained using maximum

likelihood estimates of branch lengths from a concatenated alignment, but this approach

has been shown to produce systematic errors because it fails to account for variation in

gene genealogies and their associated gene divergence times. As a result, some node ages

are overestimated while others are underestimated (Ogilvie et al., 2017).

In contrast to concatenation, coalescent-based methods explicitly model variation in

individual gene genealogies under the multispecies coalescent (MSC) model (Hudson, 1983;

Rannala and Yang, 2003). Several widely used implementations provide estimates of either

speciation times or internal branch lengths in addition to estimating the species tree

topology. Of the methods that infer species trees from multilocus data using estimated

gene trees (“summary statistic methods” or “summary methods”), ASTRAL (Sayyari and

Mirarab, 2016) and MP-EST (Liu et al., 2010) can also provide estimates of branch

lengths. Branch-length estimates from both of these methods are technically statistically

consistent (Liu et al., 2010; Sayyari and Mirarab, 2016), but the property of consistency

only holds when the input data consist of an unbiased sample of true gene trees. For

empirical data, where gene trees must be estimated from sequence data, statistical

consistency would only be achievable by using a statistically consistent method to infer

gene trees while allowing the gene length to go to infinity (violating the MSC-model

assumption of no recombination within genes). In fact, both ASTRAL and MP-EST have

been shown to underestimate internal branch lengths (measured in coalescent units) when

input gene tree estimation error increases (Sayyari and Mirarab, 2016). In addition, Yang

(2002) showed that phylogenetic errors inflate the probability of incongruent gene trees and

lead to biased estimation of internal branch lengths.

An alternative to summary methods is a fully Bayesian approach that jointly
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estimates the species tree topology, speciation times, and effective population sizes using

the complete sequence data (i.e., without first estimating gene trees for each locus). The

most popular methods in this category are implemented in *BEAST /StarBEAST2 (Heled

and Drummond, 2010; Ogilvie et al., 2017) and BPP (Yang and Rannala, 2014; Rannala

and Yang, 2017) for multilocus sequence data, and SNAPP (Bryant et al., 2012) for

biallelic SNP data. StarBEAST2 and BPP differ in the prior distributions assumed for the

species tree, the range of evolutionary models supported, and details of the MCMC

strategies used to sample from the posterior distribution. Bayesian methods have the

advantage of using all of the data, although estimates of branch lengths or node ages

obtained by these methods may be sensitive to the choice of prior distributions, especially

when the species are closely related and/or the sequences are very similar. Moreover,

because they rely on MCMC, the computation is expensive for data sets with a large

number of species and/or genes.

A third class of methods infers species trees directly from the sequence data without

requiring separate estimation of gene trees for each locus. The most widely used example

of this class, SVDQuartets (Chifman and Kubatko, 2014), is much faster than fully

Bayesian approaches, but it can only estimate the topology of the species tree. Here we use

some of the theory underlying SVDQuartets (Chifman and Kubatko, 2015) to derive an

estimator for node ages under the MSC model along with the Jukes-Cantor (JC69) DNA

substitution model (Jukes and Cantor, 1969), assuming a molecular clock. This estimator

is not directly connected to SVDQuartets apart from being a quartet-based method that

operates under the MSC assumptions. As such, it can be used to estimate speciation times

on trees obtained using any method, although it is especially relevant for SVDQuartets,

which does not intrinsically provide estimates of node ages or branch lengths.

Our proposed estimator differs from those described above in that it uses the

posterior density based on the composite likelihood to obtain computationally efficient

estimators in a model-based framework. Our method thus fills a gap between fast summary
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methods that discard the sequence data after estimating gene trees, and fully Bayesian

methods that integrate over gene trees but require computationally-intensive MCMC

algorithms. By retaining the full data throughout, our estimator accommodates variability

arising from both gene tree variation and the mutation process while remaining

computationally efficient. We show that this estimator is statistically consistent and

asymptotically normally distributed. Though the uncertainty in the estimator can be

quantified by the theoretical asymptotic variance predicted by our normality result, we find

that use of the nonparametric bootstrap provides a more accurate estimate of the variance

of the estimates. The performance and computational cost associated with our method of

speciation time estimation is compared with BPP using simulated datasets. We use a

genome-scale dataset for gibbons (Carbone et al., 2014; Veeramah et al., 2015; Shi and

Yang, 2018) to demonstrate the performance of our estimator for empirical data.

