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Abstract	
Ageing	affects	a	wide	range	of	phenotypes	at	all	scales,	but	an	objective	measure	
of	 ageing	 remains	 challenging,	 even	 in	 simple	 model	 organisms.	 We	 assumed	
that	 a	wide	 range	 of	 phenotypes	 at	 the	 organismal	 scale	 rather	 than	 a	 limited	
number	 of	 biomarkers	 of	 ageing	 would	 best	 describe	 the	 ageing	 process.	
Hundreds	of	morphological,	 postural	 and	behavioural	 features	are	extracted	at	
once	 from	 high	 resolutions	 videos.	 A	 quantitative	 model	 using	 this	 multi-
parametric	 dataset	 can	 predict	 the	 biological	 age	 and	 lifespan	 of	 individual	 C.	
elegans.	We	show	that	the	quality	of	predictions	on	a	held-out	data	set	increases	
with	 the	 number	 of	 features	 added	 to	 the	 model,	 supporting	 our	 initial	
hypothesis.	 Despite	 the	 large	 diversity	 of	 ageing	 mechanisms,	 including	
stochastic	 insults,	 our	 results	 highlight	 a	 robust	 ageing	 trajectory,	 but	 variable	
ageing	rates	along	that	trajectory.	We	show	that	healthspan,	which	we	defined	as	
the	range	of	abilities	of	the	animals,	is	correlated	to	lifespan	in	wild-type	worms.	
	 	

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted June 24, 2019. ; https://doi.org/10.1101/681197doi: bioRxiv preprint 

https://doi.org/10.1101/681197


	

	 2	

Introduction	
Ageing	is	a	plastic	process	altering	phenotypes	at	the	molecular,	cellular,	tissue	
and	organism	 levels.	Ultimately	 these	 alterations	 affect	 longevity	 and	health	of	
the	organism.	C.	elegans	has	been	proven	a	powerful	model	organism	to	identify	
molecular	 pathways	 regulating	 longevity	 (Kenyon,	 2010).	 Several	 studies	 also	
used	this	organism	to	assess	healthspan	(as	the	period	of	life	when	animals	are	
in	 good	 health)	 and	 compare	 short-lived	 and	 long-lived	 animals	 after	 video	
tracking	(Bansal	et	al.,	2015;	Hahm	et	al.,	2015;	Zhang	et	al.,	2016).	Ideally	suited	
for	 longitudinal	 studies,	 the	 morphological	 and	 behavioural	 repertoire	 of	 the	
worm	offers	numerous	easily	quantifiable	parameters	that	can	be	measured	non-
invasively.	Importantly,	the	behaviour	of	C.	elegans	evolves	from	the	first	day	of	
adulthood	 as	 a	 consequence	 of	 modified	 neuronal	 functions	 and	 as	 a	
consequence	of	the	stochastic	senescence	of	muscle	cells	(Herndon	et	al.,	2002;	
Liu	 et	 al.,	 2013).	 Hahm	 et	 al.	 used	 a	 single	 feature,	 maximum	 velocity,	 as	 an	
indicator	of	health,	and	showed	that	a	daf-2	mutation	improves	healthspan,	and	
therefore	 couples	 lifespan	 and	 healthspan	 extensions	 (Hahm	 et	 al.,	 2015),	 in	
contrast	to	the	previous	results	obtained	by	Bansal	et	al.	(Bansal	et	al.,	2015).	On	
the	other	hand,	Zhang	et	al.	used	a	set	of	5	biomarkers	of	ageing	to	conclude	that	
the	most	plastic	period	of	ageing	is	the	end	of	life	and	that	long-lived	individuals	
have	a	longer	span	of	poor	health	(Zhang	et	al.,	2016).		
Similarly	 to	 Zhang	 et	 al.	 who	 used	 several	 biomarkers	 of	 ageing	 to	 predict	
prognosis	 (Zhang	 et	 al.,	 2016),	 we	 postulated	 that	 a	 large	 set	 of	 phenotypic	
features	 would	 better	 cover	 the	 wide	 phenotypic	 evolution	 occurring	 during	
ageing,	 and	 therefore	 allow	 us	 to	 define	 better	 predictors	 or	 combinations	 of	
predictors	 of	 age	 and	 lifespan.	 Hundreds	 of	 morphological	 and	 behavioural	
features	extracted	at	once	from	high	resolution	videos	of	worms	was	previously	
shown	to	produce	meaningful	classes	of	mutants	(Javer	et	al.,	2018;	Javer	Avelino	
et	al.,	2018;	Yemini	et	al.,	2013).	We	opted	for	this	approach	to	build	a	multiple	
parameter	 database	 describing	 the	 phenotypic	 progression	 of	 worms	 during	
ageing.		
Following	 previous	 work	 (Pincus	 and	 Slack,	 2010),	 we	 define	 a	 biomarker	 of	
ageing	as	any	phenotype	that	correlates	with	relative	age.	By	this	definition,	we	
identified	a	set	of	837	biomarkers	of	ageing.	We	used	appropriate	combinations	
of	phenotypic	features	to	predict	biological	age,	prognosis	and	lifespan.	We	show	
that	short-lived	and	long-lived	animals	follow	the	same	trajectory	of	ageing	and	
spend	the	same	relative	time	in	good	health,	according	to	our	health	index.		
	
