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Abstract

Protein-protein interaction (PPI) networks are the backbone of all processes in living
cells. In this work we study how conservation, essentiality and functional repertoire of a
gene relate to the connectivity k of the corresponding protein in the PPI networks.
Focusing on a set of 42 mostly distantly related bacterial species, we investigate three
issues: i) whether the distribution of connectivity values changes between PPI
subnetworks of essential and nonessential genes; ii) how gene conservation, measured
both by the evolutionary retention index (ERI) and by evolutionary pressure (as
represented by the ratio Ka/Ks) is related to the the connectivity of the corresponding
protein; iii) how PPI connectivities are modulated by evolutionary and functionaly
relationships, as represented by the Clusters of Orthologous Proteins (COGs). We show
that conservation, essentiality and functional specialization of genes control in a
universal way the topology of the emerging bacterial PPI networks. Noteworthy, a
structural transition in the network is observed such that, for connectivities k ≥ 40,
bacterial PPI networks are mostly populated by genes that are conserved, essential and
which, in most cases, belong to the COG cluster J, related to ribosomal functions and
to the processing of genetic information.

Introduction 1

To operate biological activities in living cells, proteins work in association with other 2

proteins, possibly assembled in large complexes. Hence, knowing the interactions of a 3

protein is important to understand its cellular functions. Moreover, a comprehensive 4

description of the stable and transient protein-protein interactions (PPIs) within a cell 5

would facilitate the functional annotation of all gene products, and provide insight into 6

the higher-order organization of the proteome [1,2]. Several methodologies have been 7

developed to detect PPIs, and have been adapted to chart interactions at a 8

proteome-wide scale. These methods, that combine different technologies with 9

complementary experiments and computational analyses, were shown to generate 10

high-confidence PPI networks, enabling the assignment of several proteins to functional 11

categories [3, 4]. 12

Moreover, the statistical study of bacterial PPIs over several species 13

(meta-interactomes) has brought important knowledge about protein functions and 14

cellular processes [5, 6]. This work contributes to this line of research. Our aim is to 15

shed light on the relationship between conservation, essentiality and functional 16

annotation at the genetic level with the connectivity patterns of the PPI networks. We 17
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extend previous observations which suggested a strong correlation between codon bias 18

and the topology of PPI networks on the one hand, and between codon bias and gene 19

conservation/essentiality on the other hand [7, 8]. It is worth, in the next two 20

paragraphs, to make more precise what is usually meant bygene essentiality and gene 21

conservation. 22

Individual genes in the genome contribute differentially to the survival of an 23

organism. According to their known functional profiles and based on experimental 24

evidence, genes can be divided into two categories: essential and nonessential 25

ones [9, 10]. Essential genes are not dispensable for the survival of an organism in the 26

environment it lives in [10,11]. Nonessential genes are instead those which are 27

dispensable [12], being related to functions that can be silenced without compromising 28

the survival of the organism. Naturally, each species has adapted to one or more 29

evolving environments and, plausibly, genes that are essential for one species may be not 30

essential for another one. 31

It has been argued many times that essential genes are more conserved than 32

nonessential ones [13–17]. The term “conservation” has however at least two meanings. 33

On the one hand, a gene is conserved if orthologous copies are found in the genomes of 34

many species, as measured by the Evolutionary Retention Index (ERI) [9, 18]. On the 35

other hand, a gene is (evolutionarily) conserved when it is subject to a purifying 36

evolutionary pressure which disfavors mutations. This pressure is usually measured by 37

Ka/Ks, the ratio of the number of nonsynonymous substitutions per nonsynonymous 38

site to the number of synonymous substitutions per synonymous site. In this second 39

meaning a conserved gene is, in a nutshell, a slowly evolving gene [13,19]. 40

In this work we show that bacterial PPI networks display an interesting 41

topological-functional transition, ruled by protein connectivity k and with a threshold 42

between k = 40 and k = 50. Proteins with high PPI network connectivities (hubs) likely 43

correspond to genes that are conserved and essential. Conversely, genes that correspond 44

to hub proteins in the PPI network are likely to be essential and conserved. 45

Additionally, below the threshold the functional repertoire of proteins is heterogeneous, 46

whereas, above the threshold there is a quite strict functional specialization. 47