2 Methods

In a 4-taxon species tree, there are 44 = 256 possible site patterns. Chifman and Kubatko

(2015) show that each site pattern probability piaibicid on a 4-leaf species tree with species

a, b ,c, and d for a specific observation iaibicid, ij ∈ {A,C,G,T}, at the tips of the tree can

be written as a function of the effective population size θ and node ages τ in the tree (in

coalescent units) under the JC69 (Jukes and Cantor, 1969) model. Under this model as

well as the molecular clock assumption, the rooted symmetric 4-leaf species tree

((a, b), (c, d)) will have 9 distinct site pattern probabilities:

pxxxx

pxxxy = pxxyx

pxyxx = pyxxx

pxyxy = pyxxy

pxxyy

pxyxz = pyxxz = pxyzx = pyxzx

pxxyz

pyzxx

pxyzw,
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while the rooted asymmetric 4-leaf species tree (a, (b, (c, d))) will have 11 distinct site

pattern probabilities:

pxxxx

pxxxy = pxxyx

pxyxx

pyxxx

pxyxy = pyxxy

pxxyy

pxyxz = pxyzx

pyxxz = pyxzx

pxxyz

pyzxx

pxyzw,

where x, y, z and w denote different nucleotides. For example, pxxxx includes the site

patterns pAAAA, pCCCC, pGGGG and pTTTT, which have identical probabilities under the

model. As another example, pxxxy includes the site patterns pAAAC, pAAAG, pAAAT, pCCCA,

etc.

We use pS =
(
pS
1(τ , θ), p

S
2(τ , θ), . . . , p

S
9(τ , θ)

)
to denote the 9 different site pattern

probabilities arising from the symmetric 4-taxon species tree, augmenting the notation

above to indicate the dependence of the site pattern probabilities on the quantities θ and

τ . Likewise, pA =
(
pA
1 (τ , θ), pA

2 (τ , θ), . . . , pA
11(τ , θ)

)
denotes the 11 distinct site pattern

probabilities from the asymmetric 4-taxon species tree. In an alignment of length M , the

site pattern frequencies for these classes can be modeled as a multinomial random variable

under the assumption that the observed sites are independent, conditional on the species

tree:

Z ∼


Multinomial(M,pS), for a symmetric tree;

Multinomial(M,pA), for an asymmetric tree,

where Z is the vector of site pattern counts for the 9 or 11 distinct classes.

2.1 Maximum a posteriori estimation based on composite

likelihood

2.1.1 The MAPCL estimator

We can split a tree of arbitrary size into the subtrees induced by each quartet of four

leaves, and write the likelihood of the observed site pattern frequencies for each quartet.
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For example, in the 5-leaf species tree in Figure 1, we can consider all sets of 4 tips, to get(
5
4

)
= 5 different quartets. For any quartet i, each site in an alignment of length M can be

classified into one of ni distinct site patterns, where ni equals 11 if the quartet induces an

asymmetric subtree of the full tree (i∈{1, 2} in this case) or 9 if it induces a symmetric

subtree (i∈{3, 4, 5}). For each site m, m = 1, 2, . . . ,M , and each quartet i, i = 1, 2, . . . , 5,

define V
(m)
i to be the random vector of length ni that contains a 1 in the jth entry if site

pattern j is observed at that site and 0 in all other entries, and let v
(m)
i ∈ {0, 1}ni×1

represent the corresponding observed data. Let vi=
(
v
(1)
i , . . . ,v

(M)
i

)
denote the observed

data across all M sites, and let (ui)j be the jth entry of the vector ui =
∑
m

v
(m)
i , which

counts the number of times site pattern j is observed. The likelihood for quartet i can then

be expressed as a function of the population size θ and node ages τ :

Li(τ , θ|ui) =
M !

ni∏
j=1

(ui)j!

ni∏
j=1

pij(τ , θ)
(ui)j , (1)

where pij is the jth entry in either pS or pA for quartet i, depending on whether the subtree

induced by this quartet is symmetric or asymmetric, respectively. Importantly, the subtrees

induced by different quartets are not independent, and computing a true likelihood would

require accounting for the correlation structure among quartets. Therefore, we instead use

composite likelihood—the product of the individual likelihoods for all possible quartets

despite their non-independence. Note that composite likelihood is also often referred to in

the statistical and biological literature as pseudolikelihood or approximate likelihood (see

Varin et al., 2011, for a review of the history of composite likelihood methods).

A maximum composite likelihood estimator (MCLE) based on (1) would optimize the

function

`(τ , θ|x) =

Q∏
i=1

Li(τ , θ|vi), (2)

where Q is the number of possible quartets and the vector x = (x(1), · · · ,x(M)) is defined
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similarly to the vi, but for the entire tree — i.e., its dimension depends on the number of

possible distinct site patterns on a 5-leaf tree. Specifically, each vector x(m) records which

of the possible distinct site patterns on a tree of 5 tips is observed at site m, while the

corresponding v
(m)
i stores the indicators of the ni site patterns for the ith quartet of this

tree at site m.