	
Results	
Extreme	phenotypes	correlate	with	age	and	relative	age	
To	assess	the	physiology	of	freely	moving	animals	throughout	their	entire	lives,	
hundreds	phenotypes	were	measured	from	video	tracking	of	 individual	worms.	
In	 total,	 the	 phenotypes	 of	 151	 wild-type	 worms	 (N2,	 Bristol)	 were	 followed	
every	day	of	their	lives	from	the	L4	stage.	From	these	videos,	1019	features	are	
extracted	 representing	 morphological,	 postural	 and	 locomotion	 features	
displayed	 by	 the	 worms	 during	 recording.	 Similarly	 to	 the	 short	 physical	
performance	battery	(SPPB)	test	used	in	humans	(Guralnik	et	al.,	1994),	and	the	
maximum	velocity	 in	C.	elegans	(Hahm	et	al.,	2015),	 the	best	markers	of	health	
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might	 be	 extremes	 values	 of	 physical	 performance.	 Therefore	 the	 phenotypes	
were	measured	 in	basal	 conditions	and	after	mechanical	 stimulation	 to	extract	
basal	 and	stimulated	values	 for	each	of	 the	measured	 features.	For	each	of	 the	
1019	tested	features,	Pearson’s	and	Spearman’s	correlation	coefficients	with	age	
and	relative	age	are	globally	higher	after	 the	mechanical	stimulation	compared	
to	 basal	 condition	 (Figure	 1).	 Therefore,	 for	most	 features,	 the	 extreme	 values	
are	 better	 biomarkers	 of	 ageing	 than	 the	 basal	 values.	 Virtually	 any	 evolving	
phenotype	could	be	a	biomarker	of	ageing.	To	determine	which	of	these	features	
are	 the	 best	 biomarkers	 of	 ageing,	 the	 Pearson’s	 correlation	 coefficients	 with	
relative	age	was	calculated	for	each	feature	after	mechanical	stimulation.	Out	of	
the	1019	features	used	in	this	study,	837	have	p	values	<	0.05	after	Bonferroni	
correction.	A	list	of	the	50	best	biomarkers	and	their	corresponding	correlation	
coefficients	is	shown	in	Supplementary	Table	1.		

	
Figure	 1.	 Extreme	 values	 correlate	 better	 with	 age	 and	 relative	 age.	 Absolute	
Pearson’s	and	Spearman’s	correlation	coefficients	of	each	feature	with	age	and	relative	
age,	obtained	in	basal	conditions	and	after	mechanical	stimulation.	
	