Materials and Methods 48

We consider a set of 42 selected bacterial genomes (that we have previously investigated 49

in [8]), reported in Table 1. These species were chosen in order to have the largest 50

possible coverage of available data for what concerns conservation, essentiality and 51

selective pressure of genes. Nucleotide sequences were downloaded from the FTP server 52

of the National Center for Biotechnology Information. [20]. 53

Gene Conservation 54

We use the Evolutionary Retention Index (ERI) [9] as a first way of measuring 55

conservation of a gene. The ERI of a gene is the fraction of genomes (among those 56

reported in Table 1) that have at least an ortholog of the given gene. Then, a low ERI 57

value means that a gene is specific, common to a small number of genomes, whereas 58

high ERI is a characteristic of highly shared, putatively universal and essential genes. 59

We also make reference to another notion of gene conservation. Conserved genes are 60

those which are subject to a purifying, conservative evolutionary pressure. To 61

discriminate between genes subject to purifying selection and genes subject to positive 62

selective Darwinian evolution, we use a classic but still widely used indicator, the ratio 63

Ka/Ks between the number of nonsynonymous substitutions per nonsynonymous site 64

(Ka) and the number of synonymous substitutions per synonymous site (Ks) [19]. 65
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Conserved genes are characterized by Ka/Ks < 1. We used Ka/Ks estimates by 66

Luo [15] that are based on the method by Nej and Gojobori [21]. 67

Gene Essentiality 68

We used the Database of Essential Genes (DEG, www.essentialgene.org) [15], which 69

classifies a gene as either essential or nonessential on the basis of a combination of 70

experimental evidence (null mutations or trasposons) and general functional 71

considerations. DEG collects genomes from Bacteria, Archea and Eukarya, with 72

different degrees of coverage [22,23]. Of the 42 bacterial genomes we consider, only 23 73

are covered—in toto or partially—by DEG, as indicated in Table 1. 74

Protein-Protein Interaction Network 75

PPIs are obtained from the STRING database (Known and Predicted Protein-Protein 76

Interactions, https : //string − db.org/) [24]. We have chosen STRING because it is 77

the only available database with 1678 bacteria species, thus useful to extend analysis 78

such as those performed in [7] to multiple species. The problem with STRING 79

(functional associations might be used to represent both physical protein-protein 80

molecular interactions and more abstract meta-interactome interactions with it our best 81

to modulate our results using the parameter w, offered by STRING to its users. In 82

STRING, each interaction is assigned with a confidence level or probability w, evaluated 83

by comparing predictions obtained by different techniques [25–27] with a set of reference 84

associations, namely the functional groups of KEGG (Kyoto Encyclopedia of Genes and 85

Genomes) [28]. In this way, interactions with high w are likely to be true positives, 86

whereas, a low w possibly corresponds to a false positive. As usually done in the 87

literature, we consider only interactions with w ≥ Θ and select a stringent cut-off 88

Θ = 0.9 that allows for a fair balance between coverage and interaction reliability (see 89

for instance the case of E.coli reported in [7]). 90

We denote by k the degree (number of connections) associated to each proteins in 91

each PPI network after the thresholding procedure. Note also that after applying the 92

cut-off we are left, for each network, with a number of isolated proteins (with no 93

connections) that grows as
√
n (where n is the number of proteins in the genome). 94

These proteins are not considered in the network analysis and are regarded as stemming 95

from statistical noise. 96

Clusters of orthologous proteins 97

We use functional annotation given by the popular database of orthologous groups of 98

proteins (COGs) from Koonin’s group, available at 99

http : //ncbi.nlm.nih.gov/COG/ [29,30]. We consider 15 functional COG categories 100

