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Abstract

Motivation: Computational biology is a rapidly developing field, and in-
silico methods are being developed to aid the design of genomes to create
cells with optimised phenotypes. Two barriers to progress are that in-
silico methods are often only developed on a particular implementation of
a specific model (e.g. COBRA metabolic models) and models with longer
simulation time inhibit the large-scale in-silico experiments required to
search the vast solution space of genome combinations.
Results: Here we present the genome design suite (PyGDS) which is a
suite of Python tools to aid the development of in-silico genome design
methods. PyGDS provides a framework with which to implement pheno-
type optimisation algorithms on computational models across computer
clusters. The framework is abstract allowing it to be adapted to utilise
different computer clusters, optimisation algorithms, or design goals. It
implements an abstract multi-generation algorithm structure allowing al-
gorithms to avoid maximum simulation times on clusters and enabling
iterative learning in the algorithm. The initial case study will be genome
reduction algorithms on a whole-cell model of Mycoplasma genitalium for
a PBS/Torque cluster and a Slurm cluster.
Availability: The genome design suite is written in Python for Linux
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operating systems and is available from GitHub on a GPL open-source
licence.
Contact: o.chalkley@bristol.ac.uk, lacsg@bristol.ac.uk, and
lucia.marucci@bristol.ac.uk.

1 Introduction

Mathematical models of cellular processes have been widely developed
over the past 50 years to better understand and predict cellular behaviours;
more recently, thanks to advances in Synthetic Biology, computational
models can further aid in the rational design of cellular behaviours and,
possibly, of entire genomes [1–21]. A drive to push biological models
from specialising in specific processes to incorporate a more systems-level
view of cells has led to transcription and translation being integrated
into genome-scale metabolic models [22–26] and even the first whole-cell
model [27]. The first whole-cell model is a first attempt to account for all
annotated gene functions and molecular interactions of a cell in a single
model and been validated on a broad range of data [27–29]. During this
progression simulation times have increased from around one second in
the case of genome-scale metabolic models to 5-35 hours in the case of the
whole-cell model of Mycoplasma genitalium (M. genitalium). This means
that running a genome design method on a new model requires one to
recreate the method on the new model which can be time-consuming if
not coded for general use or the new model is significantly different to use.
Additionally, machine learning algorithms, like genetic algorithms used to
optimse a phenotype by knocking-out combinations of genes [19, 30, 31],
that run in reasonable amounts of time for simpler/faster models may
take a prohibitively long time on more complex models - especially when
taking into account that computer clusters often have a maximum simu-
lation time. Furthermore these algorithms often require large numbers of
simulations creating the need for relation database management systems
and in cases where a simulation produces large amounts of data (e.g. the
first whole-cell model [27]), distributed data storage solutions. Massive
in-silico experiments with models as complex as the first whole-cell model
become bigger than simply submitting a job to a cluster and so workflow
becomes prohibitively fragmented and time consuming.

The area of workflow management systems (WMSs) arose in the 1970s
as a way to automate workflows over distributed computing resources
and now cover a huge range of different tasks for different types of or-
ganisations [32]. Scientific workflows [33,34] have become more and more
important as researchers gain access to computer clusters, cloud resources,
remote databases, and even local databases that are prohibited access to
the compute nodes of a cluster. The goals of the scientific workflow com-
munity were to create WMSs that hide all the complexity of distributed
computing, allowing scientists to focus on the science and not the under-
lying infrastructure. Now scientific WMSs boast and impressive array of
advanced features like easy to use graphical user interfaces, in-simulation
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monitoring and anomaly detection. However, this is very hard to gener-
alise since even similar organisations or clusters will have their own be-
spoke infrastructure and corresponding security and process requirements
which leads to very complicated set-up processes. The set-up process
creates significant barriers of use to a user that does not have the full
commitment of the organisation’s technology team to utilise a WMS. Ad-
ditionally, there are many scientific workflow managers which are aimed
at certain types of researchers by opening up the complexity of a certain
aspect of the workflow (e.g. big data pipelines) making it very hard for
a user to know which one to use. The variety of options combined with
the high set-up cost create large barriers to the adoption of traditional
scientific workflow managers.