Multidimensional	phenotyping	predicts	age,	prognosis	and	lifespan	
Here,	 similarly	 to	 (Zhang	et	al.,	2016),	we	use	biomarkers	 to	predict	prognosis	
with	support	vector	machines.	 In	addition	we	predicted	the	age	and	lifespan	of	
individual	worms	using	a	set	of	100	selected	features	(Figure	2A).	The	features	
were	 selected	 iteratively	 by	 implementing	 the	most	 predictive	 features	 one	by	
one	to	determine	the	most	predictive	combination	of	 features.	As	expected,	 the	
quality	 of	 the	 predictions	 increased	 with	 the	 number	 of	 features	 used	 before	
reaching	a	plateau.	According	to	this	result,	about	100	features	are	sufficient	to	
make	good	predictions	 (Figure	2B).	From	the	best	 set	of	100	 features,	 age	and	
prognosis	were	predicted	with	 respective	 root	mean	standard	error	of	1.7	and	
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2.8	days	while	 lifespan	was	predicted	with	a	 lower	accuracy,	with	a	root	mean	
standard	error	of	3.1.	This	iterative	approach	is	better	predictive	than	the	mere	
addition	 of	 the	 best	 predictive	 features	 (Supplementary	 Figure	 1A).	 The	
examination	 of	 the	 features	 selected	 show	 strong	 divergence	 between	 the	 two	
methods	 (Supplementary	 Figure	 1B).	 It	 suggests	 that	 an	 appropriate	 set	 of	
features	 is	more	 informative	 than	 the	mere	 addition	 of	 predictive	 features,	 as	
expected	when	selecting	from	a	set	of	potentially	correlated	features.		
	

	
	
Figure	2.	Deep	phenotyping	predicts	age,	prognosis	and	lifespan.	(a)	Predictions	of	
age,	 prognosis	 and	 lifespan.	 Red	 lines	 indicate	 theoretical	 perfect	 predictions.	 (b)	
Evolution	of	 the	Mean	Standard	Error	(MSE)	over	 the	number	of	 features	used	 for	 the	
predictions	of	age,	prognosis	and	lifespan.	
	
Short-lived	animals	age	faster	than	long-lived	animals	
Isogenic	populations	are	composed	of	worms	exhibiting	different	lifespans.	This	
inter-individual	variability	between	individuals	in	health	could	be	explained	both	
qualitatively,	 with	 divergent	 trajectories	 of	 ageing,	 and	 quantitatively,	 with	
different	ageing	rates.	To	test	these	two	approaches,	we	split	our	cohort	of	151	
animals	 into	5	groups	of	different	 lifespans.	Their	phenotypes	after	stimulation	
was	projected	 in	2	dimensions	using	PCA	 (Principal	Component	Analysis).	The	
first	 two	 principal	 components	 separate	 individuals	 accordingly	 to	 age,	
generating	 a	 relatively	 well-defined	 trajectory	 of	 ageing.	 No	 qualitative	
divergence	 of	 trajectories	 among	 the	 lifespan	 groups	 is	 observed	
(Supplementary	Figure	2).	Therefore,	within	the	same	genotype,	worms	seem	to	
follow	 a	 single	 trajectory	 of	 ageing	 with	 close	 starting	 and	 end	 phenotypes.	
Quantitatively,	39%	of	the	variance	of	the	full	dataset	at	all	ages	can	be	described	
in	 the	 first	 principal	 component	 (Supplementary	 Table	 2).	 Taking	 the	 position	
along	the	first	principal	component	as	a	measure	of	biological	age,	we	can	use	the	
distance	between	consecutive	time	points	as	an	approximation	of	the	ageing	rate	
of	 the	 animals.	 From	 this	 analysis,	 it	 appears	 clearly	 that	 short-lived	 animals	
travel	faster	through	the	multidimensional	phenotypic	landscape,	and	therefore	
age	faster	than	long-lived	animals	(Figure	3).		
	