(see Table 2), excluding the generic categories R and S for which functional annotation 101

is too general or missing. 102

Results and discussion 103

Degree distribution of PPI networks. We start by studying the degree 104

distributions P (k) observed in bacterial PPIs. We first recall that such a distribution 105

was found to be scale-free in E.coli [7, 31–33], meaning that the corresponding PPI 106

network features a large number of poorly connected proteins, and a relatively small 107

number of highly connected hubs. In order to assess the generality of this observation, 108

we compute P (k) for each genome of Table 1 (plots are reported in figures S2-S3 of the 109
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Supplementary Information). Note that, despite the fact that PPIs of different bacteria 110

have different sizes and densities, their average connectivity and the support of their 111

P (k) are very similar (as shown in figure S1 of the Supplementary Information). Thus, 112

we can superpose all the considered bacterial degree distributions without the need to 113

normalise the support of each P (k). When doing so, we observe two distinct regimes 114

(see figure 1). For low values of k, the distribution has a scale-free shape P (k) ∝ k−γ . 115

This result is consistent with previous findings for yeast, worm and fly [34]and for 116

co-conserved PPIs in some bacteria [35]. For higher values of k, however, the 117

distribution deviates from a power law, and a bump with a Gaussian-like shape emerges. 118

Interestingly, this feature is almost undetectable taking individual species alone as E.coli 119

(see fig 2 in supporting materials of Dilucca [7]), but clearly emerges when the statistics 120

is enriched by adding together several species. The bump emerging for k ≥ 40 is 121

reasonably due to the contribution of proteins belonging to complexes [36]. Indeed, if we 122

consider the separate contribution of essential and nonessential genes to the P (k) (for 123

DEG-annotated genomes), we see that the superposed peak is present only in the degree 124

distribution of essential genes. Moreover, the degree distributions for essential and 125

nonessential genes are well separated and the average degree is systematically higher for 126

essential genes than for nonessential ones—consistently with previous findings [34]. 127

Fig 1. Probability distribution P (k) for the number of connections k of each protein,
averaged over the bacterial species considered in Table 1. Inset: P (k) for essential (E)
and nonessential (NE) genes, averaged over DEG-annotated genomes. Note that the
average degree is higher for essential genes than for nonessential ones, and the two
probability distributions are quite distinct. The region of the curve for low k can be well
approximated by a power law [37].

PPI connectivity and gene conservation We now investigate whether there is a 128

correlation between the degree of conservation (as measured by ERI) of genes and the 129

connectivity k of the corresponding proteins in PPI networks. Figure 2 shows that 130

highly connected proteins are also highly conserved among the bacterial species we 131

consider, that constitute a reasonably wide sample of different evolutionary adaptations. 132

This observation is a strong signature of the existence of an invariant structure of 133

conserved hubs in all bacterial PPI networks. Indeed, we observe the existence of a 134

structural transition for bacterial proteins with k > 40, which have ERI close to 1 135

almost surely, and are thus highly conserved among the species. Proteins that are less 136

connected, on the contrary, have a wide range of ERI values. Interestingly, as shown in 137

the inset of figure 2, the fluctuations in ERI as a function of k abruptly decrease for 138

connectivities above the threshold. 139

Fig 2. Average ERI values of bacterial genes as a function of the degrees k of the
corresponding proteins, for all the considered genomes. Error bars are standard
deviations of ERI values associated to a given k value. Inset: amplitude of the error bar
(∆ERI) as a function of k.

Fig 3. Dependence of selective pressure in terms of Ka/Ks for a gene on the degree k
of the corresponding protein, for all the considered genomes.

