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Abstract 38 

Identifying brain biomarkers of disease risk is a growing priority in neuroscience. The ability to identify 39 

meaningful biomarkers is limited by measurement reliability; unreliable measures are unsuitable for 40 

predicting clinical outcomes. Measuring brain activity using task-fMRI is a major focus of biomarker 41 

development; however, the reliability of task-fMRI has not been systematically evaluated. We present 42 

converging evidence demonstrating poor reliability of task-fMRI measures. First, a meta-analysis of 90 43 

experiments (N=1,008) revealed poor overall reliability (mean ICC=.397). Second, the test-retest 44 

reliabilities of activity in a priori regions of interest across 11 common fMRI tasks collected in the context 45 

of the Human Connectome Project (N=45) and the Dunedin Study (N=20) were poor (ICCs=.067-.485). 46 

Collectively, these findings demonstrate that common task-fMRI measures are not currently suitable for 47 

brain biomarker discovery or individual differences research. We review how this state of affairs came to 48 

be and highlight avenues for improving task-fMRI reliability. 49 

Key words: Neuroimaging, Individual Differences, Statistical Analysis, Cognitive Neuroscience  50 
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Introduction 51 

Since functional magnetic resonance imaging (fMRI) was introduced in 1992 (Kwong et al., 1992), 52 

scientists have had unprecedented ability to non-invasively observe brain activity in behaving humans. In 53 

conventional fMRI, regional brain activity is estimated by measuring the blood oxygen level-dependent 54 

(BOLD) signal which indexes changes in blood oxygenation associated with neural activity (Logothetis et 55 

al., 2001). One of the most common forms of BOLD fMRI is based on tasks during which researchers 56 

“map” brain activity associated with specific cognitive functions by contrasting the regional BOLD signal 57 

during a control condition with the BOLD signal during a condition of interest. In this way, task-fMRI has 58 

given neuroscientists unique insights into the brain basis of human behavior, from basic perception to 59 

complex thought, and has given clinicians and mental-health researchers the opportunity to directly measure 60 

dysfunction in the organ responsible for disorder. 61 

Originally, task-fMRI was primarily used to understand functions supported by the typical or 62 

average human brain by measuring within-subject differences in activation between task and control 63 

conditions, and averaging them together across subjects to measure a group effect. To this end, fMRI tasks 64 

have been developed and optimized to elicit robust activation in a particular brain region of interest (ROI) 65 

or circuit when specific experimental conditions are contrasted. For example, increased amygdala activity 66 

is observed when subjects view emotional faces in comparison with geometric shapes and increased ventral 67 

striatum activity is observed when subjects win money in comparison to when they lose money (Barch et 68 

al., 2013). The robust brain activity elicited using this within-subjects approach led researchers to use the 69 

same fMRI tasks to study between-subjects differences. The logic behind this strategy is straightforward: 70 

if a brain region activates during a task, then individual differences in the magnitude of that activation may 71 

contribute to individual differences in behavior as well as any associated risk for disorder. Thus, if the 72 

amygdala is activated when people view threatening stimuli, then differences between people in the degree 73 

of amygdala activation should signal differences between them in threat sensitivity and related clinical 74 

phenomenon like anxiety and depression (Swartz et al., 2015). In this way, fMRI was transformed from a 75 

tool for understanding how the average brain works to a tool for studying how the brains of individuals 76 

differ. 77 
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The use of task-fMRI to study differences between people heralded the possibility that it could 78 

offer a powerful tool for discovering biomarkers for brain disorders (Woo et al., 2017). Broadly, a 79 

biomarker is a biological indicator often used for risk stratification, diagnosis, prognosis and evaluation of 80 

treatment response. However, to be useful as a biomarker, an indicator must first be reliable. Reliability is 81 

the ability of a measure to give consistent results under similar circumstances. It puts a limit on the 82 

predictive utility, power, and validity of any measure (see Box 1 and Fig. 1). In this way, reliability is 83 

critical for both clinical applications and research practice. Measures with low reliability are unsuitable as 84 

biomarkers and cannot predict clinical health outcomes. That is, if a measure is going to be used by 85 

clinicians to predict the likelihood that a patient will develop an illness in the future, then the patient cannot 86 

score randomly high on the measure at one assessment and low on the measure at the next assessment. 87 

