1 A horizontally acquired expansin gene increases virulence of the emerging plant

2 pathogen Erwinia tracheiphila

- 3 Jorge Rocha^{a,b}*#, Lori R. Shapiro^{a,c}*, Roberto Kolter^a
- 4
- 5 #Address correspondence to Jorge Rocha, jorge.rocha@ciad.mx
- ^a Department of Microbiology, Harvard Medical School, Boston MA.
- 7 ^b Present Address: Conacyt-Centro de Investigación y Desarrollo en Agrobiotecnología
- 8 Alimentaria, San Agustin Tlaxiaca, Mexico
- 9 ^c Present Address: Department of Applied Ecology, North Carolina State University,
- 10 Raleigh, NC

11

- 12 * JR and LRS contributed equally to this work.
- 13 Word count: Abstract 219, Main Text (Introduction, Results, Discussion) 4354

14

15 **Running title:** An expansin increases Erwinia tracheiphila virulence

16 #Address correspondence to Jorge Rocha, jorge.rocha@ciad.mx

17 Keywords: expansin, virulence, glycoside hydrolase, Cucurbita, Erwinia, squash, plant

18 cell wall, cellulose, pectin, horizontal gene transfer, plant pathogen, xylem

19

20 Author Contributions: JR and LRS conceived of the study. JR designed and conducted

- 21 molecular protocols and lab experiments. LRS conducted computational analyses and
- 22 performed experiments. JR, LRS and RK interpreted experimental data. JR and LRS
- 23 wrote the first draft of the manuscript, and JR, LRS and RK added critical revisions.

- 24
- 25 Data Deposition Statement: Analysis scripts and input files associated with
- 26 reconstruction of phylogenetic trees are available at
- 27 https://github.com/lshapiro31/gh5.expansin.phylogenetics

3

28 Abstract

29 All land plants depend on proteins called 'expansins' that non-enzymatically loosen structural 30 cellulose, enabling cell wall extension during normal growth. Surprisingly, expansin genes are 31 also present – but functionally uncharacterized – in taxonomically diverse bacteria and fungi that 32 do not produce cellulosic cell walls. Here, we find that *Erwinia tracheiphila* 33 (Enterobacteriaceae), the causative agent of bacterial wilt of cucurbits, has horizontally acquired 34 an operon with a microbial expansin (exlx) gene and a glycoside hydrolase family 5 (gh5) gene. 35 *E. tracheiphila* is an unusually virulent plant pathogen that induces systemic wilt symptoms 36 followed by plant death, and has only recently emerged into cultivated cucurbit populations in 37 temperate Eastern North America. Plant inoculation experiments with deletion mutants show that 38 EXLX-GH5 is a secreted virulence factor that confers efficient xylem movement and 39 colonization ability to *E. tracheiphila*. Bacterial colonization of xylem blocks sap flow, inducing 40 wilt symptoms and causing plant death. Together, these results suggest that the horizontal 41 acquisition of the *exlx-gh5* locus was likely a key step driving the recent emergence of E. 42 *tracheiphila*. The increase in *E. tracheiphila* virulence conferred by microbial expansins, the 43 presence of this gene in many other bacterial and fungal wilt-inducing plant pathogen species, 44 and the amenability of microbial expansins to horizontal gene transfer suggest this gene may be 45 an under-appreciated virulence factor in taxonomically diverse agricultural pathogens.

4

47 Importance

Erwinia tracheiphila is a bacterial plant pathogen that causes a fatal wilt infection in cucurbit 48 49 crop plants. Here, we report that *E. tracheiphila* has horizontally acquired a microbial expansin 50 gene (exlx) adjacent to a glycoside hydrolase family 5 (gh5) gene. Expansing are predominantly 51 associated with plants due to their essential role in loosening structural cell wall cellulose during 52 normal growth. We find that the EXLX and GH5 proteins in *E. tracheiphila* function as a single 53 complex to facilitate xylem colonization, possibly by manipulating the size of xylem structures 54 that normally exclude the passage of bacteria. This suggests that horizontal acquisition of the 55 *exlx-gh5* locus was likely a key step in the recent emergence of *E. tracheiphila* as an unusually 56 virulent plant pathogen. The presence of microbial expansin genes in diverse species of bacterial 57 and fungal wilt-inducing pathogens suggests it may be an under-appreciated virulence factor for 58 other microbes.

59

60 Introduction

61 The surfaces of all land plants are colonized by complex microbial communities. For a microbe, 62 the ability to colonize a plant increases access to the nutritional resources produced by that plant 63 (1-3). This has driven the evolution of diverse molecular mechanisms for plant colonization that 64 can be found in commensal, beneficial and pathogenic microbes (4-6). A group of particularly 65 intriguing, yet largely uncharacterized genes identified in an increasing number of plant-66 associated bacterial and fungal species encode proteins called 'expansins' (7-10). Expansins are 67 non-enzymatic, two-domain proteins of ~250 amino acids; the N-terminal domain is related to 68 glycoside hydrolase family 45 functional domains, and the C-terminal domain is related to grass 69 pollen allergens (11-13). Expansin-coding genes are ubiquitous in all species of land plants and

70 green algae, where they fulfill the essential role of non-enzymatically loosening cell wall 71 cellulose during normal growth of any rapidly expanding tissues (11, 14-18). In bacteria and 72 fungi – which do not have cellulosic cell walls – expansin genes are variably present in species 73 that interact with live or dead plant or algal matter (7, 8, 10, 19). The function(s) of expansins in 74 microbes are unknown for almost all species, but are thought to promote colonization of plants 75 through interactions with plant cell wall cellulose (7, 8, 20). 76 In the few microbial species where expansin functions have been empirically 77 investigated, their contributions to plant colonization have been diverse. The microbial expansin 78 in the plant commensal Bacillus subtilis (BsEXLX1) has only a fraction of the in vitro ability to 79 extend plant cell walls compared to plant expansins, but BsEXLX1 deletion mutants are either 80 severely impaired, or unable to successfully colonize the surface of maize roots (20, 21). In some 81 species of plant beneficial fungi, expansins (also referred to as 'swollenins') increase fungal 82 mutualistic capabilities towards plant hosts (22, 23). Expansin function has also been 83 investigated in several pathogens. In the bacterial plant pathogen *Ralstonia solanacearum*, an 84 expansin deletion mutant has decreased virulence (24), and in *Clavibacter michiganensis*, studies 85 have described contradictory expansin roles for virulence and ability to colonize xylem (24-28). 86 Overall, fundamental questions surrounding how microbial expansins mediate plant colonization 87 in divergent genetic backgrounds and variable ecological contexts, and the molecular 88 mechanism(s) by which microbial expansins interact with plant structural carbohydrates remain 89 enigmatic (7, 8, 10, 19, 20, 24, 26, 29, 30). 90 The bacterial plant pathogen Erwinia tracheiphila Smith (Enterobacteriaceae), the 91 causative agent of bacterial wilt of cucurbits, contains an operon with an expansin gene (exlx)

92 and a gene fragment with a glycoside hydrolase family 5 functional domain (*gh5*) (8, 31-33). The

6

93 only geographic region where *E. tracheiphila* occurs is temperate Eastern North America, and it 94 only infects species in two genera of cucurbit host plants: summer and winter squash (cultivars 95 of Cucurbita spp.) and cucumber and muskmelon (Cucumis sativus and Cucumis melo) (34). The E. tracheiphila genome has undergone dramatic structural changes consistent with an 96 97 evolutionarily recent emergence, including the horizontal acquisition of multiple genes likely 98 important for virulence (34-38). Unlike most bacterial plant pathogens, E. tracheiphila cannot 99 persist in environmental reservoirs, and instead is only transmitted by two species of highly 100 specialized leaf beetle vectors (39-42). Bacterial cells can enter xylem when beetle frass 101 containing *E. tracheiphila* is deposited near recent foliar feeding wounds or on floral nectaries 102 (40, 43). Bacterica can then move systemically through xylem and block sap flow to induce 103 systemic wilting, which is followed by plant death within 2-3 weeks after the first wilt symptoms 104 appear (35, 44-46). E. tracheiphila costs farmers millions of dollars annually through direct yield 105 losses and indirect control measures (34). Despite the economic burden caused by E. 106 tracheiphila, no genetic determinants of bacterial pathogenesis or virulence have yet been 107 empirically assessed. 108 Here, we characterize the role of the expansin-GH5 operon from *E. tracheiphila* for 109 colonization of squash (*Cucurbita pepo*). First, we reconstruct the evolutionary histories of both 110 the exlx and gh5 open reading frames (ORFs), and find that the phylogenies of both exlx and gh5

111 are consistent with horizontal acquisition by *E. tracheiphila*. Then, we create deletion mutants to

determine the individual and combined roles of *exlx* and *gh5* for *E. tracheiphila* colonization of

113 host plants. In planta inoculation experiments with the wild type and mutant strains show that

these proteins are secreted, and suggest that they function as a single assembled EXLX-GH5

115 complex. The EXLX-GH5 protein complex is necessary for *E. tracheiphila* to efficiently

116	colonize xylem, induce systemic wilt symptoms, and cause high rates of plant death. Together,
117	these results suggest that the exlx-gh5 locus as a non-canonical yet potent virulence factor, and
118	horizontal acquisition of this locus was a key event driving the recent emergence of <i>E</i> .
119	tracheiphila as a fatal plant pathogen that can efficiently colonize xylem. These findings
120	highlight the continued risk of horizontal gene transfer driving an increase in pathogen virulence,
121	and the continuing vulnerability of agricultural populations to invasion by pathogen variants or
122	species with increased virulence.
123	
124	Results
125	Identification of a locus with an expansin gene in Erwinia tracheiphila
126	A locus with two open reading frames (ORFs) flanked by mobile DNA elements was identified
127	during manual curation of <i>ab initio</i> gene predictions in the <i>Erwinia tracheiphila</i> reference strains
128	(31, 32) (Figure 1A). The first ORF, <i>Et-exlx</i> (AXF78871.1), is predicted to encode a protein
129	product with 243 amino acids and both domains found in canonical expansin proteins (17, 47).
130	The second ORF, <i>Et-gh5</i> (AXF77819.1), has 315 codons and is predicted to encode a putatively
131	pseudogenized endo-1,4-beta-xylanase A precursor (EC 3.2.1.8) with a glycoside hydrolase
132	family 5 (GH5) functional domain (www.CAZy.org) (48). Many <i>Et-gh5</i> homologs in the NCBI
133	nr database are between 415 – 450 amino acids, and RAST ab initio gene annotation predicts
134	that the truncation to 315 amino acids eliminates cellulase activity and renders <i>Et-gh5</i> non-
135	enzymatic (49). The sequences of both ORFs predict a signal peptide for secretion and a Signal
136	Peptidase cleavage site (50), suggesting that the protein products are secreted and their function
137	is extracellular.
138	

139 *Phylogenetic distribution of the* Erwinia tracheiphila *expansin and gylocoside hydrolase family* 5

140 open reading frames

141 Because mobile DNA elements are common agents of horizontal gene transfer, the phylogenies 142 of both the *exlx* and *gh5* genes were reconstructed and evaluated for conflict with the species 143 phylogeny (37, 51-53). Homologs of both genes are only found in species that interact with live 144 plants, or soil-dwelling species that likely interact with dead plant matter. The γ -proteobacterial 145 expansin homologs are recovered as two distinct groups, separated by Firmicutes (Figure 1B). 146 The expansin homologs in the Enterobacterial plant pathogens (*Pectobacterium* spp., *Dickeya* 147 spp., Pantoea stewartii and E. tracheiphila) comprise one group, and the expansin homologs 148 from Xanthomonadaceae comprise a second group (8). Erwinia tracheiphila and Pantoea 149 stewartii are the only species with microbial expansin homologs from the Erwinia and Pantoea 150 genera, respectively. This suggests that an expansin gene was horizontally acquired by an 151 ancestral plant-associated Enterobacteriaceae species, and this original acquisition was followed 152 by vertical and horizontal transmission between other plant-associated Enterobacteriaceae (8). 153 The expansin phylogeny is consistent with additional horizontal gene transfer events, such as an 154 expansin acquisition by the β -proteobacterial plant pathogen *Ralstonia solancearum* from a 155 Xanthomonadaceae donor (8, 10).