	

b

a
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Figure	 3.	 Short-lived	 animals	 age	 faster	 than	 long-lived	 animals.	Evolution	of	 the	
first	 principal	 component	 (PC1)	 of	 a	 principal	 component	 analysis	 over	 chronological	
age.	Shaded	areas	indicate	standard	errors	of	the	mean.	
	
Long-lived	animals	have	a	better	health	
Health	was	previously	defined	as	a	decline	of	maximum	velocity	or	of	prognosis	
(Hahm	 et	 al.,	 2015;	 Zhang	 et	 al.,	 2016).	 Here	 we	 consider	 health	 as	 the	
conservation	 of	 normal	 basal	 activity	 as	well	 as	 the	 ability	 to	 reach	maximum	
activity	and	defined	a	health	index	based	on	the	range	of	abilities	of	the	animal.	It	
is	 calculated	 as	 the	 mean	 difference	 between	 the	 maximum	 value	 (90th	
percentile)	and	minimum	value	(10th	percentile)	for	each	feature	and	should	be	
an	indicator	of	the	phenotypic	flexibility	of	the	animals.	This	index	is	applicable	
to	 physiological	 as	 well	 as	 pathological	 ageing	 (Martineau	 et	 al.,	 2019).	 Our	
health	index	varies	along	life	and	appeared	highly	dependent	on	lifespan.	Among	
lifespan	groups,	health	 indexes	were	similar	at	 the	beginning	of	adulthood	and	
decreased	 after	 day	 4-5	 of	 adulthood	 (Figure	 4A).	 The	 rate	 of	 decline	 was	
dependent	on	lifespan,	with	a	high	rate	of	decline	for	short-lived	animals	and	a	
low	 rate	 of	 decline	 for	 long-lived	 animals.	 However,	 in	 regards	 to	 relative	 age	
these	rates	of	decline	are	similar,	indicating	that	relative	to	lifespan,	healthspans	
are	comparable	among	groups	(Figure	4B).	Therefore,	no	extended	twilight	can	
be	observed	for	long-lived	worms	in	our	conditions.		
	