We then look at the evolutionary pressure exerted on genes whose proteins have 140

different connectivities. The graph in figure 3 shows the ratio Ka/Ks for groups of 141

genes binned by the connectivity k of the corresponding proteins, for all the 42 bacterial 142
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species considered here. We see that the more connected proteins correspond to genes 143

which are subject to an increasing purifying evolutionary pressure. Indeed, values of the 144

Ka/Ks systematically decrease until they become zero, as a function of k. This result 145

point to the fact that the more proteins are connected in the PPI networks the more the 146

genes encoding them are subject to a purifying evolutionary pressure. 147

PPI and Essentiality. To further investigate the relationship between gene 148

essentiality and protein connectivities, we consider DEG-annotated genomes and classify 149

interactions between proteins (links) making references to the essentiality of the 150

corresponding genes. We distinguish three sets of links: ee (linking proteins from two 151

essential genes), ēē (from two nonessential genes) and eē (from an essential gene and a 152

nonessential one). We then compute the density of these sets of links respectively as: 153

ρee =
|ee|

1
2E(E − 1)

, ρēē =
|ēē|

1
2NE(NE − 1)

, ρeē =
|eē|

1
2E ·NE

, (1)

where E and NE denote the number of essential and nonessential genes, respectively 154

(self-connections are excluded in our analysis). Such densities are then compared with 155

the overall density of the network—restricted to genes classified as either essential or 156

nonessential: 157

〈ρ〉 =
|ee|+ |ēē|+ |eē|

1
2 (E +NE)(E +NE − 1)

. (2)

We use the ratios ree = ρee/〈ρ〉, rēē = ρēē/〈ρ〉 and reē = ρeē/〈ρ〉 to assess the level of 158

connectivity of the subnetworks with respect to the overall connectivity. Table 3 shows 159

that subnetworks of essential genes are far denser than the overall networks, and that, 160

in general, essential and nonessential genes tend to form network components that are 161

weakly interconnected. This happens because many essential genes encode for ribosomal 162

proteins, which in turn are localized in the ribosome so that they have a major 163

probability to interact [38]. Figures S4-S5 of the Supplementary Information display 164

such network features for each individual species. 165

PPI connectivity and functional specialization. For each PPI network, we 166

define the conditional probability that a protein with degree k belongs to a given COG 167

as: 168

P (COG|k) = P (k|COG)P (COG)/P (k), (3)

where P (k) is the degree distribution in the PPI network, P (COG) is the frequency of 169

that COG in the proteome, and P (k|COG) is the degree distribution restricted to that 170

COGs. Figure 4 shows the COG spectrum as a function of k over all bacteria species 171

considered. Interestingly, we again note a marked transition. Below k ' 40 the COG 172

spectrum is quite heterogeneous: genes corresponding to proteins with low connectivity 173

are spread over several COGs which correspond to different functions (see Table 2). 174

Genes whose proteins are highly connected (k ≥ 40) are instead mainly concentrated in 175

COG J, which encompasses translation processes and ribosomal functions. There are 176

yet a handful of outliers, hubs with connectivity between 57 and 62, that belong to 177

COG I (related to lipid transport and metabolism) and K and L (which, together with 178

J, define the functional class of information storage and processing). The list of these 179

outliers is reported in Table 4). 180

Fig 4. Probability distribution P (COG|k) of belonging to a given COG for proteins
with degree k, over all considered genomes. Proteins with low connectivity have a very
heterogeneous COG composition, whereas, those with high k basically belong only to
COG J.
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Conclusions 181

Topological analysis of biological networks, such as protein-protein interaction or 182

metabolic networks, has demonstrated that structural features of network subgraphs are 183

correlated with biological functions [39,40]. For instance, it was shown that highly 184

connected patterns of proteins in a PPI are fundamental to cell viability [41]. In this 185

work we have shown the existence of a topological-functional transition in bacterial 186

species, ruled by the connectivity of proteins in the PPI networks. The threshold in k of 187

the transition is located between k = 40 and k = 50. Proteins that have connectivities 188

above the threshold are mostly encoded by genes that are conserved (as measured both 189

by ERI and Ka/Ks) and essential. Moreover the functional repertoire above the 190

threshold focuses mainly on the COG J, with just a few interesting hubs belonging to 191