156 *Gh5* homologs have a relatively sparse distribution in bacteria and some plant pathogenic 157 nematodes, and the *gh5* phylogeny is also consistent with multiple horizontal gene transfer 158 events (Figure 1C). *Gh5* homologs are present in the genomes of Enterobacteriaceae, Firmicutes, 159 Myxobacteria and β -proteobacteria that also have expansin genes. Homologs are also present in 160 species of Bacteroidetes and γ -proteobacteria species that do not have expansin genes. In 161 Enterobacteriaceae, the *gh5* homologs separate into three distinct groups. One group is

9

162 comprised of Erwinia tracheiphila, Pantoea stewartii, Dickeya dianthicola, and Phaseolibacter 163 sp. (recently reclassified to Enterobacteriaceae (54)). The other plant-pathogenic *Dickeya* spp. 164 comprise a second group of Enterobacterial gh5 homologs, and plant-pathogenic Pectobacterium 165 and *Brennaria* spp. are a third group. 166 167 Distribution of expansin fusions to carbohydrate active domains in bacteria 168 In approximately 10% of microbial species, expansin genes are fused to domains from 169 carbohydrate active proteins (8, 10). Out of the hundreds of families of carbohydrate active 170 domains in the CAZy database (www.cazy.org), only GH5 and carbohydrate binding module 171 family 2 (CBM2) domains repeatedly co-occur with bacterial expansin genes (8, 48). Bacterial 172 species that have an expansin co-occurring with a carbohydrate active domain are more likely to 173 be xylem-colonizing pathogens (8). The co-occurrence of GH5 domains with expansins in 174 bacterial plant pathogens is especially apparent (Figure 2). 175 A gh5 homolog is present in the genomes of multiple plant-pathogenic *Pectobacterium* 176 and *Dickeya* species that harbor an *exlx* homolog (Figure 1B, 1C). However, only three 177 enterobacterial species (Erwinia tracheiphila, Pantoea stewartii, and Dickeya dianthicola) have 178 the *exlx* and *gh5* ORFs in the same operon. In these three species, the *exlx* and *gh5* genes have 179 distinct signal peptides and are separated by ~50 nucleotides. In P. stewartii, the exlx-gh5 locus 180 is on a plasmid (pDSJ08), which may increase the probability of acting as a donor for horizontal 181 gene transfer. 182 Many plant pathogenic Xanthomonadaceae have a gh5 domain fused to an exlx as a 183 single ORF (8, 55). The gh5 domain in Enterobacteriaceae is non-homologous to the GH5

184 domain in Xanthomonadaceae, and the *exlx* and *gh5* domain structure in some

185	Enterobacteriaceae is in reverse orientation compared to the gh5-exlx domain order in
186	Xanthomonadaceae. A distinct gh5 domain that is truncated to 289 amino acids is found in
187	Clavibacter michiganensis (CelA), and this is the only known microbial expansin that is fused to
188	both a GH5 and CBM2 domain in a single coding sequence (27). This suggests there have been
189	at least three independent origins of an expansin adjacent or fused to a gh5 family functional
190	domain in bacterial plant pathogens. These multiple independent co-occurrences of bacterial
191	expansins with evolutionarily distinct gh5 domains may be an example of functional
192	convergence.
193	
194	Expansin and GH5 genes both contribute to Erwinia tracheiphila virulence
195	The functional significance of a microbial expansin co-occuring with a carbohydrate
196	active domain has not yet been empirically tested. To evaluate the role of EXLX and GH5 to <i>E</i> .
197	tracheiphila virulence – and the possible synergistic effects of both proteins together – we
198	generated a deletion mutant of the complete operon (strain $\Delta exlx$ -gh5), and mutants in only the
199	expansin ORF (strain $\Delta exlx$) and only the GH5 ORF (strain $\Delta gh5$). Strains that complemented
200	the three deletion mutations ($\Delta exlx$ -gh5(cEXLX-GH5), $\Delta exlx$ (cEXLX) and $\Delta gh5$ (cEXLX-GH5),
201	respectively) were also constructed (Supplemental Table 1). Variation in virulence between the
202	wild type (Wt), mutants and complemented strains were measured via squash seedling
203	inoculation experiments. Virulence was compared by quantifying differences in the amount of
204	time it took each strain to induce disease symptoms at three stages: 1) at initial wilt symptom
205	development on the inoculated leaf, 2) at systemic spread of wilt symptoms to a second non-
206	inoculated leaf, and 3) at plant death.

207	In plants inoculated with $\Delta exlx$ -gh5, wilt symptoms were delayed in the inoculated leaf
208	and in a second systemic leaf, and significantly fewer plants inoculated with $\Delta exlx$ -gh5 died
209	(23%; 5 of 22) compared to plants inoculated with Wt (85%; 17 out of 20) (Figure 3A, Tables 1
210	and 2). Wilt symptoms in plants inoculated with $\Delta exlx-gh5$ were more likely to be localized to
211	the inoculated leaf (<i>i.e.</i> , symptoms did not progress to systemic infection or plant death)
212	compared to plants inoculated with Wt (Figure 4). The $\Delta exlx$ -gh5(cEXLX-GH5) complemented
213	strain had restored ability to induce wilting symptoms at a second non-inoculated leaf, and
214	partially restored the mortality rate (60%; 13 out of 22).
215	Individual deletions of the <i>Et-exlx</i> and <i>Et-gh5</i> ORFs also caused a decrease in virulence
216	compared to Wt (Figure 3, Tables 1-4). Plants inoculated with either $\Delta exlx$ or $\Delta gh5$ exhibited
217	delays in the initial appearance of wilt symptoms in the inoculated leaf, delays in the appearance
218	of systemic wilt symptoms in a second leaf and decreased mortality compared to Wt. Genetic
219	complementation of $\Delta exlx$ in strain $\Delta exlx$ (cEXLX) did not restore the Wt ability to cause wilt
220	symptoms in the inoculated leaf, but did restore the ability to cause systemic wilt symptoms and
221	plant death (Figure 3A, Tables 1 and 2).
222	Promoter regions for expression of the exlx-gh5 operon have not been characterized, but
223	expression of individual ORFs in an operon is often directed from an upstream shared promoter.
224	It is therefore reasonable to assume expression of the <i>gh5</i> ORF is directed from a shared
225	promoter region upstream of <i>exlx</i> (56). For this reason, the single $\Delta gh5$ mutant was
226	complemented with the full operon (<i>exlx-eng</i>) to include the promoter region of <i>exlx</i> .
227	Complementation of $\Delta gh5$ with $\Delta exlx$ -gh5(EXLX-GH5) restored the Wt ability to cause wilt
228	symptoms in the inoculated leaf, systemic wilt symptoms in a second leaf, and plant death
229	(Figure 3B Tables 3 and 4).

12

230

231 *The Δexlx-gh5 mutant is impaired in systemic movement*

232 The correlation between within-plant movement of *E. tracheiphila* to systemic wilt symptom 233 development and plant death has been hypothesized, but not yet demonstrated (34, 57). It is 234 assumed that systemic movement of bacteria through xylem – along with bacterial replication 235 and increase in biomass far from the initial inoculation point – is necessary to occlude xylem 236 vessels to cause wilt symptoms and plant death (Figure 4) (34, 57). To explicitly test whether 237 $\Delta exlx$ -gh5 has impaired within-host movement, squash seedlings were inoculated with either Wt 238 or $\Delta exlx$ -gh5. At 12 DPI, bacteria were quantified at two sites in the same plant: the petiole of the 239 inoculated leaf, and the petiole of a second, non-inoculated leaf. At 12 DPI, all of the plants 240 inoculated with the Wt strain were systemically wilting, but none of the plants inoculated with 241 $\Delta exlx$ -gh5 had wilt symptoms beyond the inoculated leaf. At the inoculation site of all plants, the Wt and $\Delta exlx$ -gh5 both reached similar cell counts (>10⁹ CFU/g for Wt, and 10⁸-10⁹ CFU/g for 242 243 $\Delta exlx-gh5$) (Figure 5). However, in a petiole of a second, non-inoculated leaf $\Delta exlx-gh5$ only 244 reached cell counts of 10^3 CFU/g, while the Wt reached 10^9 CFU/g (Figure 5). The $\Delta exlx-gh5$ 245 strain does not have a growth deficiency *in vitro* compared to the Wt (Supplemental Figure 1), 246 showing that the attenuation of wilt symptom development and decrease in plant death rates 247 (Figures 3 and 4) is due to impaired systemic movement of $\Delta exlx-gh5$ and not a difference in 248 growth rate per se.

249

250 Systemic wilt symptoms are correlated with local Erwinia tracheiphila concentration

251 A second inoculation experiment using only the $\Delta exlx-gh5$ mutant was conducted to quantify

how wilt symptom severity is correlated with the ability of *E. tracheiphila* to move through, and

13

253 replicate in xylem beyond the inoculation point. Thirty plants were inoculated with $\Delta exlx-gh5$, 254 and after 21 days symptoms in each plant were scored as either no symptom in any leaf 255 (healthy), wilt symptoms restricted to the site of inoculation, systemic wilt symptoms beyond the 256 inoculated leaf, or death. Bacteria were then quantified with CFU counts from the petiole of the 257 inoculated leaf and a petiole of a second non-inoculated leaf. 258 At 21 DPI, 8 plants were healthy and had not developed any wilt symptoms, 12 only had 259 wilt symptoms in the inoculated leaf, 10 had systemic wilting symptoms, and none had died (Figure 6). In the petiole of the inoculated leaf, the bacterial concentration reached $\sim 10^8$ to 10^9 260 261 CFU/g in 26 out of the 30 experimental plants regardless of symptom severity. Cell counts from the inoculation site were lower (below $<10^7$ CFU/g) in the remaining 4 plants, three of which 262 263 were healthy and one that had symptoms only in the inoculated leaf (Figure 6). In the petiole of a 264 second non-inoculated leaf, bacterial concentration was correlated with overall severity of wilt 265 symptoms, with lower severity corresponding to lower bacterial numbers. In 6 of the 8 healthy 266 plants that did not develop any wilt symptoms, bacterial cells were undetectable at a non-267 inoculated leaf, and bacterial cells in a second non-inoculated leaf of the remaining two healthy plants were just barely over the $\sim 10^3$ CFU/g threshold of detection (Figure 6). In the 12 plants 268 269 that developed wilt symptoms only in the inoculated leaf, the bacterial numbers at a noninoculated leaf were highly variable (ranging from 10^4 to 10^8 CFU/g). In 7 out of 10 systemically 270 271 wilting plants, the bacterial concentration recovered at a second non-inoculated leaf was similar to the cell counts recovered at the local inoculation site ($\sim 10^8$ CFU/g). These results explicitly 272 273 correlate severity of wilt symptoms with the ability of *E. tracheiphila* to move systemically and 274 increase in population far from the initial inoculation site to block xylem sap flow (Figure 4).

14

276 Erwinia tracheiphila does not have cellulase or xylanase activity

277 All expansin proteins (from plants, bacteria, fungi, or other microbial eukaryotes) do not have a 278 detectable enzymatic activity (7, 13, 19, 58). However, glycoside hydrolases are enzymes that 279 break the glycosidic bond between two or more carbohydrate subunits, and the predominant 280 target of these enzymes is cellulose (48). It is therefore possible that the gh5 ORF adjacent to or 281 fused to bacterial expansin genes in some species may confer enzymatic activity. To test whether 282 the *gh5* ORF confers carbohydrate degrading ability to *E. tracheiphila*, the Wt strain (with the 283 intact exlx-gh5 locus) was evaluated for enzymatic degradation of cellulose and xylan, the two 284 main structural components of plant cell walls and the putative targets of active GH5 enzymes 285 (59). Neither E. tracheiphila culture supernatant nor colonies had detectable hydrolytic activity 286 against cellulose or xylan (Supplemental Figure 2). The absence of enzymatic activity is 287 consistent with previous results from both plant and microbial expansins where no enzymatic 288 activity has ever been detected (7, 13, 19).

289

290 <u>Neither flagella nor Type IV Pili contribute to Erwinia tracheiphila systemic xylem colonization</u>

Type IV Pili and flagella are used by some bacterial plant pathogens during systemic movement through xylem (60-63). To assess whether these cellular components may also contribute to *E. tracheiphila* xylem colonization, deletion mutants were generated for Type IV Pili ($\Delta T4P$) and flagella ($\Delta fliC$) (Supplemental Table 1). In squash inoculation experiments, the virulence phenotypes of $\Delta T4P$ and $\Delta fliC$ mutants were indistinguishable from Wt. There was no difference in the development of wilt symptoms or death rate from inoculation with either $\Delta T4P$, $\Delta fliC$, or Wt (Figure 7, Tables 5 and 6). This indicates that neither Type IV Pili nor flagellar

15

movement contribute to xylem colonization by *E. tracheiphila*, although it is still possible that
these loci contribute in other, more subtle, ways to pathogenesis.

300

301 *The Et-exlx-gh5 protein is secreted during infection*

302 To test whether the protein products of the *Et-exlx-gh5* locus are secreted (as predicted by the

303 presence of signal peptides), plants were co-inoculated with a 1:1 mix of Wt & $\Delta exlx-gh5$.

304 Successful restoration of $\Delta exlx$ -gh5 colonization from *in trans* complementation by the Wt strain

305 would indicate that the EXLX and GH5 proteins provided by the Wt strain are secreted and

306 function extracellularly. An equal number of plants were inoculated with only the Wt or only the

 $\Delta exlx-gh5$ mutant. In singly inoculated plants, the Wt or $\Delta exlx-GH5$ reached the same

308 concentration in the inoculated site at 1 DPI, but only the Wt was detected in a petiole of a non-

309 inoculated leaf at 12 DPI (Figure 8A).

310 In co-inoculated plants, both Wt & $\Delta exlx-gh5$ strains were present at similar

311 concentrations at the inoculation site at 1 DPI (Figure 8B). After 12 days, two of the 4 plants co-

inoculated with the 1:1 mix of Wt & $\Delta exlx-gh5$ developed systemic wilt symptoms. In these two

313 co-inoculated plants, the cell count of Wt in the petiole of a non-inoculated leaf reached $10^7 - 10^8$

314 CFU/g, and the cell count of $\Delta exlx$ -gh5 reached 10⁵-10⁶ CFU/g (Figure 8B). This is a notably

higher cell count than $\Delta exlx$ -gh5 reaches at the same 12 day time point when singly inoculated

 $(10^3-10^4 \text{ CFU/g})$ (Figure 5, Figure 8A). The ability of the Wt to partially rescue the systemic

317 colonization defect of $\Delta exlx-gh5$ in trans (when the Wt and $\Delta exlx-gh5$ are co-inoculated)

318 indicates that EXLX and GH5 are secreted and function extracellularly.