Instead of using the MCLE, however, we prefer to estimate τ and θ via Bayesian

maximum a posteriori (MAP) estimation (e.g., Bassett and Deride, 2019). MAP

estimation has two advantages. First, it allows incorporation of prior knowledge into the

estimate as for the fully Bayesian methods discussed above. Perhaps more importantly,

weighting the likelihood by the priors improves the computational efficiency and stability

of the optimization algorithms by reducing the flatness of the optimality surface in regions

of the parameter space that have very low likelihood.

With inclusion of the priors, the posterior density function becomes

g(τ , θ|x) = fθ(θ) fh(τR) `(τ , θ|x),

where fθ and fh are the prior density functions for θ and the height of the tree (= root age)

τR, respectively. Non-root τ values are parameterized as proportions of the tree height, so

that τR serves as a scaling factor for the entire tree. By maximizing the log posterior

density

log g(τ , θ|x) = log fθ + log fh +

Q∑
i=1

logLi(τ , θ|vi), (3)

we obtain our maximum a posteriori estimator MAPCL:

(τ̃ , θ̃) = argmax
τ ,θ

{
log g(τ , θ|x)

}
, (4)

with the “CL” subscript signifying that a composite-likelihood term is used in (2) rather

than a true likelihood.
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2.1.2 Consistency and asymptotic variance calculation

Using a result from Arnold and Strauss (1991), we can prove that the MAPCL estimator is

statistically consistent and asymptotically normally distributed (a detailed proof can be

found in the Supplemental Material, Section 1):

√
M(τ̃k − τk)→ N

(
0,
K(τk)

J2(τk)

)

K(τk) =
∑
i,i′

Eτk

[{
∂

∂τk
logLi(τ , θ|vi)

}{
∂

∂τk
logLi′(τ , θ|vi′)

}]
and

J(τk) = −
∑
i

Eτk

[
∂2

∂τ 2k
logLi(τ , θ|vi)

]
,

where τ̃k is the kth component of the MAPCL estimator τ̃ .

This result provides a way of quantifying the uncertainty of our estimator, by

calculating the first and second derivatives of the log likelihoods for the individual quartets.

For example, to compute the asymptotic variance of the MAPCL estimator τ̃1 for the

5-taxon species tree in Figure 1, note that quartets 3, 4, and 5 include node age τ1.

Therefore, if the relevant MAPCL estimates are τ̃ and θ̃, then we can approximate K(τ1)

and J(τ1) by K∗(τ1) and J∗(τ1) as

K∗(τ1) =
∑

i,i′∈{3,4,5}

[{
∂

∂τ1
logLi(τ , θ|vi)

∣∣∣∣
τ̃ ,θ̃

}
{
∂

∂τ1
logLi′(τ , θ|vi′)

∣∣∣∣
τ̃ ,θ̃

}]

and

J∗(τ1) =
∑

i∈{3,4,5}

{
∂2

∂τ 21
logLi(τ , θ|vi)

∣∣∣∣
τ̃ ,θ̃

}
.
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The asymptotic variance is then calculated as

V ar∗(τ̂1) =
K∗(τ1)

J∗(τ1)2
. (5)

To calculate K∗ and J∗, we plug in τ̃ and θ̃ to estimate the 9 or 11 site pattern probabilities

(rounding to 2 significant figures, which makes the variance estimates more stable).

(a)

(b)

Fig. 1. The 5-leaf species tree (a) can be split into the 5 different 4-leaf subtrees (b), shown with
speciation times marked.

We can also use a bootstrapping approach to estimate the variance of the MAPCL

estimator. In this approach, a bootstrap replicate is obtained by resampling the columns,

i.e., site patterns in the original DNA sequences, using the following steps:

1. One column is randomly selected (with replacement) from the original sequence

alignment to be a new column in the resampled data. By repeating this M times, we

get a new bootstrap replicate of the same size as the original data;

2. Repeat step 1 to get B bootstrap samples;

3. For each of the B of the bootstrap samples, redo the analysis to compute the
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estimates (τ̃1, θ̃1), · · · , (τ̃B, θ̃B), and calculate the sample variance of the estimates,

Var(τ̃B) and Var(θ̃B).

2.1.3 Implementation in PAUP*

All of the methods described herein are implemented in the PAUP* program written by

DLS (https://paup.phylosolutions.com), where they are accessed using the qAge command

(type help qage; at the command prompt for a description of the available options). A

detailed explanation of the implementation, including parameterizations, mathematical

details for likelihood and gradient evaluations, optimization strategies, and validation, is

provided in the “Implementation of qAge in PAUP* ” document contained in the

Supplemental Material.