Scripts of computer code often result in programs that do very specific
tasks, and code must be rewritten if the user would like to do a slightly
different task. Object-oriented programming is a programming paradigm
based around grouping code into modules or objects [35,36]. This can be
done so that an object is a conceptual entity which can help humans more
easily comprehend the code. Additionally, more extensive programs can
be built from the fundamental modules. Object oriented-programming is
often used to write complex generalisable code and was used to create the
first ever whole-cell model [27].

2 PyGDS framework

Here we introduce PyGDS, a suite of computational tools which allows
massive in-silico genome experiments to be performed on computer clus-
ters thus overcoming time limits and workflow problems caused by com-
plex models like the first whole-cell model [27]. This approach differs from
traditional WMSs in that it does not attempt to be a fully functional sys-
tem that hides lots of complexity to the user. In this case we provide a
framework that enables communication between computers and the im-
plementation of iterative algorithms that use the computers to implement
simulations and perform data processing. The framework is written in
Python, an easy to use and well known language, and the code is re-
stricted to the most basic and fundamental functions like writing files and
transferring data. This means that the user will have to write code to
use the framework but it will be easy and transparent to understand the
existing code. In essence, providing a simplified framework increases the
amount of coding a user may have to do but allows them complete under-
standing of the code and thus autonomy from the help of third parties.
PyGDS utilises the object-oriented paradigm to make it easier to modify
the code for different computer clusters and algorithms. PyGDS is de-
signed to run on a standard Linux PC that performs large-scale in-silico
experiments by running batches of simulations on remote computer clus-
ters; the standard computer will be referred to as the hub (an example
set-up can be seen in figure 3 of the supplementary information).

To enable PyGDS to be adaptable to different design goals, models, and
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Figure 1: A diagram showing how PyGDS enables algorithms to be implemented
on models across computer clusters.
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computer clusters the code is modularised in an object-oriented program-
ming fashion. Three broad modules were picked: (i) algorithm, which
provides a framework for implementing different algorithms on a com-
puter model; (ii) computer communication, which provides a framework
for communicating with a computer cluster, and (iii) job manager, which
utilises the framework provided by the previous two modules to imple-
ment the algorithm onto computer clusters. For more information about
how the modules integrate see figure 1 in the supplementary information.

The algorithm module utilises the idea of a multi-generation algorithm
(MGA) to provide a framework for algorithms to be built on. A MGA
describes a class of algorithms that iteratively runs in-silico experiments;
each iteration is called a generation. The MGA has three benefits: (1)
It is abstract, allowing many different algorithms to be implemented on
a single framework (i.e. any algorithm that can be implemented on a
given model in 1 or more generations); (2) provided that one generation
can be simulated with the resources provided by the computer cluster(s),
then the size and lifetime of the cluster is the only restriction on resource
availability; (3) the iterative nature of a MGA allows results from pre-
vious generations to affect the decisions of future generations providing
a mechanism for memory and learning in the algorithms. The computer
communication module provides a framework to store all the data required
to communicate with a remote Linux computer. The job submission mod-
ule enables the algorithm module to run large batches of simulations on
remote computer clusters by communicating with them through the com-
puter communication module. Figure 1 shows how the modules integrate
to perform large-scale in-silico experiments on a remote computer clus-
ter(s).

For our case study we implement a genetic algorithm that reduces the
genome of the whole-cell model of M. genitalium [27] using a cluster with
a PBS/Torque job manager (i.e. BlueCrystalIII), and cluster with a Slurm
job manager (i.e. BlueGem) - see figure 3 of the supplementary informa-
tion. Both job managers are commonly used for computer clusters and
so these examples can be used as templates for other clusters with these
job managers, otherwise they still act as an example of how to write a
connection sub-class - for more information on this see the supplemen-

tary information. For an example of implementing a different algorithm
using PyGDS see the guess, add, mate algorithm (GAMA) in [37] which
is implemented as three separate algorithms using the PyGDS framework
where the results of a previous stage are fed into the next next stage -
combined these three stages act like a modified genetic algorithm that is
designed to converge on a minimal genome faster.