319 To test whether the EXLX and GH5 proteins function independently or as a single 320 assembled unit, plants were co-inoculated with a 1:1 mix of $\Delta exlx$ and $\Delta gh5$. The $\Delta exlx$ deletion

1	6
-	υ

321	mutant is expected to still secrete an intact GH5 protein, and the $\Delta gh5$ deletion mutant is
322	expected to still secrete an intact EXLX protein. If the EXLX and GH5 proteins function
323	independently, the two strains would complement each other in trans. However, co-inoculating
324	the $\Delta exlx$ and $\Delta gh5$ single deletion mutants did not rescue the attenuated virulence phenotype of
325	the individual deletion mutants (Figure 9, Tables 7 and 8). This indicates that these proteins
326	function as a single EXLX-GH5 protein complex that assembles before or during secretion, and
327	therefore both proteins must be produced by the same cell.
328	
329	Discussion
330	Here, we find that the emerging plant pathogen Erwinia tracheiphila has horizontally
331	acquired an <i>exlx-gh5</i> locus that functions as a virulence factor by conferring the ability to
332	systemically colonize xylem, block sap flow and cause high rates of plant death. The ability of a
333	pathogen to move systemically through host vasculature – either plant xylem or animal
334	cardiovascular systems – is a high-virulence phenotype, and is associated with development of
335	more severe symptoms than localized infections (64, 65). The ability of a pathogen to reach a
336	high titre and be distributed throughout the host's vasculature is also necessary for vector
337	transmission by providing more opportunities for acquisition (64, 66). In E. tracheiphila, the
338	development of systemic wilt symptoms induces a chemical volatile phenotype that attracts
339	significantly more foraging vectors to wilting leaves (45, 67), and a physical phenotype that
340	facilitates insect vector feeding – and increased pathogen acquisition opportunities – from
341	symptomatic foliage (40, 45). This increase in virulence conferred by the <i>Et-exlx-gh5</i> locus

342 induces more severe symptoms in infected plants that both attract obligate insect vectors to

343 infected plants, and facilitates preferential feeding on wilting tissue once they arrive. Together,

17

this suggests that the horizontal acquisition of the *exlx-gh5* locus was a key step in the recent
emergence of *E. tracheiphila* as a virulent wilt-inducing pathogen that is obligately insect vector
transmitted (34, 37).

347 In $\sim 10\%$ of bacterial species that have expansin genes, the expansin is fused to domains 348 from carbohydrate active proteins. The formation of new genes via fusions of multiple modular 349 domains is a key source of evolutionary innovation for organisms across the tree of life (68, 69). 350 Expansin co-occurrence with *gh5* domains is over-represented in pathogenic bacterial species 351 that can move through xylem (8), suggesting there may be emergent properties of the EXLX-352 GH5 protein complex that are uniquely adaptive for xylem-colonizing plant pathogenic bacteria. 353 Healthy plants have effective physical barriers to allow the flow of xylem sap while excluding 354 bacteria; pit membranes between adjacent tracheids and perforation plates between xylem 355 vessels are openings on a nanometric scale, while most bacteria are $\sim 1 \mu m$ (70). One hypothesis 356 is that bacterial expansing may non-enzymatically 'loosen' the cellulose and pectin matrix at the 357 perforation plates or at the pit membranes in order to increase their size enough to allow the 358 passage of bacterial cells (71-74). The ability of *E. tracheiphila* Wt strain to complement $\Delta exlx$ -359 gh5 in trans is consistent with the hypothesis that the EXLX-GH5 protein complex functions 360 extracellularly by interacting with xylem structrual carbohydrates that would normally prevent 361 bacterial passage. This also suggests that, while the *Et-gh5* enzymatic activity has been lost due 362 to truncation, the remaining fragment may have been neofunctionalized and is providing an 363 essential (though mechanistically undefined) role in virulence. One possibility is that the gh5 364 functional domain may physically (but non-enzymatically) interact with plant structural 365 carbohydrates at perforation plates or pit membranes in a way that aids expansin function for 366 loosening of cellulose microfibrils, or vice versa.

18

367 The distinct phylogenies of the *Et-exlx* and *Et-gh5* ORFs, and their genomic architecture 368 as distinct genes in the same operon, may offer mechanistic insight into how bacterial expansins 369 fuse to carbohydrate active domains. In many Firmicutes, *Pectobacterium* spp. and most *Dickeya* 370 spp. plant pathogens, the *exlx* and *gh5* homologs are present in the same genome, but are not 371 located directly adjacent to each other in the same operon. Only in E. tracheiphila, P. stewartii, 372 and D. dadantii is the exlx homolog directly adjacent – but not fused to – the gh5 homolog. This 373 suggests that during a horizontal gene transfer event between an Enterobacteriaceae donor and 374 recipient, an expansin integrated by random chance adjacent to a GH5, and the two ORFs in this 375 operon are now being horizontally transferred together. The assembled protein complex 376 produced by the *exlx-gh5* locus may provide a more efficient mode of action for movement 377 through xylem, promoting the fitness of the host bacteria and providing opportunities for further 378 horizontal transfer of this construct as a single virulence island. From a shared promoter and only 379 \sim 50 nucleotide separation, a fusion of *exlx* and *gh5* into a single ORF is possible from a small 380 deletion mutation. We also note that all three of the bacterial plant pathogens with this construct 381 are agricultural pathogens emerging into intensively cultivated, homogeneous crop plant 382 populations. *Erwinia tracheiphila* has recently emerged into cucurbit agricultural populations 383 (34, 37) and *Pantoea stewartii* infects sweet corn (75). Both of these pathogen species only occur 384 in temperate Eastern North America – one of the world's most intensively cultivated regions – 385 despite global distrubtion of susceptible host plants (76). D. dianthicola causes a virulent wilt 386 disease and is emerging into cultivated potato crops, and is also geographically restricted to 387 Eastern North America and Europe (77-79). 388 There is constant risk that agro-ecosystems will be invaded by virulent microorganisms,

and the increasing homogeneity in crop plant populations may select for novel pathogens with

19

390 non-canonical virulence mechanisms. The recent realization that microbial expansin genes are 391 present in phylogenetically diverse xylem-colonizing bacterial and fungal species – including almost all of the most economically damaging bacterial and fungal wilt pathogens - and the 392 393 function of expansins to increase E. tracheiphila virulence suggest these genes may be an under-394 appreciated virulence factor (7, 8, 80, 81). The emergence of virulent plant pathogens that 395 systemically colonize xylem is especially alarming because plants do not have inherent genetic 396 resistance against xylem-dwelling vascular pathogens (82). That expansin genes can confer an 397 increase in pathogen virulence, are present in many damaging wilt-inducing agricultural plant 398 pathogens, and are amenable to horizontal gene transfer should raise concerns about whether this 399 gene is a more important virulence factor of agricultural plant pathogens than currently 400 recognized. 401 402 Methods 403 Study System

404 *E. tracheiphila* is one of the few plant pathogenic bacterial species that moves systemically through xylem and causes host death, compared to most species that cause localized 405 406 foliar lesions (83). E. tracheiphila is obligately vector-transmitted by two species of highly 407 specialized leaf beetles, the striped cucumber beetle Acalymma vittatum and the spotted 408 cucumber beetle Diabrotica undecimpunctata howardii (Coleoptera: Chrysomelidae: Luperini: 409 Diabroticina). These herbivores have co-evolved with wild Cucurbita spp. in the New World, 410 and are among the only herbivores that can detoxify 'cucurbitacins' (oxygenated tetracyclic 411 triterpene), which are a class of secondary metabolites produced by many Cucurbitaceae (35, 84, 412 85). The striped cucumber beetle (Acalymma vittatum), which is obligately dependent on

20

413 *Cucurbita* in all life stages, is the predominant vector species driving *E. tracheiphila* epidemics 414 (40, 67, 86). Striped cucumber beetles acquire *E. tracheiphila* by feeding on wilting, infective 415 foliage, which is physically easier for them to consume than non-wilting foliage (36, 45). E. 416 tracheiphila colonizes the beetle hindgut (40, 87-89), and beetles can transmit E. tracheiphila 417 when frass (poop) from infective beetles is deposited near recent feeding wounds on foliage, or 418 on floral nectaries (36, 40, 43, 86). The only known overwinter reservoir for *E. tracheiphila* is 419 infective cucumber beetles, which diapause as adults and infect new seedlings in early spring 420 when they emerge (39, 40, 45, 86, 89, 90). 421 *Erwinia tracheiphila* is an example of a plant pathogen that has recently emerged into a 422 new ecological niche created by construction of homogeneous agro-ecosystems (34, 35, 37). 423 Analysis of the *E. tracheiphila* genome shows this species has undergone among the most 424 dramatic structural genomic changes of any bacterial pathogen, of any host species. These 425 changes include genome decay through pseudogenization, invasion and proliferation of mobile 426 genetic elements, and horizontal gene acquisitions. Together, these are the canonical genomic 427 signatures of a recent specialization on a new host species or population (34, 37, 38). Erwinia

428 *tracheiphila* only infects few species in two genera of the cosmopolitan plant family

429 Cucurbitaceae. One of the genera that suffers economic losses, *Cucurbita* spp. (squash, pumpkin,

430 zucchini and some gourds), are native to the New World tropics and subtropics (91, 92). Two

431 *Cucumis* spp. (cucumber *Cucumis sativus;* and muskmelon *Cucumis melo*) native to the Old

432 World tropics and subtropics are the most susceptible hosts to *E. tracheiphila* infection, and the

433 introduction of highly susceptible *Cucumis* crop plants into temperate Eastern North America

434 likely drove the recent emergence of this pathogen (93-95). While these susceptible cucurbit

7	1
2	т

- 435 cultivars are among the highest acreage crop plants globally (http://www.fao.org/faostat/), E.
- 436 *tracheiphila* only occurs in temperate Eastern North America (34, 96).
- 437

438 <u>Bacterial strains, culture media and plant cultivation</u>

All bacterial strains used in this study are listed in Supplemental Table 1. Throughout this work,

440 we used a rifampicin resistant variant of *Erwinia tracheiphila* BHKYR (Wt) (34). *Escherichia*

441 *coli* TOP10 and PIR1 strains for used for routine cloning, and the *E. coli* strain S17-1λ was used

442 as the donor for conjugation. *E. tracheiphila* was grown in KB liquid media or agar at room

443 temperature (RT), and *E. coli* strains in LB media or agar at 37°C, unless otherwise specified.

444 Antibiotics were added to liquid or agar media at the following concentrations: rifampicin, 50

 $\mu g/ml$; ampicillin or carbenicillin, 100 $\mu g/ml$; chloramphenicol 5 $\mu g/ml$; kanamycin 50 $\mu g/ml$.

446 All *in planta* experiments were conducted with organic 'Dixie' variety crookneck squash bought

447 from Johnny's Seeds (https://www.johnnyseeds.com/). Plants were grown in potting mix in

standard six cell seedling trays in a greenhouse environment set to 25°C, 70% humidity, and a 12

449 hr day: 12hr night light cycle.

450

451 *Visualization of fluorescent* Erwinia tracheiphila *in wilting squash seedlings*

452 *E. tracheiphila* BuffGH was transformed with a plasmid carrying the mCherry gene for

453 visualization of fluorescent cells in symptomatic squash seedlings. Competent E. tracheiphila

454 were prepared as described previously (34, 97). Briefly, cells were prepared by growing *E*.

455 *tracheiphila* to an OD₆₀₀ of 0.02. Cells were then washed with decreasing volumes, once with

456 chilled sterile Milli-Q water and twice with 10% glycerol, and resuspended in 1/100 volume of

457 chilled 10% glycerol. Plasmid pMP7605 was used for electroporation in a 0.2-cm cuvette, at 2.5

458	kV for 5.2 to 5.8 ms. Cells were incubated at room temperature without shaking for 1 h in 3 ml
459	KB liquid and then plated in KB agar with ampicillin. Colonies of fluorescent E. tracheiphila Et
460	(pMP605) were obtained after 5 days at room temperature. Ten µl of a Et (pMP7605) stationary
461	culture were used for inoculating two week-old squash seedlings (at the two leaf stage), and
462	confocal microscopic observations were performed once symptoms appear using fresh
463	longitudinal cuts of the inoculated petiole.
464	
465	Phylogenetic reconstruction of the expansin and endoglucanase genes and comparison of
466	domain architecture
467	The amino acid sequences of the expansin (WP_046372116.1) and gh5 (WP_016193008.1)
468	ORFs in the Erwinia tracheiphila reference strain (31) were used as queries to identify expansin
469	and gh5 homologs using the BLASTP web interface (98). A taxonomically representative sample
470	of the top BLASTP hits for each gene were aligned using MAFFT v. 7.305b and default
471	parameters (99). The expansin alignment was trimmed visually such that the two canonical
472	expansin domains were conserved in the alignment, and the gh5 alignment was trimmed with
473	trimAI using the -automated 1 option (100). For both alignments ProtTest v. 3.4.2 was used to
474	identify the best-fitting substitution model by BIC score, which was WAG+G for the expansin
475	gene alignment and LG+I+G for the GH5 alignment (101). The GyrB species tree was
476	constructed by using the <i>E. tracheiphila</i> GyrB sequence (KKF36621.1) as a query on the
477	BLASTP web interface (98). The GyrB amino acid sequences from species known to have an
478	expansin gene or an expansin fusion to a domain from a carbohydrate active protein were
479	downloaded and added to a multi-fasta. The GyrB sequences were aligned with MAFFT v.
480	7.305b and default parameters (99).