	
Figure	 4.	 Health	 is	 coupled	 to	 lifespan.	 (a)	 Evolution	 of	 the	 health	 index	 over	
chronological	 age.	 (b)	 Evolution	 of	 the	 health	 index	 over	 relative	 age.	 Shaded	 areas	
indicate	standard	errors	of	the	mean.	
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Discussion	
Prediction	 of	 age	 and	 lifespan	 based	 on	 health	 parameters	 is	 an	 on-going	
challenge	of	medicine.	So	 far,	human	biological	age	can	be	predicted	from	gene	
expression	(Peters	et	al.,	2015),	DNA	methylation	profiles	(Hannum	et	al.,	2013),	
or	 physical	 activity	 (Pyrkov	 et	 al.,	 2018),	 but	 cohorts	 allowing	 for	 lifespan	
predictions	are	still	lacking.		In	C.	elegans,	 individual	features	such	as	maximum	
velocity	 (at	 day	 9	 of	 adulthood)	 or	 a	 combination	 of	 a	 few	 features	 such	 as	
movement,	 autofluorescence	 or	 body	 size	 were	 previously	 shown	 to	 correlate	
well	with	lifespan	or	to	predict	prognosis	(Hahm	et	al.,	2015;	Zhang	et	al.,	2016).	
However,	 most	 features	 of	 the	 worm	 evolve	 with	 ageing.	 To	 better	 cover	 this	
wide	 phenotypic	 evolution	 requires	 a	 larger	 set	 of	 phenotypic	 features	 than	
previously	 attempted.	To	 achieve	 this,	we	used	 an	 automated	quantification	of	
phenotypes	able	to	describe	the	ageing	of	C.	elegans	at	the	organismal	level	with	
more	than	1000	features.	We	show	that	this	multi-parametric	approach	exceeds	
the	predictive	power	reached	with	one	or	few	pre-defined	biomarkers	of	ageing.	
Indeed,	 the	 accuracy	 of	 the	 predictions	 increases	with	 the	 number	 of	 features	
added	 iteratively	 to	 the	 model	 with	 a	 set	 of	 100	 non-invasive	 parameters	
appearing	sufficient	to	achieve	good	predictions.		
Our	results	show	that	phenotypes	after	mechanical	stimulation	better	correlate	
with	age	and	 relative	age	 than	 their	 counterparts	obtained	 in	basal	 conditions.	
This	 is	 consistent	with	previous	 results	 showing	 that	 the	maximum	velocity	of	
the	animals	correlates	better	with	lifespan	than	the	mean	velocity	(Hahm	et	al.,	
2015).	 It	 suggests	 that	 the	 concept	 of	 the	 Short	 Physical	 Performance	 Battery	
(SPPB)	can	be	extended	to	other	species	 than	human	and	provides	support	 for	
analogies	 in	 the	 ageing	 processes	 between	 species	 despite	 extremely	 different	
morphology,	postures	and	locomotory	phenotypes	(Guralnik	et	al.,	1994).	
Based	 on	 the	 evolution	 of	 our	 health	 index	 over	 relative	 age,	 healthspan	
correlates	 with	 lifespan	 in	 the	 wild-type	 strain,	 N2.	 This	 result	 differs	 from	
(Zhang	et	al.,	2016)	but	 confirms	other	previously	published	results	 (Bansal	et	
al.,	2015;	Hahm	et	al.,	2015).	The	type	of	health	index,	the	features	selected,	the	
environment	 or	 the	 genotype	 used	 likely	 explain	 these	 discrepancies	 between	
studies.	We	explored	many	more	features	than	previous	publications	(Bansal	et	
al.,	 2015;	 Hahm	 et	 al.,	 2015;	 Zhang	 et	 al.,	 2016),	 however	 these	 features	 are	
mainly	 morphological	 and	 locomotory,	 lacking	 indicators	 for	 reproduction	 or	
tissue	 integrity,	 which	 might	 be	 crucial	 markers	 for	 health	 quantification	 and	
present	 in	 (Zhang	 et	 al.,	 2016).	 The	 type	 of	 set-up	 used	 for	 the	 recording	 of	
phenotypes	 is	 also	 important.	 Indeed,	 we	 recorded	 phenotypes	 in	 open	
conditions,	with	worms	being	transferred	every	day	onto	a	fresh	plate,	avoiding	
the	accumulation	of	metabolites	and	wastes	that	occur	in	a	closed	system	as	used	
in	(Zhang	et	al.,	2016).	These	metabolites	might	interfere	with	the	good	health	of	
long-lived	 animals	 causing	 the	 observed	 extended	 twilight.	 Finally,	 the	
observations	could	be	genotype-dependent,	as	Zhang	et	al.	used	a	sterile	strain,	
spe-9(hc88)	(Zhang	et	al.,	2016).	
Health	 state	 and	 longevity	 are	 affected	 by	 genetics	 and	 environment.	 We	
previously	observed	different	phenotypic	trajectories	of	ageing	for	two	different	
genotypes	 (Martineau	 et	 al.,	 2019).	 However	 even	 isogenic	worms	 ageing	 in	 a	
controlled	 environment	 show	 wide	 inter-individual	 differences	 in	 lifespan.	
Comparing	 the	 phenotypes	 of	 short-	 and	 long-lived	 wild-type	 animals,	 we	
observe	 that	 all	 animals	 follow	 a	 similar	 trajectory	 of	 ageing	 through	 the	
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multidimensional	phenotypic	landscape,	but	at	different	rates	of	ageing,	similarly	
to	(Zhang	et	al.,	2016).	Similarly	to	the	trajectory	of	development,	the	trajectory	
of	 ageing	 appears	 robust	 at	 the	 organismal	 scale	 (Félix	 and	 Barkoulas,	 2012;	
Pincus	 and	 Slack,	 2010).	 Given	 the	 high	 level	 of	 stochasticity	 in	molecular	 and	
cellular	ageing	observed	previously	 (Cypser	et	al.,	2006;	Herndon	et	al.,	2002),	
this	 observation	 suggests	 that	 the	 phenotypic	 repertoire	 of	 each	 individual	
evolves	 in	 a	 relatively	 coordinated	 mode.	 Nevertheless,	 our	 results	 show	 that	
inter-individual	variability	is	mainly	explained	by	the	rate	of	ageing.	
In	conclusion,	we	demonstrated	that	multiple	non-invasive	parameters	are	best	
predictive	of	biological	age	and	lifespan	and	are	a	better	proxy	to	quantify	health	
than	single	biomarker	of	ageing.	We	propose	this	approach	as	a	new	standard	to	
study	ageing	properties	at	the	organismal	scale.	
	