Fig. 1. The influence of task-fMRI test-retest reliability on sample size required for 80% power to detect 88 
brain-behavior correlations of effect sizes commonly found in psychological research. Power curves are 89 
calculated for three levels of reliability of the associated behavioral/clinical phenotype. The figure was 90 
generated using the “pwr.r.test” function in R, with the value for “r” specified according to the attenuation 91 
formula in Box 1. The figure emphasizes the impact of low reliability at the lower N range because most 92 
fMRI studies are relatively small (median N = 28.5 (Poldrack et al., 2017)). 93 
 94 
 95 
 96 

To progress toward a cumulative neuroscience of individual differences with clinical relevance we 97 

must establish reliable brain measures. While the reliability of task-fMRI has previously been discussed 98 

(Bennett & Miller, 2010; Herting et al., 2018), individual studies provide highly variable estimates, often 99 

come from small test-retest samples employing a wide-variety of analytic methods, and sometimes reach 100 
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contradictory conclusions about the reliability of the same tasks (Manuck et al., 2007; Nord et al., 2017). 101 

This leaves the overall reliability of task-fMRI, as well as the specific reliabilities of many of the most 102 

commonly used fMRI tasks, largely unknown. An up-to-date, comprehensive review and meta-analysis of 103 

the reliability of task-fMRI and an in-depth examination of the reliability of the most widely used task-104 

fMRI measures is needed. Here, we present evidence from two lines of analysis that point to the poor 105 

reliability of commonly used task-fMRI measures. First, we conducted a meta-analysis of the test-retest 106 

reliability of regional activation in task-fMRI. Second, in two recently collected datasets, we conducted 107 

pre-registered analyses (https://sites.google.com/site/moffittcaspiprojects/home/projectlist/knodt_2019) of 108 

the test-retest reliability of brain activation in a priori regions of interest across several commonly used 109 

fMRI tasks. 110 

 111 

Methods 112 

Meta-analytic Reliability of Task-fMRI 113 

We performed a systematic review and meta-analysis following PRISMA guidelines (see 114 

Supplemental Fig. S1). We searched Google Scholar for peer reviewed articles written in English and 115 

published on or before April 1, 2019 that included test-retest reliability estimates of task-fMRI activation. 116 

We used the advanced search tool to find articles that include all of the terms “ICC,” “fmri,” and “retest”, 117 

and at least one of the terms “ROI,” “ROIs,” "region of interest," or "regions of interest." This search yielded 118 

1,170 articles. 119 

Study Selection and Data Extraction. One author (MLM) screened all titles and abstracts before 120 

the full texts were reviewed (by authors MLE and ARK). We included all original, peer-reviewed empirical 121 

articles that reported test-retest reliability estimates for activation during a BOLD fMRI task. All ICCs 122 

reported in the main text and supplement were eligible for inclusion. If ICCs were only depicted graphically 123 

(e.g. bar graph), we did our best at judging the value from the graph. Voxel-wise ICCs that were only 124 

depicted on brain maps were not included. For ICCs calculated based on more than 2 time points, we used 125 

the average of the intervals as the value for interval (e.g. the average of the time between time points 1 and 126 
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2 and time points 2 and 3 for an ICC based on 3 time points). For articles that reported ICCs from sensitivity 127 

analyses in addition to primary analyses on the same data (e.g. using different modeling strategies or 128 

excluding certain subjects) we only included ICCs from the primary analysis. We did not include ICCs 129 

from combinations of tasks. ICCs were excluded if they were from a longitudinal or intervention study that 130 

was designed to assess change, if they did not report ICCs based on measurements from the same MRI 131 

scanner and/or task, or if they reported reliability on something other than activation measures across 132 

subjects (e.g., spatial extent of activation or multi-voxel patterns of activation within subjects). 133 

Two authors (MLE and ARK) extracted data about sample characteristics (publication year, sample 134 

size, healthy versus clinical), study design (test-retest interval, event-related or blocked, task length, and 135 

task type), and ICC reporting (i.e., was the ICC thresholded?). For each article, every reported ICC meeting 136 

the above study-selection requirements was recorded. 137 

Statistical Analyses. For most of the studies included, no standard error or confidence interval for 138 

the ICC was reported. Therefore, in order to include as many estimates as possible in the meta-analysis, the 139 

standard error of all ICCs was estimated using the Fisher r-to-Z transformation for ICC values (Chen et al., 140 