23

481	Phylogenetic trees were reconstructed using maximum likelihood with RAxML (102) and
482	the appropriate evolutionary model on the CIPRES server (103). The expansin tree was
483	reconstructed with 1000 bootstrap pseudoreplicates, and the GH5 and GyrB trees were
484	reconstructed with 100 bootstrap pseudoreplicates. The bootstrapped pseudosamples were
485	summarized with SumTrees v. 4.4.0 (104). The resulting phylogeny was visualized in the R
486	statistical environment using the ggtree library (105, 106). Amino acid sequences were analyzed
487	with NCBI CBD tool to identify domain architecture (47), and signal peptides were predicted
488	with SignalP (50). The genomic context of the <i>Et-exlx-gh5</i> locus was visualized with genoPlotR
489	(107). Alignment files and phylogenetic scripts are available at
490	https://github.com/lshapiro31/gh5.expansin.phylogenetics.
491	
492	Construction of deletion mutants
493	Mutants with a deletion in the <i>exlx-gh5</i> operon, <i>exlx</i> gene, <i>gh5</i> gene, the Type IV pili operon and
494	the <i>fli</i> C gene were generated from an <i>E. tracheiphila</i> isolate BHKYR parental strain by double
495	homologous recombination, using the suicide plasmid pDS132 (108). This plasmid was
496	improved by inserting in the XbaI site, a constitutive mCherry gene amplified from plasmid
497	pMP7605 (109) using primers JR72 and JR73 (Supplemental Table 2). The resulting plasmid
498	(pJR74, Supplemental Table 1) allows rapid screening of conjugants colonies and colonies that
499	have lost the plasmid. For the target genomic region to create each mutant, regions upstream of
500	the target locus were amplified with primers pair F5 and R5, and downstream regions were
501	amplified with primer pair F3 and R3 (See Supplemental Table 2 for specific primer names and
502	sequences). An ampicillin resistance bla gene, coding for Beta-lactamase was amplified from

503 pDK46 (97) using primers LS23 and LS24. Constructions consisting on each upstream and

504	downstream region flanking the <i>bla</i> gene were used for <i>exlx-gh5</i> , <i>gh5</i> , <i>fliC</i> and Type 4 Pili
505	mutants, while a construction with no flanked antibiotic cassette was prepared for the <i>exlx</i>
506	deletion. All constructions were assembled using the Gibson Assembly Master Mix (New
507	England Biolabs, Ipswich, MA), and then each was reamplified with nested primers containing
508	SacI restriction site (primers SacI-F and SacI-R, Supplemental Table 2). Constructions for exlx-
509	gh5, exlx, gh5, fliC and Type 4 Pili deletion were inserted into the SacI site of plasmid pJR74,
510	obtaining plasmids pJR150, pJR323, pJR324, pJR74a and pJR149, respectively (Supplemental
511	Table 1). These plasmids were transformed into <i>Ec</i> -PIR1 for preservation, and then into <i>Ec</i> -S17
512	for conjugation using E. tracheiphila as recipient. MCherry fluorescent E. tracheiphila
513	conjugants were obtained in KB agar with rifampicin and chloramphenicol, then a few colonies
514	were picked and grown in 3 ml liquid KB with chloramphenicol to stationary phase, and 100 μl
515	were spread in KB agar with 5% sucrose and carbenicillin (or no antibiotic in the case of <i>exlx</i>
516	deletion). Non-fluorescent, chloramphenicol-sensitive colonies were picked, PCR checked for
517	the correct deletion and cryogenically stored in 15% glycerol at -80C.
518	
519	Genetic complementation
520	A new integration plasmid, specific for a neutral region in the chromosome of <i>Et</i> -
521	BHKYR, was constructed from plasmid pJR74. To create this plasmid, two ≈ 0.8 Kb adjacent
522	DNA fragments were PCR amplified form <i>Et</i> -BHKYR genomic DNA using primer pairs JR143-
523	JR144, and JR145-JR146 (Supplemental Table 2). These fragments were ligated using the
524	Gibson Assembly Master Mix (New England Biolabs, Ipswich MA), and reamplified using
525	primers JR143 and JR146. The \approx 1.6 Kb product was inserted in the SacI site of pJR74,
526	generating plasmid pJR315 (Supplemental Table 1). Single cutting XhoI and BglII sites were

527	engineered in the middle of the amplified neutral regions, which can be used for the insertion of
528	complementation genes. For the complementation of the <i>exlx-gh5</i> locus or the individual <i>exlx</i>
529	gene, the genomic region together with its natural promoter were amplified from E. tracheiphila
530	genomic DNA using primers JR152 and JR154, or JR152 and JR153 (Supplemental Table 2)
531	respectively, and DNA products were inserted into the XhoI site of pJR315. Each resulting
532	plasmid was transformed into <i>Ec</i> -S17-1 λ cells, which were then used as donors for conjugation
533	with mutant strains $\Delta exlx$ -gh5, $\Delta exlx$ or $\Delta gh5$ as recipients. Conjugant colonies were used for
534	negative selection with sucrose, as described above, and colonies carrying the <i>exlx-gh5</i> operon or
535	the <i>exlx</i> gene integrated in the expected site were confirmed by PCR.
536	
537	In planta inoculation experiments
538	In planta virulence assays were performed by inoculating squash seedlings with E. tracheiphila
539	Wt and derived strains, and monitoring wilt symptom development for approximately three
540	weeks (between 21-25 days per experiment). To create inoculum, one bacterial colony of each
541	strain was picked and added to 3 ml of liquid KB media with the appropriate antibiotic, and
542	grown with shaking for 24 h. Then, 2-3 week-old squash seedlings (2-3 true leaves) were
543	inoculated by manually inducing a wound where xylem was exposed in the petiole at the base of
544	the first true leaf and adding 10 μ l of culture containing $\approx 1 \times 10^7$ bacterial cells directly into the
545	wound. Plants were kept at 25°C, 70% humidity, and a 12 hr day: 12hr night light cycle 25C, and
546	monitored daily for appearance of first symptoms in the inoculated leaf, appearance of wilt
547	symptoms in a second non-inoculated leaf, and plant death.
548	

549 In planta Colony Forming Unit (CFU) counts

550 Bacterial colony forming units (CFU) counts were determined from plants inoculated with Et-551 BHKY and derived strains. Bacterial cells can be obtained directly from petioles of infected 552 plants (Figure 4D). Two cm samples of the petiole from the inoculated leaf, or from a second 553 non-inoculated leaf were cut from the plants and washed briefly with 70% ethanol (EtOH). 554 Excess EtOH was removed with a paper towel and petioles were surface-sterilized over a gas 555 flame for 1 second and placed in a sterile plastic petri dish. From each petiole sample, 10-15 556 disks small disks (<1 mm) were manually cut with a sterile blade and collected in a 2 ml 557 microtube. The weight of each 2ml tube with all leaf disks was recorded to be used for 558 normalizing CFU per gram of plant tissue in each sample, and 500 µl of chilled PBS was added 559 to each tube. After an incubation of 40 min on ice (vortexing every 10 min) 200 µl of PBS from 560 each tube was pipetted into a new microtube and used for serial dilutions and plating onto KB 561 agar with rifampicin. Bacterial CFU per gram of fresh tissue was calculated. For obtaining CFUs of individual strains in plants co-inoculated with *E. tracheiphila* Wt 562 563 and $\Delta exlx$ -gh5 mutant, serial dilutions were plated in both KB with rifampicin and KB with 564 rifampicin and carbenicillin agar plates. CFU of carbenicillin resistant colonies represent the 565 $\Delta exlx$ -gh5 strain. CFUs of Wt was determined as the count of total CFUs – carbenicillin resistant 566 CFUs. 567

568 <u>Statistics</u>

Statistical analyses were performed using Prism version 7.0 (GraphPad Software, La Jolla
California USA, www.graphpad.com). Curves following initial symptoms in first leaf, systemic
wilt in second leaf, and plant death from each experiment were compared using the built-in Logrank (Mantel-Cox) test for survival analysis. In the cases where significant differences were

573	found ($p < 0.05$), pairwise comparisons were tested using the same analysis (110). For
574	comparisons of bacterial CFU in planta, CFU data and its log10-transformed values were checked
575	for Gaussian distribution using the Shapiro-Wilk normality test. Since neither CFU data
576	distribution nor the transformed Log_{10} values distribution passed the normality test, the Kruskal-
577	Wallis non-parametric was used test to analyze if the medians vary significantly among
578	experimental groups ($p < 0.05$). In the cases where differences were found, Dunn's multiple
579	comparisons test was used to test for pairwise differences between groups.
580	
581	Testing for cellulase and xylanase activity
582	Cellulase activity from cell-free supernatants of Wt and $\Delta exlx$ -gh5 cultures were tested for
583	extracellular enzymatic activity against cellulose. The Wt and $\Delta exlx$ -gh5 strains were grown in
584	10 ml of liquid KB media for 48 H. Cultures were centrifuged at 7,000 rpm for 10 min, and each
585	supernatant was filter-sterilized. Supernatants and 1 mg/ml cellulase (Sigma), were spotted in 1%
586	agar, 1% Carboxy Methil Cellulose (CMC) plates. Plates were then incubated at 30°C for 48 h,
587	and flooded with Gram's Iodine. Halos were imaged after 24 h at RT.
588	A colony of <i>E. tracheiphila</i> grown on KB agar plates was used to test for extracellular
589	xylanase activity. A xylanase producing strain of Streptomyces lividens was used as a positive
590	control. Bacterial culture from each species was spotted on the surface of a KB agar plate, and
591	grown at RT for 4 days. An overlay of 1% agar and 1% xylan was spread on top of the grown
592	colonies, and plates were incubated at 30°C for 48 h. Plates were flooded with 1% congo red and
593	incubated for 10 min before discarding the congo red solution. Plates were then flooded with 1N
594	NaOH, and incubated for 10 min. NaOH was discarded and plates were imaged after 24 h at
595	room temperature.

28

596

597 <u>Acknowledgements</u>

- 598 This work was supported by Fundación Mexico en Harvard, and Conacyt grant 237414 to JR,
- 599 NSF postdoctoral fellowship DBI-1202736 to LRS and NIH Grant GM58213 to RK.
- 600 We thank all members of the Kolter lab, and Einat Segev, William R. Chase and Olga
- 601 Zhaxybayeva for valuable feedback and discussion. We thank the staff at the Harvard Arnold
- Arboretum for assistance in plant cultivation, use of growth facilities and use of the confocal
- 603 microscope. Dominique Schneider kindly donated the plasmid pDS132.
- 604

605 <u>Tables</u>

606

607 **Table 1**. Summary of *in planta* inoculation experiment comparing virulence traits between

608 strains Wt, $\Delta exlx$ -gh5 mutant, $\Delta exlx$ -gh5 (cEXLX-GH5) complemented mutant, $\Delta exlx$ mutant

and $\Delta exlx$ (cEXLX) complemented mutant (corresponding to Figure 3A).

610

		No. of p (% of to	Average no. of days until:				
Inoculated strain	Total inoculated	Showing local symptoms	Showing systemic symptoms	Died	Local symptoms in first leaf	Systemic symptoms in second leaf	Death
Wt	20	22 (100%)	20 (100%)	17 (85%)	7.40	13.70	15.29
$\Delta exlx$ -gh5	22	22 (100%)	20 (91%)	5 (22%)	10.45	17.65	19.40
$\Delta exlx$ -gh5 (cEXLX-GH5)	22	22 (100%)	22 (100%)	13 (59%)	10.14	14.77	16.31
$\Delta exlx$	24	24 (100%)	23 (95%)	12 (50%)	10.29	17.43	20.33
$\Delta exlx$ (cEXLX)	24	24 (100%)	24 (100%)	15 (62%)	8.83	14.46	15.53

611

612

613

614 **Table 2.** Log-rank (Mantel-Cox) tests for assessing statistical differences in virulence between

615 Wt, $\Delta exlx$ -gh5 mutant, $\Delta exlx$ -gh5 (cEXLX-GH5) complemented mutant, $\Delta exlx$ mutant and $\Delta exlx$

616 (cEXLX) complemented mutant via *in planta* inoculation experiments (corresponding to Figure

617 3A).

Compared treatment groups		t leaf ptoms	Second systemic leaf symptoms		Death of plants	
Compared treatment groups	Chi square	<i>p</i> value	Chi square	<i>p</i> value	Chi square	<i>p</i> value
All groups	17.45	0.0016	28.51	< 0.0001	22.02	0.0002
Wt vs $\Delta exlx$ -gh5	9.787	0.0018	16.4	< 0.0001	20.87	< 0.0001
Wt vs Δ <i>exlx-gh5</i> (cEXLX-GH5)	11.04	0.0009	1.5	0.2206	3.939	0.0472
Wt vs $\Delta exlx$	12.09	0.0005	16.44	< 0.0001	9.348	0.0022
Wt vs $\Delta exlx$ (cEXLX)	4.321	0.0376	0.9923	0.3192	2.497	0.1141

Table 3. Summary of *in planta* inoculation experiment comparing virulence traits of Wt, $\Delta gh5$

623 mutant and $\Delta gh5$ (cEXLX-GH5) complemented mutant (corresponding to Figure 3B).