In order to develop genome design algorithms, subclasses from each of
the three modules need to be created allowing the framework to know
what model to use on which cluster(s) and the details of the algorithm.
Projects that have already been developed can be adjusted to run on a
different cluster or algorithm by creating an appropriate subclass. For
more information on how this was done please see the supplementary in-
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formation.

3 Conclusion

PyGDS provides a framework to implement multi-generation algorithms
on (potentially multiple) computer clusters and distributed storage sys-
tems. The case study shows how to implement a genetic algorithm and
run it on different clusters. Rees and Chalkley et al. [37] also show how
to implement a different algorithm. Whilst it has not been shown yet, the
modularity of the code may make it possible to use different models and
even different design goals. The genome design suite helps to overcome
limitations of maximum simulation times on clusters, restriction to a sin-
gle computer cluster, and takes a step towards providing a framework to
develop genome design tools that are not restricted to specific models or
clusters. Whilst being more general in principle, the purpose of PyGDS
is to allow the optimisation of phenotypes of in-silico organisms. In the
future it may be possible to test algorithms against different models/or-
ganisms or perform massive in-silico experiments on simpler models to
simulate the interaction of large communities of cells. The fact that dif-
ferent models and design goals are possible open up uses outside of genome
design like hyper-parameter optimisation or parameter fitting and could
even be used on non-biological models. However, the further a user moves
from the case study the more code they have to write. Whilst it is modu-
larised well for variable computer clusters and algorithms it is not so good
for different models and design goals - improvement of this is expected to
the center of the next version update. If a user is able to confine an entire
project to one computer or a single cloud services provider then there is
no need for a WMS but as soon as workflows become distributed then a
manager becomes useful. Additionally, whilst cloud services provide al-
most unlimited computing facilities to a user there is a fee for data storage
and CPU/GPU usage and so if that user has access to cheaper resources
(i.e. an in-house server, cluster, or data storage facilities) then a WMS
can be used to maximise the use of the cheaper resources and minimise
the use of more expensive resources.
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[33] Bertram Ludäscher, Ilkay Altintas, Chad Berkley, Dan Higgins, Efrat
Jaeger, Matthew Jones, Edward A. Lee, Jing Tao, and Yang Zhao.
Scientific workflow management and the Kepler system. Concurrency

9

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 24, 2019. ; https://doi.org/10.1101/681270doi: bioRxiv preprint 

https://doi.org/10.1101/681270
http://creativecommons.org/licenses/by-nc-nd/4.0/


and Computation: Practice and Experience, 18(10):1039–1065, aug
2006.

[34] Ewa Deelman, Tom Peterka, Ilkay Altintas, Christopher D Carothers,
Kerstin Kleese van Dam, Kenneth Moreland, Manish Parashar, La-
vanya Ramakrishnan, Michela Taufer, and Jeffrey Vetter. The future
of scientific workflows. The International Journal of High Perfor-
mance Computing Applications, 32(1):159–175, jan 2018.

[35] Ole-Johan Dahl and Kristen Nygaard. Class and Subclass Declara-
tions. In Software Pioneers, pages 91–107. Springer Berlin Heidel-
berg, Berlin, Heidelberg, 2002.

[36] John C. Mitchell. Concepts in Programming Languages. Cambridge
University Press, Cambridge, 2002.

[37] Joshua Rees, Oliver Chalkley, Sophie Landon, Oliver Purcell, Lucia
Marucci, and Claire Grierson. Designing Minimal Genomes Using
Whole-Cell Models. bioRxiv, page 344564, mar 2019.

10

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 24, 2019. ; https://doi.org/10.1101/681270doi: bioRxiv preprint 

https://doi.org/10.1101/681270
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Introduction
	PyGDS framework
	Conclusion