2.2 Simulation study

2.2.1 Simulation 1: Statistical properties of the MAPCL estimator.

We first use simulation to assess the statistical consistency and asymptotic normality of the

MAPCL estimator and to compare the two methods of measuring uncertainty (calculation

of the theoretical asymptotic variance vs. bootstrapping). We note that while many

methods for inferring species-level phylogenies are based on multilocus data, our method

was originally designed for unlinked sites arising from the coalescent model, a data type

that we call Coalescent Independent Sites (CIS). For multilocus data, all sites within a

given locus are assumed to have evolved on the same genealogy and are not independent.

Although we assume here that the site patterns in the sequences constitute independent

draws from the distribution characterized by the MSC and nucleotide substitution models

(Chifman and Kubatko, 2015), conditional on the species tree, a straightforward argument

can be made that methods developed for CIS data can also be applied to multilocus data

(Wascher and Kubatko, 2020), and we therefore consider both data types here.

To examine the properties of the MAPCL estimator, we simulated two types of data:
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(1) unlinked CIS data (each site evolves on its own own tree drawn randomly from the

distribution of gene trees expected for the true simulation parameters under the MSC

model), and (2) multilocus data (a sequence of length l is simulated for each locus on an

underlying gene tree drawn randomly from the expected gene tree distribution). The

simulations were performed as follows:

1. Generate gene tree samples under the MSC model based on a specified input species

tree;

2. Generate DNA sequences of length l for each gene tree under the JC69 model (l = 1

for CIS data);

3. Choose prior distributions for the parameters;

4. Compute the site pattern frequencies for all possible quartets and maximize the log

posterior density to obtain node age estimates using the MAPCL estimator and

estimate their theoretical asymptotic variances;

5. Resample the simulated sequences to get B bootstrap replicates, and compute the

sample variance of the estimates via bootstrapping, as described in the previous

section (for the multilocus datasets, a two-level bootstrap is conducted where we first

take a bootstrap sample of genes followed by independent bootstrap resampling of

sites within each gene);

6. Repeat steps 1–4 D times to obtain node age estimates and estimate variances using

both theoretical asymptotic calculations and bootstrapping.

All steps in the simulations were carried out using the qAge command in PAUP* . In

step 1, we set up two different model species trees: a 5-leaf tree and a 6-leaf tree (Figure

2). Time is measured in coalescent units (number of generations scaled by 2Ne, where Ne is

the effective population size), and we set the population-scaled mutation rate to

θ = 4Neµ = 0.002 (constant throughout the tree), where µ is the mutation rate. For
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speciation times, we assigned the vector (τ1, τ2, τ3, τ4) = b · (0.5, 0.5, 1.0, 1.5) for the 5-tip

model tree and (τ1, τ2, τ3, τ4, τ5) = b · (0.5, 0.5, 1.0, 1.5, 2.0) for the 6-tip model tree.

Different choices of b then involve stretching or shrinking the tree; any choice of b results in

trees that satisfy the molecular clock. We considered three choices for b: b = 1, 2, and 4. In

step 2, the gene length l was set to 1 for CIS data (i.e., we simulated 100,000 genealogies

with one DNA site for each), while for multilocus data, we simulated 10,000 genes, each of

length l=100. In step 3, we assigned diffuse inverse-gamma priors: IG(3, 0.006) for θ and

IG(3, 2) for the age of root. In steps 5 and 6, we chose B=100 and D=100, respectively.

(a) (b)

Fig. 2. Two different model species trees with speciation times as parameters for the simulation
process: (a) 5-species tree. (b) 6-species tree.

The MAPCL estimator is also applicable when multiple lineages are sampled for each

tip species (see Supplemental Material: “Implementation”). To evaluate the performance

of this option, the simulation framework within PAUP* is instructed to generate gene tree

samples using the same 5-leaf model species tree and parameter settings as above, but with

two lineages for both species D and species E. We then use the qAge command in PAUP*

to repeat the analysis for the CIS data to obtain node ages and estimated variances.