		No. of p (% of to	Average no. of days until:				
Inoculated strain	Total inoculated	Showing local symptoms	Showing systemic symptoms	Died	Local symptoms in first leaf	Systemic symptoms in second leaf	Death
		22	18	17			
Wt	22	(100%)	(81%)	(77%)	11.82	13.61	18.82
		12	8	6			
$\Delta gh5$	21	(57%)	(38%)	(28%)	13.25	15.38	19.33
$\Delta gh5$		21	14	13			
(cEXLX-GH5)	22	(95%)	(66%)	(59%)	12.67	13.00	18.54
· · ·							

Table 4. Log-rank (Mantel-Cox) tests for assessing statistical differences in virulence between

628 strains Wt, $\Delta gh5$ mutant and $\Delta gh5$ (cEXLX-GH5) complemented mutant (corresponding to

629 Figure 3B).

Compared treatment		st leaf ptoms		l systemic ymptoms	Death	of plants
groups	Chi	<i>p</i> value	Chi	<i>p</i> value	Chi	p value

	square		square		square	
All groups	15.53	0.0004	9.216	0.01	9.833	0.0073
Wt vs $\Delta gh5$	14.11	0.0002	9.906	0.0016	10.25	0.0014
Wt vs Δgh5 (cEXLX-GH5)	1.059	0.3034	0.8276	0.363	1.187	0.276

Table 5. Summary of *in planta* inoculation experiment comparing virulence traits between

634	strains Wt, $\Delta fliC$ mutant and $\Delta T4P$ mutant	(corresponding to Figure 7).
	, , , , , , , , , , , , , , , , , , ,	

	N	Average no. of days until:					
Inoculated strain	Total inoculated	Showing local symptoms	Showing systemic symptoms	Died	Local symptoms in first leaf	Systemic symptoms in second leaf	Death
		21	21	14			
Wt	21	(100%)	(100%)	(66%)	9.43	13.62	18.86
		22	22	13			
$\Delta fliC$	22	(100%)	(100%)	(59%)	10.23	13.45	17.54
-		17	17	9			
$\Delta T4P$	17	(100%)	(100%)	(52%)	9.18	14.53	19.67

Table 6. Log-rank (Mantel-Cox) tests for assessing statistical differences in virulence between

638 strains Wt, $\Delta fliC$ mutant and $\Delta T4P$ mutant (corresponding to Figure 7).

Compared	-	t leaf ptoms	5	ystemic leaf ptoms	Death o	of plants
treatment groups	Chi square	<i>p</i> value	Chi square	<i>p</i> value	Chi square	<i>p</i> value
All groups	1.623	0.6543	1.324	0.7235	2.156	0.5406

Table 7. Summary of *in planta* inoculation experiment comparing virulence traits between

643 mutant strains $\Delta exlx$, $\Delta gh5$ and a 1:1 mix of both $\Delta exlx$ and $\Delta gh5$ mutants (corresponding to

644 Figure 9).

	N	lo. of plants (% of total)		Averag	e no. of days	until:
Inoculated strain	Total inoculated	Showing local symptoms	Showing systemic symptoms	Died	Local symptoms in first leaf	Systemic symptoms in second leaf	Death
$\Delta exlx$	18	15 (83%)	8 (44%)	3 (16%)	9.33	16.25	17.33

31

$\Delta gh5$ $\Delta exlx$ and	18	16 (88%) 15	8 (44%) 8	4 (22%) 4	11.69	16.88	17.25
$\Delta gh5 \text{ mix}$	18	(83%)	(44%)	(22%)	11.11	14.76	19.05
Table 8. Log-ranl	k (Mantel-	Cox) stati	istical test	results for	experim	ent compar	ing virulen
e		,			1	1	U
mutant strains Δe :	$clx, \Delta gh5$	and a 1:1	mix of bot	th $\Delta exlx$ ar	nd $\Delta gh5$ 1	mutants (co	rresponding
Figure 9).							
Figure 9).							
Figure 9).							
Figure 9).	Firs	st leaf	Second sy	stemic leaf			
Figure 9). Compared treatmen		st leaf ptoms	-	stemic leaf	Death	of plants	
			-		Death o Chi square	of plants	

654

655 **Figure captions**

Figure 1. Genomic context and phylogenies of the expansin and glycoside hydrolase 5 genes

657 in Erwinia tracheiphila

658 A) Genomic context of the expansin (exlx) and glycoside hydrolase 5 (gh5) open reading frames

659 (ORFs) in *Erwinia tracheiphila*. The ORFs and intergenic spaces are drawn to scale, with the

black line representing position on the chromosome, and each ORF as an arrow color-coded

according to *ab initio* annotated function. The scale bar is the length in nucleotides of the ORFs

and intergenic spaces.

B) Distribution of expansin (*exlx*) homologs in a taxonomically representative set of bacterial

664 species. Branches are colored according to taxonomic assignments. The tree was reconstructed

- using maximum likelihood and should be considered unrooted. Numbers at nodes are bootstrap
- 666 pseudoreplicate supports, and the scale bar is the number of amino acid substitutions per site.

32

667 C) Distribution of glycoside hydrolase 5 (*gh5*) homologs in a taxonomically representative set of 668 species. Branches are colored according to taxonomic assignments, using the same color 669 assignments as Figure 1B. The tree was reconstructed using maximum likelihood and should be 670 considered unrooted. Numbers at nodes are bootstrap pseudoreplicate supports, and the scale bar 671 is the number of amino acid substitutions per site.

672

673 Figure 2. Co-occurrence of expansin genes with carbohydrate active domains. The GyrB 674 species tree of selected bacteria with an expansin gene, and several species without expansins. 675 The expansin and carbohydrate active domains are depicted as arrows if that species has an 676 expansin gene, and the rectangles within the arrows indicate whether that ORF has an expansin 677 domain, a carbohydrate active domain, or both. Homologous carbohydrate active domains are 678 color-coded. Both expansin genes are shown for *Streptomyces scabiei*, the only microbial species 679 to harbor two expansin homologs with signal peptides for secretion. Accession numbers of the 680 depicted protein sequences, and accession numbers of several expansin homologs that do not 681 have predicted signal peptides for secretion and are not depicted in the figure, can be found in 682 Supplemental Table 3. The domains are drawn to scale. The tree was reconstructed using 683 maximum likelihood with 100 bootstrap pseudoreplicates and should be considered unrooted. 684

685 Figure 3. Contribution of the *Erwinia tracheiphila exlx-gh5* locus to wilt symptom

development and plant death A) *In planta* inoculation experiment comparing virulence of Wt, $\Delta exlx$ -gh5, $\Delta exlx$ -gh5 (cEXLX-GH5), $\Delta exlx$ and $\Delta exlx$ (cEXLX) strains. B) A second *in planta* inoculation experiment comparing virulence of Wt, $\Delta gh5$, and $\Delta gh5$ (cEXLX-GH5). In both A) and B), inoculated plants were monitored for first appearance of wilt symptoms in the inoculated

33

- 690 leaf, first appearance of systemic wilt symptoms in a second non-inoculated leaf and plant death
- 691 for 23 days post inoculation (DPI). Summary and statistical analyses are in Tables 1-4. All
- samples sizes were between 18-22 individual plants per treatment.
- 693

Figure 4. Visual comparison of wilt symptoms in squash seedlings after inoculation with

- 695 either the $\Delta exlx$ -gh5 mutant or wild type *Erwinia tracheiphila*.
- 696 A) Non-inoculated squash seedling with no wilt symptoms B) Squash seedling inoculated with
- 697 wild type *E. tracheiphila* that has developed systemic wilt symptoms **C**) Representative
- 698 symptoms caused by inoculation with the $\Delta exlx$ -gh5 mutant strain, where wilt often remains
- 699 localized to the inoculated leaf without causing systemic wilt symptoms. **D**) Visible *E*.
- *tracheiphila* oozing from xylem in all vascular bundles of a symptomatic plant after a horizontal
- stem cross section cut. E) 20X confocal miscroscopy image of a longitudinal section of a
- symptomatic, *E. tracheiphila* infected *Cucurbita pepo* stem. Image is falsely colored so that plant
- structures are shown in blue and live *E. tracheiphila* bacterial cells are red.
- 704

Figure 5. Systemic colonization capability of Wt and $\Delta exlx-gh5$ strains.

Squash seedlings were inoculated with either Wt or $\Delta exlx$ -gh5. At 12 days post inoculation

707 (DPI), bacterial concentration was determined in the inoculation site and in a petiole of a second,

non-inoculated leaf. Mean \pm SE are plotted, and grey circles are individual biological replicates

(Sample sizes, n=9 per treatment). Y-axis is the log_{10} CFU/gram fresh weight and is scaled to the

- 710 lower limit of detection for the assay ($log_{10}CFU/gram$ fresh weight = 3). Brackets indicate
- pairwise statistical comparisons (Dunn's test) between two groups: ** P < 0.005; ns, non
- 712 significant.

7	1	2
1	T	J

/13	
714	Figure 6. Correlation of Δ<i>exlx-gh5</i> concentration with symptom severity. Thirty squash
715	seedlings were inoculated with $\Delta exlx$ -gh5, and at 21 days post inoculation (DPI) all plants were
716	scored according to whether they remained healthy (n=8), had developed wilt symptoms only in
717	the inoculated leaf ($n=12$), or had developed systemic wilt symptoms ($n=10$). CFU were then
718	counted at the inoculation site and at a second non-inoculated leaf requiring systemic movement.
719	Bars show mean ± SE, and grey circles are individual biological replicates. Y-axis is scaled to
720	the lower limit of detection for the assay (log_{10} CFU/gram fresh weight = 3). Brackets indicate
721	pairwise statistical comparisons (Dunn's test) between two groups: * $P < 0.05$; ** $P < 0.005$; ns,
722	non significant.
723	
724	Figure 7. Comparison of virulence between wild type, flagellar deletion mutant and Type
725	IV Pili deletion mutant. Squash seedlings were inoculated with either Wt, a flagellar deletion
726	mutant ($\Delta fliC$) or a Type IV Pili deletion mutant ($\Delta T4P$). Inoculated plants were monitored for
727	first appearance of wilt symptoms in the inoculated leaf, first appearance of systemic wilt
728	symptoms in a second non-inoculated leaf and plant death for 25 days post inoculation (DPI). All
729	samples sizes were between 17-22 individual plants per treatment. Summary and statistical
730	analyses are in Tables 5 and 6.
731	
732	Figure 8. In trans complementation of <i>Aexlx-gh5</i> and Wt. (A) Plants were singly inoculated
733	with either Wt or $\Delta exlx$ -gh5, and (B) Plants were co-inoculated with a 1:1 mix of Wt & $\Delta exlx$ -
734	gh5. In both single and co-inoculation experiments, CFU were counted at 1 day post inoculation
735	(DPI) from the local inoculation site and at 12 DPI from the petiole of a second non-inoculated

35

- 136 leaf. Y-axis is scaled to the lower limit of detection for the assay (\log_{10} CFU/gram fresh weight =
- 3). Bars show mean \pm SE, and grey circles are individual biological replicates. Sample size, n = 4
- 738 per treatment.

Figure 9. In trans complementation of $\Delta exlx$ and $\Delta gh5$. Plants were co-inoculated with both

- 740 the $\Delta exlx$ and $\Delta gh5$ deletion mutants. Inoculated plants were monitored for first appearance of
- vilt symptoms in the inoculated leaf, first appearance of systemic wilt symptoms in a second leaf
- and plant death for 21 days post inoculation (DPI). Sample sizes are n = 18 per treatments.
- 743 Summary and statistical analyses are in Tables 7 and 8.
- 744

745

746 <u>References</u>

- Haichar FEZ, Marol C, Berge O, Rangel-castro J, Prosser JI, Balesdent J, Heulin T, Achouak
 W. 2008. Plant host habitat and root exudates shape soil bacterial community structure.
 The ISME Journal 2:1221-30.
- Shi S, Richardson AE, O'Callaghan M, DeAngelis KM, Jones EE, Stewart A, Firestone MK,
 Condron LM. 2011. Effects of selected root exudate components on soil bacterial
 communities. FEMS Microbiology Ecology 77:600-610.
- 7533.Lindow SE, Brandl MT. 2003. Microbiology of the Phyllosphere. Applied and754Environmental Microbiology 69:1875-1883.
- 7554.Huang X, Chaparro JM, Reardon KF, Zhang R. 2014. Rhizosphere interactions: root756exudates, microbes and microbial communities. Botany.
- 757 5. Miwa H, Okazaki S. 2017. How effectors promote beneficial interactions. Current
 758 Opinion in Plant Biology 38:148-154.
- Wees SCV, Ent SVd, Pieterse CM. 2008. Plant immune responses triggered by beneficial
 microbes. Current Opinion in Plant Biology 11:443-448.
- 761 7. Cosgrove DJ. 2017. Microbial Expansins. Annual Review of Microbiology 71:479-497.
- 762 8. Chase WR, Zhaxybayeva O, Rocha J, Cosgrove DJ, Shapiro LR. 2019. From morphogenesis
 763 to pathogenesis: A cellulose loosening protein is one of the most widely shared tools in
 764 nature. bioRxiv.
- Georgelis N, Nikolaidis N, Cosgrove DJ. 2014. Biochemical analysis of expansin-like
 proteins from microbes. Carbohydrate Polymers 100:17-23.
- Nikolaidis N, Doran N, Cosgrove DJ. 2013. Plant expansins in bacteria and fungi:
 evolution by horizontal gene transfer and independent domain fusion. Molecular
 Biology and Evolution 31:376-386.