	
Material	and	Methods	
Strains	and	media	
The	strain	N2	was	used	in	this	study.	Standard	conditions	were	used	to	maintain	
and	propagate	this	strain	at	20	°C.	
	
Collection	of	behavioural	data.	
151	 single	 worms	 were	 video-tracked	 using	 a	 worm	 tracker	 equipped	 with	 a	
bone	 conductor	 transducer	 for	 mechanical	 stimulation.	 Worms	 were	 tracked	
longitudinally	every	day	from	the	L4	stage	to	death.	Worms	were	maintained	in	
strict	conditions	at	20	°C	until	and	during	the	tracking.		
Single-worm	 tracking	 was	 performed	 as	 previously	 described	 with	 slight	
modifications.	 Briefly,	 3	 cm	 plates	 containing	 low	 peptone	 NGM	 were	 seeded	
with	20	μL	of	OP50	30	minutes	prior	tracking.	Each	day,	each	single	worm	was	
picked	with	a	sterile	eyelash	on	a	new	fleshly	seeded	plate	and	let	habituate	for	
15	minutes.	After	2	minutes	of	habituation	in	the	tracker,	worm	behaviour	was	
recorded	for	2	minutes	at	20	frames	per	second	to	extract	basal	phenotypes.	To	
extract	phenotypes	after	mechanical	stimulation,	behaviour	was	recorded	 for	5	
seconds	in	basal	condition	before	a	vibration	transmitted	by	the	air	of	4	seconds	
at	750	Hz,	and	recorded	1	more	minute	after	stimulation.	Videos	were	analysed	
with	the	freely	available	Tierpsy	software	to	extract	behavioural	features	(Javer	
Avelino	et	 al.,	 2018).	The	worm-behaviour	data	 is	 available	on	an	open-source	
platform	(Javer	et	al.,	2018)	(http://movement.openworm.org/).	
	
Data	preparation	
For	each	worm,	a	set	of	4539	features	were	extracted	with	the	Tierpsy	software	
(Javer	Avelino	et	al.,	2018).	These	features	contain	information	about	the	worm	
morphology,	posture,	locomotion	and	behaviour.	After	feature	extraction,	worms	
containing	more	than	25%	of	missing	values	were	removed	from	the	dataset.	A	
selection	 of	 representative	 features	 was	 also	 operated	 to	 remove	 features	
containing	missing	 values.	 The	 dataset	 was	 then	 standardised	 with	 z-score	 to	
compensate	for	the	different	units	of	each	feature.	
	
Predictions	
Predictions	 were	 performed	 with	 a	 support	 vector	 machine	 (linear	 Kernel)	
without	 cross-validation.	 A	 train	 set	 comprising	 80	%	of	 the	 data	was	 used	 to	
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train	 the	 model	 and	 predictions	 were	 made	 on	 the	 20	 %	 remaining	 data.	 To	
measure	prediction	accuracy	over	the	number	of	 features,	 features	were	tested	
and	implemented	to	the	model	one	by	one,	the	feature	giving	the	smallest	mean	
standard	error	being	selected	at	each	iteration.	
	
Health	index	
Health	index	was	calculated	as	the	mean	difference	of	maximum	(90th	percentile)	
and	minimum	(10th	percentile)	values	for	the	131	features	for	which	percentiles	
were	available	in	Tierpsy.	
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