2.2.2 Simulation 2: Comparison with BPP .

We carried out an additional simulation to compare the performance of the MAPCL

estimator in qAge with BPP , again using the simulation framework in PAUP* (which

provides an interface to invoke BPP from a Nexus file). We simulated multilocus data with

2,000 genes each of length 100, for trees with K tips (K=7, 8, · · · , 15, 20). The trees used

for simulation are included in the Supplemental Material Figure S16 and S17. The true
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population-scaled mutation rate was set at θ = 0.002. We ran BPP and qAge analyses with

inverse-gamma priors IG(α, β) for θ and the age of the root node R (τR). Specifically, we

used α=3 for a diffuse prior and adjusted β such that the prior mean β/2 was equal to 5θ,

θ or θ/5 for the θ parameter, and 5h, h, or h/5 for the root age τR, where the tree height h

is defined as the maximum number of branches connecting the tips and the root. For

example, in Figure 2, the height of the tree is 3 in (a), and 4 in (b). The details of

prior-distribution combinations can be found in Figure 6. We then investigated the impact

of the 3× 3 combinations of the priors on the performance of BPP and MAPCL. To make

the comparison in a computationally feasible way, for smaller trees (K=7, 8, 9, 10), we

discarded the first 1,000 samples as burnin, and sampled every 50th observation. For larger

trees with more than 10 tips, we ran the BPP analysis 1,000 times longer than qAge, and

discarded the first 10% samples as burnin. 500 observations were sampled equally

frequently and used to compute estimates in all cases. The detailed MCMC configurations

and running time can be found in the Supplemental Material (Table S1, Section 3). After

performing analyses with BPP and qAge for 100 replicates, we quantified the deviation of

estimated parameter values from the true values of the simulation model using the

root-mean-square error (RMSE) and mean absolute error (MAE). We calculated the

proportion of 95% confidence/credible intervals that included the true parameter value.

Finally, for BPP analyses, we summarized the percentage of ESS values > 200.

2.3 Application to gibbon data

We also explored the performance of our MAPCL estimator in inferring speciation times for

empirical data by applying it to a genome-scale dataset previously analyzed by Shi and

Yang (2018) for five species of gibbons: Hylobates moloch (Hm), Hylobates pileatus (Hp),

Nomascus leucogenys (N), Hoolock leuconedys (B), and Symphalangus syndactylus (S)

(Carbone et al., 2014; Veeramah et al., 2015). The dataset consists of 11,323 coding loci,

each of length 200 bp. Except for the outgroup (O), multiple lineages are included for each
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species: two for Hm and Hp, and four for N, B, and S. Here, we reanalyze these data with

qAge (for MAPCL) and BPP .

For both analyses, we fixed the species tree to be that shown in Figure 3. As

recommended by the BPP authors (Flouri et al., 2018), we use inverse-gamma prior

distributions with the α parameter set to 3 for both θ and for the root age, τR. We then

chose the value of β to match the mean of the distribution used by Shi and Yang (2018),

although they assumed gamma rather than inverse-gamma prior distributions in an earlier

version of BPP . To study sensitivity to the prior, we also conducted analyses with prior

means that were five times larger and five times smaller than these values, and looked at

all combinations of these prior settings for each parameter, leading to a total of nine prior

combinations which we label Settings 1-9 in Table S2 of the Supplemental Material,

Section 4 (see also Figure 8). Setting 5 corresponds most closely to the priors used in Shi

and Yang (2018): θ ∼ IG(3, 0.002) and τR ∼ IG(3, 0.02). For each choice of prior

distribution, we repeated the analysis twice, with each replicate run for two weeks, and we

sampled every 100th observation. All prior settings reached at least 10,000 samples during

this time (which corresponds to 10,000 × 100 = 1 million iterations of the algorithm),

except for replicate 1 in setting 9, for which 9,205 samples were obtained. After discarding

the first 2,000 samples as burnin, samples 2,000-10,000 from both replicates were combined

to compute estimates (for setting 9, replicate 1, samples 2,000 - 9,205 were used).

For MAPCL, we enumerated all possible quartets by selecting one lineage per tip for

this tree, resulting in 752 quartet likelihoods used to calculate the composite likelihood.

We assumed equal population sizes for all groups. Using the same priors as for BPP , we

estimated the internal node ages (τBS, τNBS, τHpHm) and the population size (θ). Note that

although we used the difference between speciation-time estimates in this case (i.e., branch

lengths), statistical consistency still holds and asymptotic normality can be proved easily

based on the asymptotically multivariate normal property for p-dimensional parameters

given by Equation (2.7) in Arnold and Strauss (1991). The covariance matrix could be
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obtained, but our simulations indicated that it may be unstable in comparison to bootstrap

estimation. Therefore, 100 bootstrap samples were used to measure the uncertainty of our

estimates.

Fig. 3. The species tree for the five gibbon species and the outgroup (O=human) with node age
parameters labeled.