770	11.	Cosgrove DJ. 2000. Loosening of plant cell walls by expansins. Nature 407:321-326.
771	12.	Sampedro J, Cosgrove DJ. 2005. The expansin superfamily. Genome biology 6:242.
772	13.	Cosgrove DJ. 2015. Plant expansins: diversity and interactions with plant cell walls.
773		Current Opinion in Plant Biology 25:162-172.
774	14.	Chen F, Bradford KJ. 2000. Expression of an expansin is associated with endosperm
775		weakening during tomato seed germination. Plant Physiology 124:1265-1274.
776	15.	Brummell DA, Harpster MH, Civello PM, Palys JM, Bennett AB, Dunsmuir P. 1999.
777		Modification of expansin protein abundance in tomato fruit alters softening and cell wall
778		polymer metabolism during ripening. The Plant Cell 11:2203-2216.
779	16.	Cho H-T, Cosgrove DJ. 2000. Altered expression of expansin modulates leaf growth and
780		pedicel abscission in Arabidopsis thaliana. Proceedings of the National Academy of
781		Sciences 97:9783-9788.
782	17.	Li Y, Darley CP, Ongaro V, Fleming A, Schipper O, Baldauf SL, McQueen-Mason SJ. 2002.
783	_/ .	Plant expansions are a complex multigene family with an ancient evolutionary origin.
784		Plant Physiology 128:854-864.
785	18.	Cosgrove DJ, Li LC, Cho H-T, Hoffmann-Benning S, Moore RC, Blecker D. 2002. The
786	10.	growing world of expansins. Plant and Cell Physiology 43:1436-1444.
787	19.	Georgelis N, Nikolaidis N, Cosgrove DJ. 2015. Bacterial expansins and related proteins
788	19.	from the world of microbes. Applied Microbiology and Biotechnology 99:3807-3823.
789	20.	Kerff F, Amoroso A, Herman R, Sauvage E, Petrella S, Filée P, Charlier P, Joris B, Tabuchi
790	20.	A, Nikolaidis N, Cosgrove DJ. 2008. Crystal structure and activity of <i>Bacillus subtilis</i> YoaJ
791		(EXLX1), a bacterial expansin that promotes root colonization. Proceedings of the
792		National Academy of Sciences 105:16876-16881.
793	21.	Kende H, Bradford K, Brummell D, Cho H-T, Cosgrove D, Fleming A, Gehring C, Lee Y,
794	21.	McQueen-Mason S, Rose J. 2004. Nomenclature for members of the expansin
795		superfamily of genes and proteins. Plant Molecular Biology 55:311-314.
796	22.	Saloheimo M, Paloheimo M, Hakola S, Pere J, Swanson B, Nyyssönen E, Bhatia A, Ward
797	22.	M, Penttilä M. 2002. Swollenin, a <i>Trichoderma reesei</i> protein with sequence similarity to
798		the plant expansing, exhibits disruption activity on cellulosic materials. European Journal
799		of Biochemistry 269:4202-4211.
800	23.	Brotman Y, Briff E, Viterbo A, Chet I. 2008. Role of swollenin, an expansin-like protein
800	25.	from <i>Trichoderma</i> , in plant root colonization. Plant Physiology 147:779-789.
801	24.	Tancos MA, Lowe-Power TM, Peritore-Galve FC, Tran TM, Allen C, Smart CD. 2018.
802	24.	Plant-like bacterial expansins play contrasting roles in two tomato vascular pathogens.
803		Molecular Plant Pathology 19:1210-1221.
804 805	25.	Chalupowicz L, Barash I, Reuven M, Dror O, Sharabani G, Gartemann KH, Eichenlaub R,
805	25.	Sessa G, Manulis-Sasson S. 2017. Differential contribution of <i>Clavibacter michiganensis</i>
800 807		
		ssp. <i>michiganensis</i> virulence factors to systemic and local infection in tomato. Molecular
808 809	26	Plant Pathology 18:336-346.
809 810	26.	Laine MJ, Haapalainen M, Wahlroos T, Kankare K, Nissinen R, Kassuwi S, Metzler MC.
		2000. The cellulase encoded by the native plasmid of <i>Clavibacter michiganensis</i> ssp.
811		sepedonicus plays a role in virulence and contains an expansin-like domain. Physiological
812		and Molecular Plant Pathology 57:221-233.

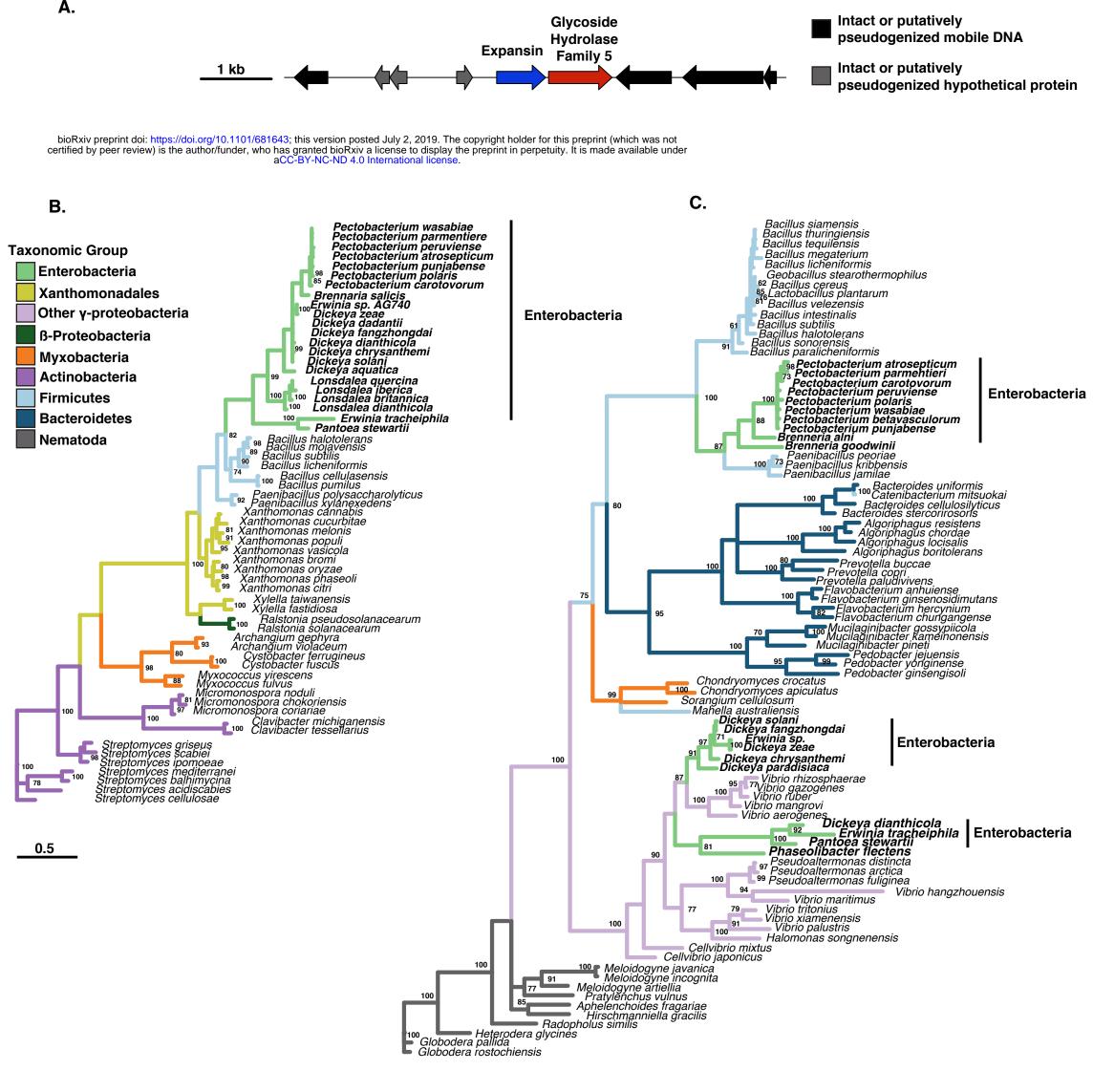
813	27.	Hwang IS, Oh E-J, Lee HB, Oh C-S. 2019. Functional characterization of two cellulase
814		genes in the Gram-positive pathogenic bacterium Clavibacter michiganensis for wilting
815		in tomato. Molecular Plant-Microbe Interactions 32:491-501.
816	28.	Hwang IS, Oh EJ, Kim D, Oh CS. 2018. Multiple plasmid-borne virulence genes of
817		Clavibacter michiganensis ssp. capsici critical for disease development in pepper. New
818		Phytologist 217:1177-1189.
819	29.	Olarte-Lozano M, Mendoza-Nuñez MA, Pastor N, Segovia L, Folch-Mallol J, Martínez-
820		Anaya C. 2014. PcExl1 a novel acid expansin-like protein from the plant pathogen
821		Pectobacterium carotovorum, binds cell walls differently to BsEXLX1. PLoS One
822		9:e95638.
823	30.	Jahr H, Dreier J, Meletzus D, Bahro R, Eichenlaub R. 2000. The endo-β-1, 4-glucanase
824		CelA of <i>Clavibacter michiganensis</i> subsp. <i>michiganensis</i> is a pathogenicity determinant
825		required for induction of bacterial wilt of tomato. Molecular Plant-Microbe Interactions
826		13:703-714.
827	31.	Shapiro LR, Scully ED, Roberts D, Straub TJ, Geib SM, Park J, Stephenson AG, Rojas ES, Liu
828	51.	Q, Beattie G, Gleason M, Moraes CMD, Mescher MC, Fleischer SJ, Kolter R, Pierce N,
829		Zhaxybayeva O. 2015. Draft genome sequence of <i>Erwinia tracheiphila</i> , an economically
830		important bacterial pathogen of cucurbits. genomeA 3:e00482-15.
831	32.	Shapiro LR, Andrade A, Scully ED, Rocha J, Paulson JN, Kolter R. 2018. Draft genome
832	52.	sequence of an <i>Erwinia tracheiphila</i> isolate from an infected muskmelon (<i>Cucumis</i>
833		<i>melo</i>). Microbiology Resource Announcements 7:e01058-18.
834	33.	Shapiro L. 2012. A to ZYMV guide to <i>Erwinia tracheiphila</i> infection: An ecological and
835	55.	molecular study. The Pennsylvania State University.
836	34.	Shapiro LR, Paulson JN, Arnold BJ, Scully ED, Zhaxybayeva O, Pierce N, Rocha J, Klepac-
837	54.	Ceraj V, Holton K, Kolter R. 2018. An introduced crop plant is driving diversification of
838		the virulent bacterial pathogen <i>Erwinia tracheiphila</i> . mBio 9:e01307-18.
839	35.	Shapiro LR, Mauck KE. 2018. Chemically-mediated Interactions among cucurbits, insects
840	55.	and microbes, p 55-90. In Tabata J (ed), Chemical Ecology of Insects. CRC Press.
841	36.	Smith EF. 1920. An introduction to bacterial diseases of plants. W.B. Saunders Company,
842	50.	Philadelphia.
843	37.	Shapiro LR, Scully ED, Straub TJ, Park J, Stephenson AG, Beattie GA, Gleason ML, Kolter
844	57.	R, Coelho MC, Moraes CMD, Mescher MC, Zhaxybayeva O. 2016. Horizontal gene
845		acquisitions, mobile element proliferation, and genome decay in the host-restricted
846		plant pathogen <i>Erwinia tracheiphila</i> . Genome Biology and Evolution 8:649-664.
847	38.	Moran NA, Plague GR. 2004. Genomic changes following host restriction in bacteria.
848	50.	Current Opinion in Genetics & Development 14:627-633.
849	39.	de Mackiewicz D, Gildow FE, Blua M, Fleischer SJ, Lukezic FL. 1998. Herbaceous weeds
850	55.	are not ecologically important reservoirs of <i>Erwinia tracheiphila</i> . Plant Disease 82:521-
850 851		529.
852	40.	SL29. Shapiro L, Seidl-Adams I, De Moraes C, Stephenson A, Mescher M. 2014. Dynamics of
852 853	40.	short-and long-term association between a bacterial plant pathogen and its arthropod
855 854		
034		vector. Scientific Reports 4.