2018; McGraw & Wong, 1996).  141 

A random-effects multilevel meta-analytic model was fit using tools from the metafor package in 142 

R (“Metafor Package R Code for Meta-Analysis Examples,” 2019). In this model, ICCs and standard errors 143 

were averaged within each unique sample, task, and test-retest interval (or “substudy”) within each article 144 

(or “study”; (Borenstein et al., 2009)). For the results reported in the Main Article, the correlation between 145 

ICCs in each substudy was assumed to be 1 so as to ensure that the meta-analytic weight for each substudy 146 

was based solely on sample size rather than the number of ICCs reported. However, sensitivity analyses 147 

revealed that this decision had very little impact on the overall result (see Supplemental Fig. S2). In the 148 

meta-analytic model, substudies were nested within studies to account for the non-independence of ICCs 149 

estimated within the same study. Meta-analytic summaries were estimated separately for substudies that 150 

reported ICC values that had been thresholded (i.e., when studies calculated multiple ICCs, but only 151 
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reported values above a minimum threshold) because of the documented spurious inflation of effect sizes 152 

that occur when only statistically significant estimates are reported (Kriegeskorte et al., 2009; Poldrack et 153 

al., 2017; Vul et al., 2009; Yarkoni, 2009).  154 

To test for effects of moderators, a separate random-effects multilevel model was fit to all 1,146 155 

ICCs (i.e., without averaging within each substudy, since many substudies included ICCs with different 156 

values for one or more moderators). The moderators included were task length, task design (block vs event-157 

related), task type (e.g. emotion, executive control, reward, etc), ROI type (e.g. structural or functional), 158 

ROI location (cortical vs subcortical), sample type (healthy vs clinical), retest interval, number of citations 159 

per year, and whether ICCs were thresholded on significance (see Supplemental Table S1 for descriptive 160 

statistics on all moderators tested). All moderators were simultaneously entered into the model as random 161 

effects. In the multi-level model, ICCs were nested within substudies, which were in turn nested within 162 

studies. This was done to account for the non-independence of ICCs estimated within the same substudy, 163 

as well as the non-independence of substudies conducted within the same study. 164 

 165 

Analyses of New Datasets 166 

Human Connectome Project (HCP). This is a publicly available dataset that includes 1,206 167 

participants with extensive structural and functional MRI (Van Essen et al., 2013). In addition, 45 168 

participants completed the entire scan protocol a second time (with a mean interval between scans of 169 

approximately 140 days). All participants were free of current psychiatric or neurologic illness and were 170 

between 25 and 35 years of age.  171 

The seven tasks employed in the HCP were designed to identify functionally relevant “nodes” in 172 

the brain. These tasks included an “n-back” working memory / executive function task (targeting the 173 

dorsolateral prefrontal cortex, or dlPFC (Drobyshevsky et al., 2006)), a “gambling” reward / incentive 174 

processing task (targeting the ventral striatum (Delgado et al., 2000)), a motor mapping task consisting of 175 

foot, hand, and tongue movements (targeting the motor cortex (Drobyshevsky et al., 2006)), an auditory 176 
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language task (targeting the anterior temporal lobe (Binder et al., 2011)), a social cognition / theory of mind 177 

task (targeting the lateral fusiform gyrus, superior temporal sulcus, and other “social-network” regions 178 

(Wheatley et al., 2007)), a relational processing / dimensional change detection task (targeting the 179 

rostrolateral prefrontal cortex (R. Smith et al., 2007), or rlPFC), and a face-matching emotion processing  180 

task (targeting the amygdala (Hariri et al., 2002)).  181 

Dunedin Multidisciplinary Health and Development Study. The Dunedin Study is a longitudinal 182 

investigation of health and behavior in a complete birth cohort of 1,037 individuals (91% of eligible births; 183 

52% male) born between April 1972 and March 1973 in Dunedin, New Zealand (NZ) and followed to age 184 

45 years (Poulton et al., 2015). Structural and functional neuroimaging data were collected between August 185 

2016 and April 2019, when participants were 45 years old. In addition, 20 Study members completed the 186 

entire scan protocol a second time (with a mean interval between scans of 79 days). 187 