3 Results

3.1 Simulation study

3.1.1 Simulation 1: Statistical properties of the MAPCL estimator.

We plot histograms of the 100 MAPCL estimates for node ages in the three 5-taxon and the

three 6-taxon model trees (see the Supplemental Material, Section 2 for figures under all of

the simulation settings). As a representative example, Figure 4 shows histograms of the

100 MAPCL estimates of node age τ1 for the three 5-leaf model trees under our simulation

conditions. From these plots, we see that the estimates are approximately normal and

distributed around the true value. Thus it appears that our estimates are unbiased.

Moreover, when we include multiple lineages per tip or analyze multilocus data in the same

way, the unbiasedness and asymptotic normality still hold, and if we increase the number

of sites, we see these results even more clearly (see figures in the Supplemental Material,

Section 2).

To assess the performance of our method in estimating the uncertainty of the MAPCL
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Fig. 4. Histograms of 100 MAPCL estimates for node age τ1 using 100,000 unlinked CIS from the
5-leaf model trees with a single lineage per tip. The red line in each histogram is the sample mean
of the 100 MAPCL estimates. The true values are given in the figure titles.

estimator, Figure 5 shows plots of the 100 variance estimates of the MAPCL estimates of

node age τ1 for the three 5-leaf model trees under our simulation conditions. In the

unlinked-CIS, single-lineage-per-tip setting, it is immediately clear that in all cases the

bootstrap estimates are scattered around the sample variance from the 100 simulated

datasets. This approximation is expected to improve as the number of sites increases.

However, asymptotic variance estimates calculated by Equation (5) tend to underestimate

the variance and to be unstable. We elaborate on this issue further in the Discussion, but

note here that Varin et al. (2011) also remarked that, in practice, the bootstrap sometimes

outperforms the asymptotic variance estimate in the composite likelihood setting. Thus, we

recommend using the bootstrap estimator to measure the variance of the MAPCL

estimator, even though the asymptotic variance is theoretically reasonable. The results are

similar when we use multilocus data or include multiple lineages per tip in the 5-taxon and

6-taxon model trees (see the Supplemental Material, Section 2).

3.1.2 Simulation 2: Comparison with BPP .

Next we compare our method with BPP and examine the estimation accuracy of both

methods. Figure 6 summarizes the RMSE of the node age estimates on trees with different

sizes. Overall, we find that MAPCL estimates speciation times with smaller error than BPP

and is quite robust to different prior combinations. The estimation error from BPP may be
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τ1 = 0.5 τ1 = 1.0 τ1 = 2.0

Fig. 5. Plots of the 100 variance estimates for node age τ1 using 100,000 unlinked CIS from the
5-leaf model trees with a single lineage per tip. Points denoted by ∗ are computed by the
asymptotic variance formula in (5), while points denoted by ◦ are obtained by bootstrapping. The
x-axis is an index for the simulated samples. The red line in the plots is the sample variance of
the 100 MAPCL estimates.

partly due to convergence difficulties for some runs, which can be seen from the ESS values

(see Figure S18). Moreover, the convergence problem can be ameliorated by choosing the

prior for θ to have a large mean. Therefore, we conclude that after running BPP 1,000

times longer than qAge, our estimates are consistently comparable or more accurate than

those from BPP . The results of MAE are similar to those for RMSE (Supplemental

Material, Figure S17). Additionally, Figure 7 shows the proportion of 95%

confidence/credible intervals that include the true parameter value in 100 simulation

replicates. Again we note that the performance of BPP depends on the prior choice of θ,

especially when we compare the coverage probabilities for large trees from (a) to (c), which

generally do not show lack of convergence from the ESS values. On the other hand, the

confidence intervals from MAPCL include the true parameter values nearly 100% of the

time, which highlights our finding that the bootstrap variance estimates overestimate the

uncertainty when the number of genes is limited (Figure S7-S15; Section 2, Supplemental

Material). We suggest that bias in this direction is acceptable, in that the resulting

confidence intervals are conservative.
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θ ∼ IG(3, 0.0008) θ ∼ IG(3, 0.004) θ ∼ IG(3, 0.02)

Fig. 6. Plots of the RMSE of the node age estimates for trees with varying numbers of tips. The
x-axis shows the number of tips in the tree. Analysis based on two methods (circles – BPP ,
triangles – MAPCL) is conducted with different priors. In each plot, the “large” prior for the root
age, τR ∼ IG(3, 5h), is shown in red; the “small” prior, τR ∼ IG(3, h/5), is shown in green; and
the prior centered at the true value, τR ∼ IG(3, h), is shown in blue (h is the tree height). Panels
show the results of analyses using different priors on θ.