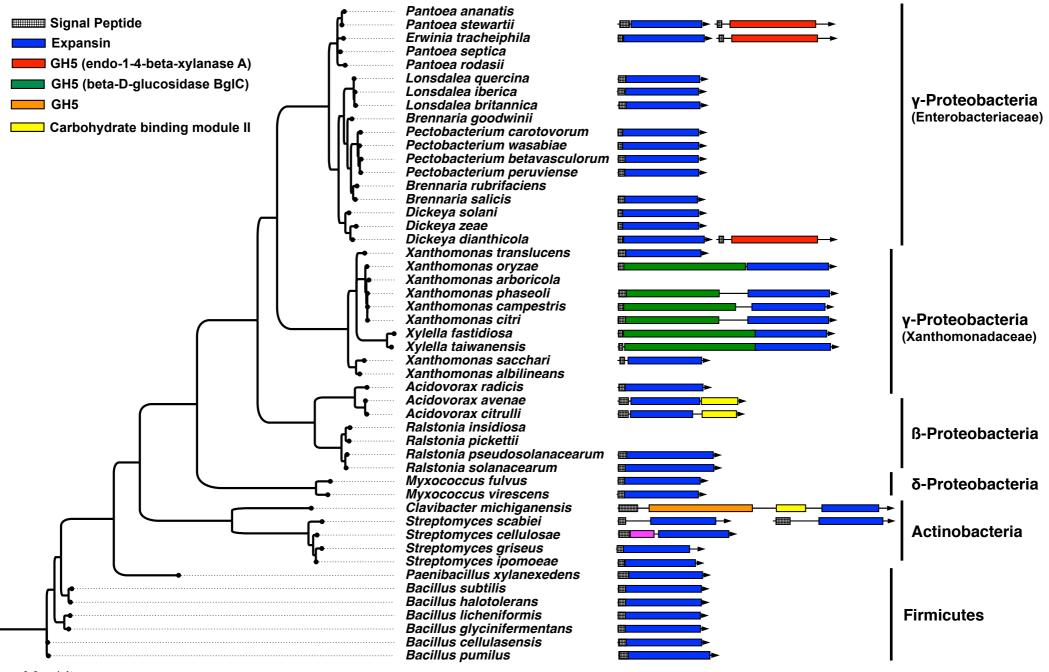
855	41.	Garcia-Salazar C, Gildow FE, Fleischer SJ, Cox-Foster D, Lukezic FL. 2000. ELISA versus
856		immunolocalization to determine the association of Erwinia tracheiphila in Acalymma
857		vittatum (Coleoptera: Chrysomelidae). Environmental Entomology 29:542-550.
858	42.	Fleischer SJ, de Mackiewicz D, Gildow FE, Lukezic FL. 1999. Serological estimates of the
859		seasonal dynamics of Erwinia tracheiphila in Acalymma vittata (Coleoptera:
860		Chrysomelidae). Environmental Entomology 28:470-476.
861	43.	Sasu M, Seidl-Adams I, Wall K, Winsor J, Stephenson A. 2010. Floral transmission of
862		<i>Erwinia tracheiphila</i> by cucumber beetles in a wild <i>Cucurbita pepo</i> . Environmental
863		Entomology 39:140-148.
864	44.	Shapiro LR, Salvaudon L, Mauck KE, Pulido H, De Moraes CM, Stephenson AG, Mescher
865		MC. 2013. Disease interactions in a shared host plant: effects of pre-existing viral
866		infection on cucurbit plant defense responses and resistance to bacterial wilt disease.
867		PLoS One 8:e77393.
868	45.	Shapiro L, De Moraes CM, Stephenson AG, Mescher MC. 2012. Pathogen effects on
869		vegetative and floral odours mediate vector attraction and host exposure in a complex
870		pathosystem. Ecology Letters 15:1430-1438.
871	46.	Sasu MA, Ferrari MJ, Du D, Winsor JA, Stephenson AG. 2009. Indirect costs of a
872		nontarget pathogen mitigate the direct benefits of a virus-resistant transgene in wild
873		Cucurbita. Proceedings of the National Academy of Sciences 106:19067-19071.
874	47.	Marchler-Bauer A, Bo Y, Han L, He J, Lanczycki CJ, Lu S, Chitsaz F, Derbyshire MK, Geer
875		RC, Gonzales NR. 2016. CDD/SPARCLE: functional classification of proteins via subfamily
876		domain architectures. Nucleic Acids Research 45:D200-D203.
877	48.	Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B. 2013. The
878		carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Research 42:D490-
879		D495.
880	49.	Aziz R, Bartels D, Best A, DeJongh M, Disz T, Edwards R, Formsma K, Gerdes S, Glass E,
881		Kubal M, Meyer F, Olsen G, Olson R, Osterman A, Overbeek R, McNeil L, Paarmann D,
882		Paczian T, Parrello B, Pusch G, Reich C, Stevens R, Vassieva O, Vonstein V, Wilke A,
883		Zagnitko O. 2008. The RAST Server: Rapid Annotations using Subsystems Technology.
884		BMC Genomics 9:75.
885	50.	Armenteros JJA, Tsirigos KD, Sønderby CK, Petersen TN, Winther O, Brunak S, von Heijne
886		G, Nielsen H. 2019. SignalP 5.0 improves signal peptide predictions using deep neural
887		networks. Nature Biotechnology 37:420-423.
888	51.	Thomas CM, Nielsen KM. 2005. Mechanisms of, and barriers to, horizontal gene transfer
889		between bacteria. Nature Reviews Microbiology 3:711.
890	52.	Ochman H, Lawrence JG, Groisman EA. 2000. Lateral gene transfer and the nature of
891		bacterial innovation. Nature 405:299-304.
892	53.	Zhaxybayeva O, Doolittle WF. 2011. Lateral gene transfer. Current Biology 21:R242-
893		R246.
894	54.	Halpern M, Fridman S, Aizenberg-Gershtein Y, Izhaki I. 2013. Transfer of Pseudomonas
895		flectens Johnson 1956 to Phaseolibacter gen. nov., in the family Enterobacteriaceae, as
896		<i>Phaseolibacter flectens</i> gen. nov., comb. nov. International Journal of Systematic and
897		Evolutionary Microbiology 63:268-273.

898	55.	Mensi I, Vernerey M-S, Gargani D, Nicole M, Rott P. 2014. Breaking dogmas: the plant
899		vascular pathogen Xanthomonas albilineans is able to invade non-vascular tissues
900		despite its reduced genome. Royal Society Open Biology 4:130116.
901	56.	Franklin NC. 1978. Genetic fusions for operon analysis. Annual Review of Genetics
902		12:193-221.
903	57.	Vrisman CM, Deblais L, Rajashekara G, Miller SA. 2016. Differential colonization
904		dynamics of cucurbit hosts by Erwinia tracheiphila. Phytopathology 106:684-692.
905	58.	Cosgrove DJ. 2016. Catalysts of plant cell wall loosening. F1000Research 5.
906	59.	Malinovsky FG, Fangel JU, Willats WG. 2014. The role of the cell wall in plant immunity.
907		Frontiers in Plant Science 5:178.
908	60.	Bahar O, Goffer T, Burdman S. 2009. Type IV pili are required for virulence, twitching
909		motility, and biofilm formation of Acidovorax avenae subsp. citrulli. Molecular Plant-
910		Microbe Interactions 22:909-920.
911	61.	Burdman S, Bahar O, Parker JK, De La Fuente L. 2011. Involvement of type IV pili in
912		pathogenicity of plant pathogenic bacteria. Genes 2:706-735.
913	62.	Cursino L, Galvani CD, Athinuwat D, Zaini PA, Li Y, De La Fuente L, Hoch HC, Burr TJ,
914		Mowery P. 2011. Identification of an operon, Pil-Chp, that controls twitching motility
915		and virulence in Xylella fastidiosa. Molecular plant-microbe interactions 24:1198-1206.
916	63.	Bahar O, Levi N, Burdman S. 2011. The cucurbit pathogenic bacterium Acidovorax citrulli
917		requires a polar flagellum for full virulence before and after host-tissue penetration.
918		Molecular Plant-Microbe Interactions 24:1040-1050.
919	64.	Ewald PW. 1993. Evolution of infectious disease. Oxford University Press.
920	65.	Mackinnon M, Read AF. 2004. Virulence in malaria: an evolutionary viewpoint.
921		Philosophical Transactions of the Royal Society B: Biological Sciences 359:965-986.
922	66.	Hinnebusch BJ, Joseph B, Perry RD, Schwan TG. 1996. Role of the Yersinia pestis hemin
923		storage (hms) locus in the transmission of plague by fleas. Science 273:367.
924	67.	Yao C, Zehnder, G., Bauske, E., Kloepper, J. 1996. Relationship between cucumber beetle
925		(Coleoptera: Chrysomelidae) density and incidence of bacterial wilt of cucurbits. Journal
926		of Economic Entomology 89:510-514.
927	68.	Pasek S, Risler J-L, Brézellec P. 2006. Gene fusion/fission is a major contributor to
928		evolution of multi-domain bacterial proteins. Bioinformatics 22:1418-1423.
929	69.	Yang S BP. 2009. The evolutionary history of protein domains viewed by species
930		phylogeny. PLoS ONE 4:e8378.
931	70.	Boutilier MS, Lee J, Chambers V, Venkatesh V, Karnik R. 2014. Water filtration using
932		plant xylem. PLoS One 9:e89934.
933	71.	Pérez-Donoso AG, Sun Q, Roper MC, Greve LC, Kirkpatrick B, Labavitch JM. 2010. Cell
934		wall-degrading enzymes enlarge the pore size of intervessel pit membranes in healthy
935		and Xylella fastidiosa-infected grapevines. Plant Physiology 152:1748-1759.
936	72.	Yadeta K, Thomma B. 2013. The xylem as battleground for plant hosts and vascular wilt
937		pathogens. Frontiers in Plant Science 4.
938	73.	Secchi F, Pagliarani C, Zwieniecki MA. 2017. The functional role of xylem parenchyma
939		cells and aquaporins during recovery from severe water stress. Plant, Cell &
940		Environment 40:858-871.

bioRxiv preprint doi: https://doi.org/10.1101/681643; this version posted July 2, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

941	74.	Christman MA, Sperry JS. 2010. Single-vessel flow measurements indicate scalariform
942		perforation plates confer higher flow resistance than previously estimated. Plant, Cell $\&$
943		Environment 33:431-443.
944	75.	Roper MC. 2011. Pantoea stewartii subsp. stewartii: lessons learned from a xylem-
945		dwelling pathogen of sweet corn. Molecular Plant Pathology 12:628-637.
946	76.	Foley JA, DeFries R, Asner GP, Barford C, Bonan G, Carpenter SR, Chapin FS, Coe MT,
947		Daily GC, Gibbs HK. 2005. Global consequences of land use. Science 309:570-574.
948	77.	Nasaruddin AS, Babler BN, Perna NT, Glasner JD, Charkowski AO. 2019. First report of
949		Dickeya dianthicola causing blackleg on potato in Texas. Plant Disease.
950	78.	Cai W, Srivastava S, Stulberg M, Nakhla M, Rascoe J. 2018. Draft genome sequences of
951		two Dickeya dianthicola isolates from potato. Genome announcements 6:e00115-18.
952	79.	Ma X, Schloop A, Swingle B, Perry KL. 2018. <i>Pectobacterium</i> and <i>Dickeya</i> responsible for
953		potato blackleg disease in New York State in 2016. Plant Disease 102:1834-1840.
954	80.	Dean R, Van Kan JA, Pretorius ZA, Hammond-Kosack KE, Di Pietro A, Spanu PD, Rudd JJ,
955		Dickman M, Kahmann R, Ellis J. 2012. The 'Top 10' fungal pathogens in molecular plant
956		pathology. Molecular Plant Pathology 13:414-430.
957	81.	Mansfield J, Genin S, Magori S, Citovsky V, Sriariyanum M, Ronald P, Dow M, Verdier V,
958		Beer SV, Machado MA. 2012. Top 10 plant pathogenic bacteria in molecular plant
959		pathology. Molecular Plant Pathology 13:614-629.
960	82.	Bae C, Han SW, Song Y-R, Kim B-Y, Lee H-J, Lee J-M, Yeam I, Heu S, Oh C-S. 2015.
961	02.	Infection processes of xylem-colonizing pathogenic bacteria: possible explanations for
962		the scarcity of qualitative disease resistance genes against them in crops. Theoretical
963		and Applied Genetics 128:1219-1229.
964	83.	Agrios. 2005. Plant pathology, <u>http://doc18.rupdfbook.com/plant-pathology-fifth-edition-</u>
965	05.	by-george-n-agrios-PDFs-179089.pdf.
966	84.	Metcalf R, Lampman R. 1989. The chemical ecology of Diabroticites and Cucurbitaceae.
967	0.11	Experientia 45:240-247.
968	85.	Joseph JG, Douglas WT, Edward GR, Anthony IC. 2008. Molecular phylogeny of
969	001	rootworms and related galerucine beetles (Coleoptera: Chrysomelidae). Zoologica
970		Scripta 37:195-222.
971	86.	Rand FV, Cash LC. 1920. Some insect relations of <i>Bacillus tracheiphilus</i> Erw. Sm.
972	00.	Phytopathology 10:133-140.
973	87.	Garcia-Salazar C, Gildow FE, Fleischer SJ, Cox-Foster D, Lukezic FL. 2000. Alimentary
974	07.	canal of adult <i>Acalymma vittata</i> (Coleoptera: Chrysomelidae): morphology and potential
975		role in survival of <i>Erwinia tracheiphila</i> (Enterobacteriaceae). Canadian Journal of
976		Entomology 132:1-13.
977	88.	Roberts DC, Fleischer SJ, Sakamoto JM, Rasgon JL. 2018. Potential biological control of
978	00.	<i>Erwinia tracheiphila</i> by internal alimentary canal interactions in <i>Acalymma vittatum</i> with
979		<i>Pseudomonas fluorescens</i> . Journal of Applied Microbiology 125:1137-1146.
980	89.	Rand FV, Enlows EMA. 1916. Transmission and control of bacterial wilt of cucurbits.
980 981	09.	Journal of Agricultural Research 6:7-434.
981 982	90.	Rand FV. 1915. Dissemination of bacterial wilt of cucurbits. Journal of Agricultural
982 983	90.	Research 5:257-260.
703		NESEALUI 3.237-200.