Functional MRI was collected during four tasks targeting neural “hubs” in four different domains: 188 

a face-matching emotion processing task (targeting the amygdala (Hariri et al., 2002)), a Stroop executive 189 

function task (targeting the dlPFC and the dorsal anterior cingulate cortex (Peterson et al., 1999)), a 190 

monetary incentive delay reward task (targeting the ventral striatum (Knutson et al., 2000)), and a face-191 

name encoding episodic memory task (targeting the hippocampus (Zeineh et al., 2003)). See Supplemental 192 

Methods for additional details, including fMRI pre-processing, for both datasets. 193 

ROI Definition. Individual estimates of regional brain activity were extracted according to two 194 

commonly used approaches. First, we extracted average values from a priori anatomically defined regions. 195 

We identified the primary region of interest (ROI) for each task and extracted average BOLD signal change 196 

estimates from all voxels within a corresponding bilateral anatomical mask. 197 

Second, we used functionally defined regions based on group-level activation. Here, we generated 198 

functional ROIs by drawing 5mm spheres around the group-level peak voxel within the target anatomical 199 

ROI for each task (across all subjects and sessions). This is a commonly used strategy for capturing the 200 

location of peak activation in each subject despite inter-subject variability in the exact location of the 201 
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activation. See Supplemental Materials for further details on ROI definition, overlays on the anatomical 202 

template (Fig. S3), and peak voxel location (Table S2). We report analyses based on anatomically defined 203 

ROIs in the Main Article and report sensitivity analyses using functional ROIs in the Supplement. 204 

Reliability Analysis. Subject-level BOLD signal change estimates were extracted for each task, 205 

ROI, and scanning session. Reliability was quantified using a 2-way mixed effects intraclass correlation 206 

coefficient (ICC), with session modeled as a fixed effect, subject as a random effect, and test-retest interval 207 

as an effect of no interest. This mixed effects model is referred to as ICC (3,1) by Shrout and Fleiss (1979), 208 

and defined as: 209 

ICC (3,1) = (BMS – EMS) / (BMS + (k-1)*EMS) 210 

where BMS = between-subjects mean square, EMS = error mean square, and k = number of 211 

“raters,” or scanning sessions (in this case 2). We note that ICC (3,1) tracks the consistency of measures 212 

between sessions rather than absolute agreement, and is commonly used in studies of task-fMRI test-retest 213 

reliability due to the possibility of habituation to the stimuli over time (Plichta et al., 2012). 214 

To test reliability for each task more generally, we calculated ICCs for all target ROIs across all 11 215 

tasks. Since three of the tasks (the emotion, reward, and executive function tasks) were very similar across 216 

the HCP and Dunedin Studies and targeted the same region, the same ROI was used for these tasks in both 217 

studies, resulting in a total of eight unique target ROIs assessed for reliability. To further visualize global 218 

patterns of reliability, we also calculated voxel-wise maps of ICC (3,1) using AFNI’s 3dICC_REML.R 219 

function (Chen et al., 2013). Finally, to provide a benchmark for evaluating task-fMRI reliability, we 220 

determined the test-retest reliability of three commonly used structural MRI measures: cortical thickness 221 

and surface area for each of 360 parcels or ROIs (Glasser et al., 2016) as well as subcortical volume for 17 222 

structures. These analyses were pre-registered 223 

(https://sites.google.com/site/moffittcaspiprojects/home/projectlist/knodt_2019). Code and data for this 224 

manuscript is available at 225 

github.com/HaririLab/Publications/tree/master/ElliottKnodt2020PS_tfMRIReliability 226 
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 227 

Results 228 

Reliability of Individual Differences in Task-fMRI: A Systematic Review and Meta-analysis 229 

We identified 56 articles meeting criteria for inclusion in the meta-analysis, yielding 1,146 ICC 230 

estimates derived from 1,088 unique participants across 90 distinct substudies employing 66 different task-231 

fMRI paradigms (Fig. 2). These articles were cited a total of 2,686 times, with an average of 48 citations 232 

per article and 5.7 citations per article, per year. During the study-selection process, we discovered that 233 

some analyses calculated many different ICCs (across multiple ROIs, contrasts, and tasks), but only 234 

reported a subset of the estimated ICCs that were either statistically significant or reached a minimum ICC 235 

threshold. This practice leads to inflated reliability estimates (Kriegeskorte et al., 2010, 2009; Poldrack et 236 

al., 2017). Therefore, we performed separate analyses of data from un-thresholded and thresholded reports. 237 