θprior ∼ IG(3, 0.0008) θprior ∼ IG(3, 0.004) θprior ∼ IG(3, 0.02)

Fig. 7. Plots of the percentage of 95% confidence/credible intervals that include the true
parameter value. The x-axis gives the tree size (number of tips). Points with different colors give
values obtained using the 9 prior combinations for θ and τR (see also Figure 6). The shaded area
gives the expected acceptance region of the coverage proportions in 100 simulation replicates.

3.2 Application to gibbon data

Results from BPP and MAPCL are shown in Table 1 for the choice of prior distributions

that corresponds most closely to those used by Shi and Yang (2018). For τNBS and τBS, the

estimates from MAPCL and BPP are similar, with wider confidence intervals for MAPCL

that cover the intervals given by BPP , as in the simulation studies. For τHmHp, however,

the intervals given by MAPCL and BPP do not overlap (though the values estimated are

similar) and both are similar in width.

To examine the sensitivity of these estimators to the prior distribution, we evaluated

both estimators under nine different prior settings, with the results shown in Figure 8. We
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see that the estimates obtained using MAPCL are robust to the choice of prior distribution,

with little variation across the range of values selected. Conversely, BPP is sometimes

strongly affected by the choice of priors, most notably for estimation of τNBS for settings 3

and 6. To examine this more carefully, we made trace plots of all parameters for all

replicates and prior choices (see the Supplemental Material, Section 4). These trace plots

show some cases in which the two replicates within a prior setting sampled different values

for the entire run (see, e.g., the results for τBS in Figure S20 or for θBS in Figure S38,

noting the difference in the y-axis values for setting 3; similar phenomena can be observed

for the log likelihood – see Figure S65, setting 2 and Figure S66, setting 6). It is clear that

for some settings, BPP experienced some difficulty converging, making clear that long runs

may be required, even for the relatively straightforward problem of inferring node ages on a

fixed 6-taxon species tree with a large data set. In contrast, qAge quickly produces stable

MAPCL estimates that are robust to the choice of prior distribution—it took only 17

seconds to produce an estimate and confidence interval for this data set on a

current-generation laptop computer.

Prior Settings

1:θ~IG(3,0.0004),τ~IG(3,0.004)

2:θ~IG(3,0.0004),τ ~IG(3,0.02)

3:θ~IG(3,0.0004),τ ~IG(3,0.1)

4:θ~IG(3,0.002),τ~IG(3,0.004)

5:θ~IG(3,0.002),τ ~IG(3,0.02)

6:θ~IG(3,0.002),τ ~IG(3,0.1)

7:θ~IG(3,0.004),τ~IG(3,0.004)

8:θ~IG(3,0.004),τ ~IG(3,0.02)

9:θ~IG(3,0.004),τ ~IG(3,0.1)

0.00 0.04 0.08 0.12
τNBS

0.00 0.02 0.04 0.06 0.08
τBS

1.80 1.90 2.00 2.10
τHmHp

Fig. 8. 95% credible (BPP ; black) and confidence (MAPCL; maroon) intervals for the gibbon
data for the 9 prior choices considered here (left panel). Setting 5 (θ ∼ IG(3, 0.002) and
τR ∼ IG(3, 0.02) ) is the closest match to the priors used by Shi and Yang (2018).

20

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 22, 2021. ; https://doi.org/10.1101/681023doi: bioRxiv preprint 

https://doi.org/10.1101/681023
http://creativecommons.org/licenses/by-nd/4.0/


4 Discussion

4.1 Stability of the asymptotic variance

We note that in Figure 5 the calculated asymptotic variance from equation (5) is unstable

and tends to underestimate the uncertainty, and this is not expected to improve by

increasing the number of sites. As indicated in equation (5), derivatives must be computed

to obtain the asymptotic variance; the first derivative of (1) can be expressed as:

∂ logLi(τ , θ|ui)
∂τ

=

ni∑
j=1

[
(ui)j

pij(τ , θ)

∂pij(τ , θ)

∂τ

]
,

where pij is defined as in Equation 1.

Notice that the formulas above contain terms that include the reciprocal of site

pattern probabilities, which are estimated by plugging in the MAPCL estimates. Since most

of these probabilities are very small (10−5), even with estimation error on the order of 10−6,

the reciprocals vary by about 104. In fact, to get a good estimate, we need the relative

error of the site pattern probabilities to be smaller than 0.001, but this is only around 0.01

in our case, even when the number of sites is very large. Therefore, though the asymptotic

variance estimator is theoretically valid, it performs poorly in practice. We thus

recommend using the bootstrap estimates to quantify the uncertainty of our estimator.

This estimator is unbiased under the model assumptions, and it is quick to compute.