COGs I, K and L. 192

Indeed, the PPI network of each bacterial species is characterized by a highly 193

connected core of conserved ribosomal proteins, the components of multi-subunit 194

complexes whose corresponding genes are mostly essential [31, 35] and code for 195

supra-molecular complexes, that pile up in the bump we have observed for the degree 196

distribution (figure1). Hence, what we are seeing here is essentially the ribosome, and 197

related protein complexes such as RNA Polymerase. Indeed, the ribosome is the only 198

molecular machine in bacteria in which a given protein could legitimately have 40 or 199

more protein binding partners, with the help of rRNA mediating interactions [42]. 200

We believe that the observations we have presented here can have implications both 201

for the prediction of gene essentiality, based on the knowledge of PPI networks, and for 202

the prediction of interactions between proteins, based on genetic information [43,44]. It 203

is interesting to note that our results are consistent with a previous study based on 204

inferred bacterial co-conserved networks based on phylogenetic profiles [35]. The 205

coupled flows of information from the genetic level up to the proteomic level and 206

vice-versa should be further systematically investigated, taking into account archaeal 207

and prokaryotic genomes in the search for emerging multi-layer structures that could 208

offer basic theoretical grounds for clinical and systemic applications, for instance related 209

to antimicrobial resistances [45–48]. 210
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Organisms Abbr. RefSeq STRING n
Agrobacterium tumefaciens (fabrum) agtu NC 003062 176299 2765
Aquifex aeolicus VF5 aqae NC 000918 224324 1497
Bacillus subtilis 168 basu NC 000964 224308 4175
Bacteroides thetaiotaomicron VPI-5482 bath NC 004663 226186 4778
Brucella melitensis bv. 1 str. 16M brme NC 003317.1 224914 2059
Burkholderia pseudomallei K96243 bups NC 006350 272560 3398
Buchnera aphidicola Sg uid57913 busg NC 004061 198804 546
Burkholderia thailandensis E264 buth NC 007651 271848 3276
Caulobacter crescentus cacr NC 011916 565050 3885
Campylobacter jejuni caje NC 002163 192222 1572
Chlamydia trachomatis D/UW-3/CX chtr NC 000117.1 272561 894
Clostridium acetobutylicum ATCC 824 clac NC 003030.1 272562 3602
Deinococcus radiodurans R1 dera NC 001263.1 243230 2629
Escherichia Coli K-12 MG1655 esco NC 000913.3 511145 4004
Francisella novicida U112 frno NC 008601 401614 1719
Fusobacterium nucleatum ATCC 25586 funu NC 003454.1 190304 1983
Haemophilus influenzae Rd KW20 hain NC 000907.1 71421 1610
Helicobacter pylori 26695 hepy NC 000915 85962 1469
Listeria monocytogenes EGD-e limo NC 003210.1 169963 2867
Mesorhizobium loti MAFF303099 melo NC 002678.2 266835 6743
Mycoplasma genitalium G37 myge NC 000908 243273 475
Mycoplasma pneumoniae M129 mypn NC 000912.1 272634 648
Mycoplasma pulmonis UAB CTIP mypu NC 002771 272635 782
Mycobacterium tuberculosis H37Rv mytu NC 000962.3 83332 3936
Neisseria gonorrhoeae FA 1090 uid57611 nego NC 002946 242231 1894
Porphyromonas gingivalis ATCC 33277 pogi NC 010729 431947 2089
Pseudomonas aeruginosa UCBPP-PA14 psae NC 008463 208963 5892
Ralstonia solanacearum GMI1000 raso NC 003295.1 267608 3436
Rickettsia prowazekii str. Madrid E ripr NC 000963.1 272947 8433
Salmonella enterica serovar Typhi saen NC 004631 209261 4352
Shewanella oneidensis MR-1 shon NC 004347 211586 4065
Sinorhizobium meliloti 1021 sime NC 003047.1 266834 3359
Sphingomonas wittichii RW1 spwi NC 009511 392499 4850
Staphylococcus aureus N315 stau NC 002745.2 158879 2582
Staphylococcus aureus NCTC 8325 stau NC 007795 93061 2767
Streptococcus pyogenes NZ131 stpy NC 011375 471876 1700
Streptococcus sanguinis stsa NC 009009 388919 2270
Synechocystis sp. PCC 6803 sysp NC 000911.1 1148 3179
Thermotoga maritima MSB8 thma NC 000853.1 243274 1858
Treponema pallidum Nichols trpa NC 000919.1 243276 1036
Vibrio cholerae N16961 vich NC 002505 243277 2534
Xylella fastidiosa 9a5c xyfa NC 002488 160492 2766