 238 
Fig. 2. Flow diagram for systematic literature review and meta-analysis. 239 
 240 

 241 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 16, 2020. ; https://doi.org/10.1101/681700doi: bioRxiv preprint 

https://doi.org/10.1101/681700
http://creativecommons.org/licenses/by/4.0/


 

11 

Fig. 3 shows the test-retest reliability coefficients (ICCs) from 77 substudies reporting un-242 

thresholded values (average N = 19.6, median N = 17). 56% of the values fell into the range of what is 243 

considered "poor" reliability (below .4), an additional 24% of the values fell into the range of what is 244 

considered "fair" reliability (.4 - .6), and only 20% fell into the range of what is considered "good" (.6 - .75) 245 

or "excellent" (above .75) reliability. A random effects meta-analysis revealed an average ICC of .397 (95% 246 

CI, .330 - .460; P < .001), which  is in the "poor" range (Cicchetti & Sparrow, 1981). There was evidence 247 

of between-study heterogeneity (I2 = 31.6; P = 0.04). 248 
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 249 
Fig. 3. Forest plot for the results of the meta-analysis of task-fMRI test-retest reliability. The forest plot 250 
displays the estimate of test-retest reliability of each task-fMRI measure from all ICCs reported in each 251 
study. Each substudy is labelled as h if the sample in the study consisted of healthy controls or c if the study 252 
consisted of a clinical sample. Studies are split into two sub-groups. The first group of studies reported all 253 
ICCs that were calculated, thereby allowing for a relatively unbiased estimate of reliability. The second 254 
group of studies selected a subset of calculated ICCs based on the magnitude of the ICC or another non-255 
independent statistic, and then only reported ICCs from that subset. This practice leads to inflated reliability 256 
estimates and therefore these studies were meta-analyzed separately to highlight this bias. 257 

 258 
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As expected, the meta-analysis of 13 substudies that only reported ICCs above a minimum 259 

threshold (average N = 24.2, median N = 18) revealed a higher meta-analytic ICC of .705 (95% CI, .628 - 260 

.768; P < .001; I2 = 17.9). This estimate, which is 1.78 times the size of the estimate from un-thresholded 261 

ICCs, is in the good range, suggesting that the practice of thresholding inflates estimates of reliability in 262 

task-fMRI. There was no evidence of between-study heterogeneity (I2 = 17.9; P = 0.54). 263 

A moderator analysis of all substudies revealed significantly higher reliability for studies that 264 

thresholded based on ICC (QM = 6.531, df = 1, P = .010; β = .140). In addition, ROIs located in the cortex 265 

had significantly higher ICCs than those located in the subcortex (QM = 114.476, df = 1, P < .001; β = .259). 266 

However, we did not find evidence that the meta-analytic estimate was moderated by task type, task design, 267 

task length, test-retest interval, ROI type, sample type, or number of citations per year. Finally, we tested 268 

for publication bias using the Egger random effects regression test (Egger et al., 1997) and found no 269 

evidence for bias (Z = .707, P = .480). 270 

The results of the meta-analysis were illuminating, but not without interpretive difficulty. First, the 271 

reliability estimates came from a wide array of tasks and samples, so a single meta-analytical reliability 272 

estimate could obscure truly reliable task-fMRI paradigms. Second, the studies used different (and some, 273 

now outdated) scanners and different pre-processing and analysis pipelines, leaving open the possibility 274 

that reliability has improved with more advanced technology and consistent practices. To address these 275 

limitations and possibilities, we conducted pre-registered analyses of two new datasets, using state-of-the-276 

art scanners and practices to assess individual differences in commonly used tasks tapping a variety of 277 

cognitive and affective functions. 278 

 279 

Reliability of Individual Differences in Task-fMRI: Pre-registered Analyses in Two New Datasets 280 

We evaluated test-retest reliabilities of activation in a priori regions of interest for 11 commonly 281 

used fMRI tasks (see Methods). In the Human Connectome Project (HCP), 45 participants were scanned 282 

twice using a custom 3T Siemens scanner, on average 140 days apart (sd = 67.1 days), using seven tasks 283 
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targeting emotion, reward, executive function, motor, language, social cognition, and relational processing. 284 