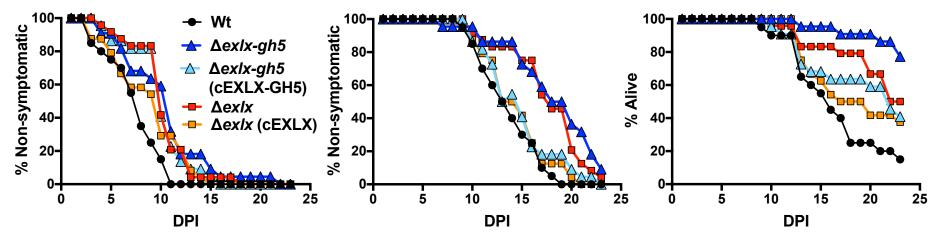

bioRxiv preprint doi: https://doi.org/10.1101/681643; this version posted July 2, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.


984	91.	Whitaker TW, Bemis W. 1975. Origin and evolution of the cultivated Cucurbita. Bulletin
985		of the Torrey Botanical Club:362-368.
986	92.	Nee M. 1990. The domestication of Cucurbita (Cucurbitaceae). Economic Botany 44:56-
987		68.
988	93.	Schaefer H, Heibl C, Renner SS. 2009. Gourds afloat: a dated phylogeny reveals an Asian
989		origin of the gourd family (Cucurbitaceae) and numerous oversea dispersal events.
990		Proceedings of the Royal Society of London B: Biological Sciences 276:843-851.
991	94.	Sebastian P, Schaefer H, Telford IRH, Renner SS. 2010. Cucumber (Cucumis sativus) and
992		melon (C. melo) have numerous wild relatives in Asia and Australia, and the sister
993		species of melon is from Australia. Proceedings of the National Academy of Sciences
994		107:14269-14273.
995	95.	L.A. N, Trieu DA. 2011. Fusion gardens: Native North America and the Columbian
996		Exchange. In Smith B (ed), Subsistence Economies of Indigenous North American
997		Societies: A Handbook. Rowman and Littlefield Publishing Group, Lanham, MD.
998	96.	Bisognin DA. 2002. Origin and evolution of cultivated cucurbits. Ciência Rural 32:715-
999		723.
1000	97.	Datsenko KA, Wanner BL. 2000. One-step inactivation of chromosomal genes in
1001		Escherichia coli K-12 using PCR products. Proceedings of the National Academy of
1002		Sciences 97:6640-6645.
1003	98.	Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. 1990. Basic local alignment search
1004		tool. Journal of Molecular Biology 215:403-410.
1005	99.	Katoh K, Misawa K, Kuma Ki, Miyata T. 2002. MAFFT: a novel method for rapid multiple
1006		sequence alignment based on fast Fourier transform. Nucleic Acids Research 30:3059-
1007		3066.
1008	100.	Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. 2009. trimAl: a tool for automated
1009		alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25:1972-1973.
1010	101.	Abascal F, Zardoya R, Posada D. 2005. ProtTest: selection of best-fit models of protein
1011		evolution. Bioinformatics 21:2104-2105.
1012	102.	Stamatakis A. 2006. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses
1013		with thousands of taxa and mixed models. Bioinformatics 22:2688-2690.
1014	103.	Miller MA, Pfeiffer W, Schwartz T. Creating the CIPRES Science Gateway for inference of
1015		large phylogenetic trees, p 1-8. In (ed),
1016	104.	Sukumaran J, Holder MT. 2010. DendroPy: A Python library for phylogenetic computing.
1017		Bioinformatics 26:1569-1571.
1018	105.	Team RC. 2015. R: A language and environment for statistical computing. R Foundation
1019		of Statistical Computing Vienna, Austria.
1020	106.	Yu G, Smith DK, Zhu H, Guan Y, Lam TTY. 2017. ggtree: an R package for visualization and
1021		annotation of phylogenetic trees with their covariates and other associated data.
1022		Methods in Ecology and Evolution 8:28-36.
1023	107.	Guy L, Kultima JR, Andersson SG. 2010. genoPlotR: comparative gene and genome
1024		visualization in R. Bioinformatics 26:2334-2335.
1025	108.	Philippe N, Alcaraz J-P, Coursange E, Geiselmann J, Schneider D. 2004. Improvement of
1026		pCVD442, a suicide plasmid for gene allele exchange in bacteria. Plasmid 51:246-255.

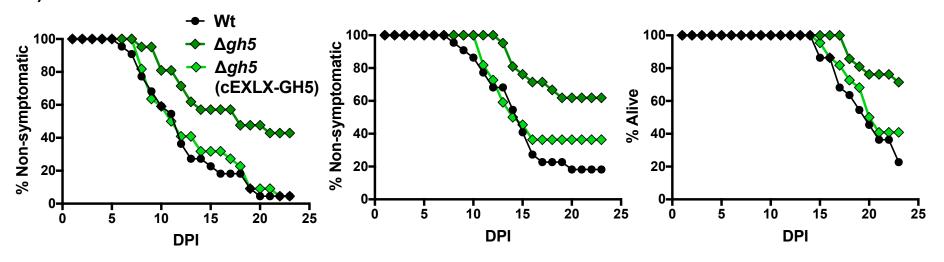
bioRxiv preprint doi: https://doi.org/10.1101/681643; this version posted July 2, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

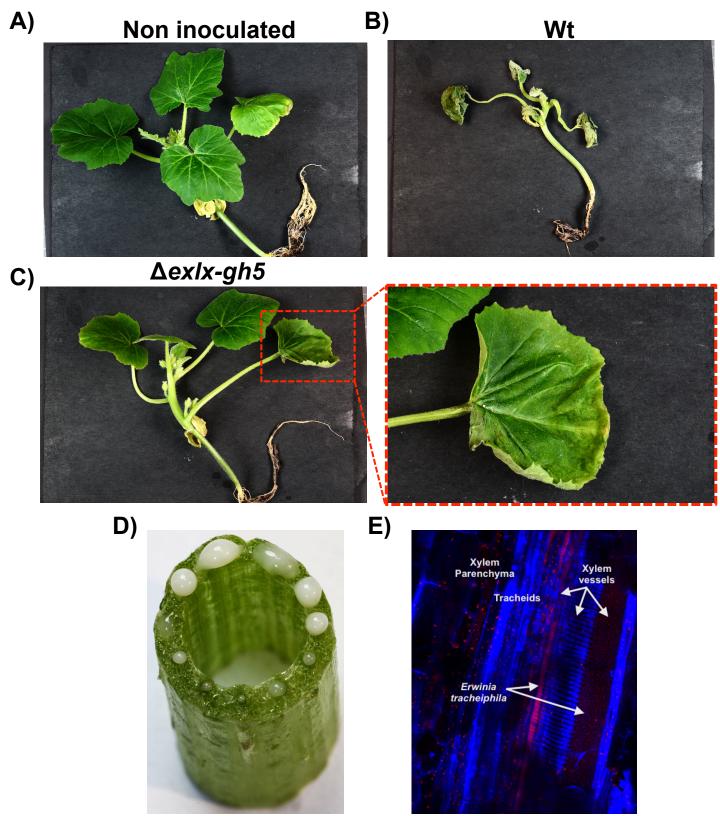
1027109.Lagendijk EL, Validov S, Lamers GE, De Weert S, Bloemberg GV. 2010. Genetic tools for1028tagging Gram-negative bacteria with mCherry for visualization in vitro and in natural

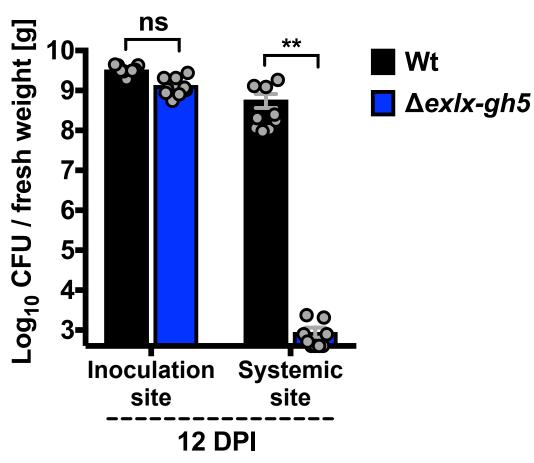
- 1029 habitats, biofilm and pathogenicity studies. FEMS Microbiology Letters 305:81-90.
- 1030 110. Machin D, Cheung YB, Parmar M. 2006. Survival analysis: a practical approach. John1031 Wiley & Sons.
- 1032

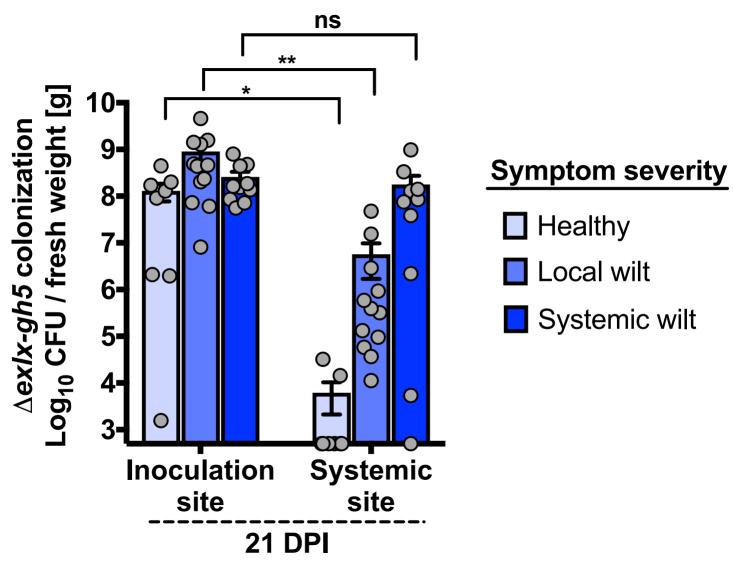

0.3 aa/site Tree scale

100 aa Coding sequence scale

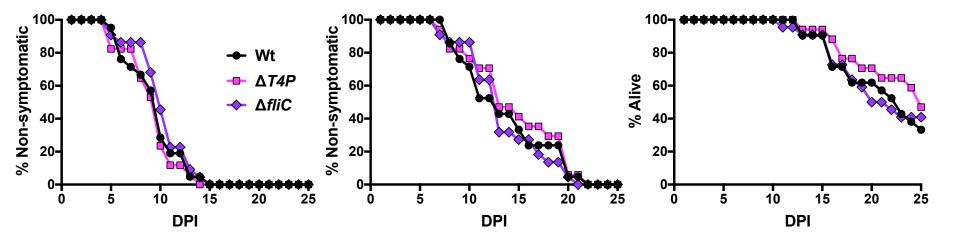

A) Wilt in inoculated leaf

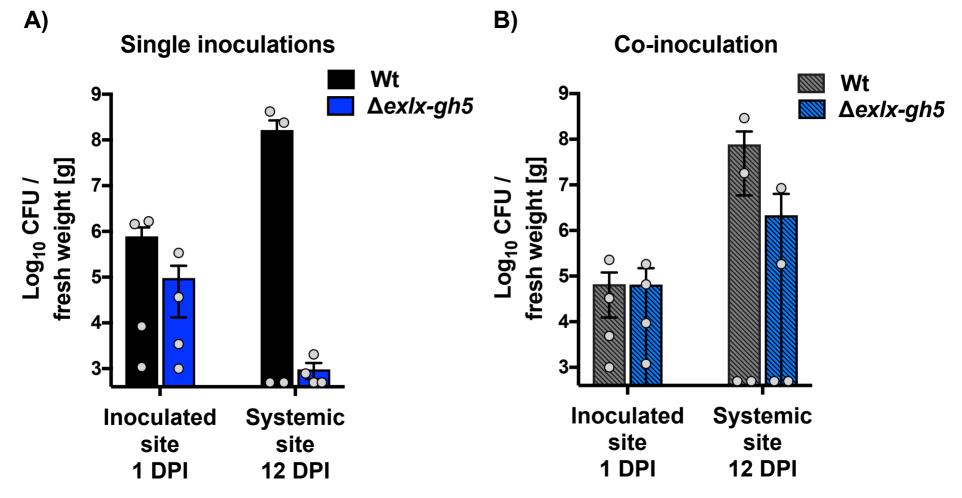

Wilt in second systemic leaf


Plant death

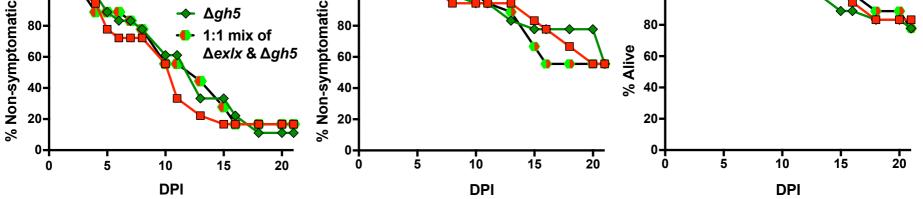


B)





Wilt in second systemic leaf


Plant death

 Wilt in inoculated leaf
 Wilt in systemic second leaf
 Plant death

 $\bigcup_{u=1}^{100} 0^{-1} 0^{-$