Table 1. Summary of the selected bacterial dataset. Organism name, abbreviation,
RefSeq, STRING code, size of genome (number of genes n). Genomes annotated in the
Database of Essential Genes (DEG) are highlighted with bold fonts.
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COG ID Functional classification
INFORMATION STORAGE AND PROCESSING

J Translation, ribosomal structure and biogenesis
K Transcription
L Replication, recombination and repair

CELLULAR PROCESSES AND SIGNALING
D Cell cycle control, cell division, chromosome partitioning
T Signal transduction mechanisms
M Cell wall/membrane/envelope biogenesis
N Cell motility
O Post-translational modification, protein turnover, chaperones

METABOLISM
C Energy production and conversion
G Carbohydrate transport and metabolism
E Amino acid transport and metabolism
F Nucleotide transport and metabolism
H Coenzyme transport and metabolism
I Lipid transport and metabolism
P Inorganic ion transport and metabolism

Table 2. Functional classification of COG clusters.

Organisms ree rēē reē
basu 44.46 0.80 0.11
bath 20.07 0.76 0.25
bups 6.21 0.83 0.27
buth 18.69 0.70 0.22
cacr 18.40 0.70 0.15
caje 3.65 0.82 0.32
esco 2.91 0.88 0.31
frno 9.84 0.52 0.18
hain 1.65 1.15 0.27
hepy 2.91 0.78 0.38
myge 1.42 0.29 0.08
mypu 3.42 0.22 0.12
mytu 8.09 0.78 0.23
pogi 11.03 0.41 0.21
psae 9.85 0.92 0.16
saen 28.80 0.81 0.12
shon 6.50 0.64 0.16
spwi 15.47 0.74 0.22
stau 23.05 0.58 0.23
stau 21.89 0.64 0.16
stpy 9.30 0.73 0.23
stsa 30.65 0.61 0.22
vich 8.37 0.81 0.19

Table 3. Relative density values r for PPI subnetworks between essential genes (ree),
between nonessential genes (rēē) and between essential and nonessential genes (reē), for
each DEG-annotated bacterial genome.

6. Caufield JH, Wimble C, Shary S, Wuchty S, Uetz P. Bacterial protein 228

meta-interactomes predict cross-species interactions and protein function. BMC 229
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k COG Gene Protein
57 1250I paaH 3-hydroxyadipyl-CoA dehydrogenase, NADdependent

0365I acs acetyl-CoA synthetase
1250I paaH 3-hydroxyadipyl-CoA dehydrogenase, NADdependent

58 0222J rplL 50S ribosomal subunit protein L7/L12
0335J rplS 50S ribosomal subunit protein L19
0267J rpmG 50S ribosomal subunit protein L33
0365I acs acetyl-CoA synthetase

59 0183I paaJ 3-oxoadipyl-CoA3-oxo-5,6-dehydrosuberyl-CoA thiolase
1960I ydiO putative acyl-CoA dehydrogenase
0183I atoB acetyl-CoA acetyltransferase

60 0197J rplP 50S ribosomal subunit protein L16
0088J rplD 50S ribosomal subunit protein L4
0197J rplP 50S ribosomal subunit protein L16
0087J rplC 50S ribosomal subunit protein L3
1960I aidB putative acyl-CoA dehydrogenase

61 0085K rpoB RNA polymerase, beta subunit
0202K rpoA RNA polymerase, alpha subunit

62 0087J rplC 50S ribosomal subunit protein L3
0052J rpsB 30S ribosomal subunit protein S2
2965L PriB ribosomal replication protein

Table 4. Specific hubs. In this table we detail which proteins populate the few bins of
connectivity around k = 60 in figure 4.
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