4.2 Computational efficiency of the MAPCL estimator

Practically, to obtain MAPCL estimates of the node ages on a species tree, we need to be

able to do two things well: compute the composite likelihood, and search the parameter

space to find the values that optimize the posterior probability density. The first of these

can be done very efficiently for trees of arbitrary size. The number of individual likelihoods

for all possible quartets (2) grows as the 4th power of the tree size, but the amount of work
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required per quartet is light, so that the total likelihood can be computed quickly even for

a large tree.

The second task, however, becomes more difficult as the dimension of the parameter

space increases. Fortunately, the gradient (first partial derivatives of the posterior density

function with respect to each parameter) can be calculated quickly for any point in the

parameter space, allowing the use of quasi-Newton and other gradient-based optimizers

that typically need fewer function evaluations to converge to an optimum than

derivative-free methods. In addition, the bootstrapping procedure used for measuring

uncertainty could easily be parallelized, although we have not yet done so.

4.3 Assumptions and performance of the MAPCL estimator

The assumptions that (1) nucleotide sites evolve according to the JC69 substitution model

and (2) effective population sizes are constant throughout the tree, permit the use of

formulas in Chifman and Kubatko (2015) for computing the 9 or 11 distinct site pattern

probabilities used in Equation (1). Without these closed-form expressions, exact

calculation of site pattern probabilities would involve an intractable multidimensional

integration over gene trees and their associated branch lengths. Empirical data, however,

may evolve under a nucleotide substitution model more complex than JC69, and

preliminary simulations indicate that our method may not be robust when the nucleotide

substitution model is misspecified and divergence between species is high (results not

shown). However, for closely related species like gibbons, Shi and Yang (2018) argue that

the JC69 model should be adequate for BPP and ASTRAL, and we note that BPP

currently also assumes the JC69 model. Thus, the differences in the estimates obtained by

BPP and qAge are not likely to be due to misspecification of the nucleotide substitution

model. However, preliminary simulations indicate that our method may be somewhat

sensitive to the assumption of constant effective population sizes across all populations,

which may partially explain these differences.
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Consequently, we are investigating plausible approaches for extending our method to

allow inference under more general models, such as the GTR model and its submodels. An

obvious, but computationally expensive, strategy would be to estimate site pattern

probabilities by Monte Carlo simulation of a large number of independent sites under the

assumed model for each point in parameter space visited by the optimizer. We are

experimenting with an alternative method that makes a deterministic estimate of the

desired vector of site pattern probabilities using the expected lengths of the branches on

each possible gene tree, conditional on a species-tree topology and the current set of

node-age and population-size parameter values. We expect future versions of PAUP* to

support this option (in a non-experimental mode), allowing the choice between using exact

JC probabilities or an approximation of them using the branch-length expectation method

under more complex models.

In the meantime, the MAPCL estimator introduced in this paper is far more

computationally efficient than fully Bayesian methods including BPP and StarBEAST2 .

With vague inverse-gamma priors, our initial exploration of prior sensitivity suggests that

our estimates are robust to choice of prior means, given a reasonable sample size. BPP , on

the other hand, may require a great deal of computation time to reach convergence when

the prior and posterior distributions are centered around very different values. Unlike

ASTRAL and MP-EST , our MAPCL estimator does not require gene tree estimates

(unbiased or otherwise), and it possesses the desirable properties of maximum likelihood

and Bayesian estimators without requiring MCMC. The MAPCL estimator can handle both

CIS and multilocus data and can accommodate the sampling of multiple individuals per

species. Finally, the guarantee of asymptotic normality ensures that the MAPCL estimator

will have good statistical properties as the amount of data increases. For these reasons, we

anticipate that our MAPCL estimator will be a useful addition to the collection of methods

available for inferring speciation times from genome-scale data under the coalescent model.
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Table 1. Means and 95% credible (BPP) or confidence (MAPCL) intervals in coalescent units for
three internal node ages of interest for the gibbon dataset.a

Param-
eter

BPP MAPCL

mean 95% HPD interval mean 95% CI

τNBS 0.07347 (0.05077, 0.09689) 0.09698 (0.05108, 0.13645)

τBS 0.05034 (0.03472, 0.06484) 0.05065 (0.01316, 0.08666)

τHmHp 2.05539 (1.97249, 2.13989) 1.89807 (1.81497, 1.96921)

a Using the prior distributions matching those used by Shi and Yang (2018) most closely: θ ∼
IG(3, 0.002) and τR ∼ IG(3, 0.02) (our setting 5). For BPP , the conversion to coalescent units

was carried out as in Shi and Yang (2018).

28

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 22, 2021. ; https://doi.org/10.1101/681023doi: bioRxiv preprint 

https://doi.org/10.1101/681023
http://creativecommons.org/licenses/by-nd/4.0/