This sample size was determined by the publicly available data in the HCP. In the Dunedin Study, 20 285 

participants were scanned twice using a 3T Siemens Skyra, on average 79 days apart (sd = 10.3 days), using 286 

four tasks targeting emotion, reward, executive control, and episodic memory. This sample size corresponds 287 

to the average sample size used in the meta-analyzed studies. Three of the tasks were similar across the two 288 

studies, allowing us to test the replicability of task-fMRI reliabilities. For each of the eight unique tasks 289 

across the two studies, we identified the task’s primary target region, resulting in a total of eight a priori 290 

ROIs (see Methods). 291 

Group-level activation. To ensure that the 11 tasks were implemented and processed correctly, we 292 

calculated the group-level activation in the target ROIs using the primary contrast of interest for each task 293 

(see Supplemental Methods for details). These analyses revealed that each task elicited the expected robust 294 

activation in the target ROI at the group level (i.e., across all subjects and sessions; see warm-colored maps 295 

in Fig. 4 for the three tasks in common between the two studies and Supplemental Fig. S4 for remaining 296 

tasks). 297 
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 298 
Fig. 4. Whole-brain activation and reliability maps for three task-fMRI measures used in both the Human 299 
Connectome Project and Dunedin Study. For each task, a whole-brain activation map of the primary within-300 
subject contrast (t-score) is displayed in warm colors (top) and a whole-brain map of the between-subjects 301 
reliability (ICC) is shown in cool colors (bottom). For each task, the target ROI is outlined in sky-blue. The 302 
activation maps are thresholded at p < .05 whole-brain corrected for multiple comparisons using threshold-303 
free cluster enhancement (Smith & Nichols, 2009). The ICC maps are thresholded so that voxels with ICC 304 
< .4 are not colored. These images illustrate that despite robust within-subjects whole-brain activation 305 
produced by each task, there is poor between-subjects reliability in this activation, not only in the target 306 
ROI but across the whole-brain. 307 
 308 
 309 

Reliability of regional activation. We investigated the reliability of task activation in both datasets 310 

using four steps. First, we tested the reliability of activation in the target ROI for each task. Second, for 311 
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each task we also evaluated the reliability of activation in the other seven a priori ROIs.  This was done to 312 

test if the reliability of target ROIs was higher than the reliability of activation in other (“non-target”) brain 313 

regions and to identify any tasks or regions with consistently high reliability. Third, we re-estimated 314 

reliability using activation in the left and right hemispheres separately to test if the estimated reliability was 315 

harmed by averaging across the hemispheres. Fourth, we tested if the reliability depended on whether ROIs 316 

were defined structurally (i.e., using an anatomical atlas) or functionally (i.e., using a set of voxels based 317 

on the location of peak activity). See Supplemental Fig. S5 for ICCs of behavior during each fMRI task.  318 

Reliability of regional activation in the Human Connectome Project. First, as shown by the 319 

estimates circled in black in Fig. 5, across the seven fMRI tasks, activation in anatomically defined target 320 

ROIs had low reliability (mean ICC = .251; 95% CI, .142 - .360). Only the language processing task had 321 

greater than "poor" reliability (ICC = .485). None of the reliabilities entered the "good" range (ICC > .6). 322 

 323 
Fig. 5. Test-retest reliabilities of region-wise activation measures in 11 commonly used task-fMRI 324 
paradigms (EF = executive function). For each task, ICCs were estimated for activation in the a priori target 325 
ROI (circled in black) and non-target ROIs selected from the other tasks. These plots show that task-fMRI 326 
measures of regional activation in both the Human Connectome Project and Dunedin Study are generally 327 
unreliable and the ROIs that are “targeted” by the task are rarely more reliable than non-target ROIs (ATL 328 
= anterior temporal lobe, dlPFC = dorsolateral prefrontal cortex, PCG = precentral gyrus, rlPFC = 329 
rostrolateral prefrontal cortex, VS = ventral striatum). As a benchmark, ICCs of three common structural 330 
MRI measures (CT = Cortical Thickness, SA = Surface Area, and Subcortical Volume) are depicted as 331 
violin plots representing the distribution of ICCs for each of the 360 parcels for CT and SA, and 17 332 
subcortical structures for grey matter volume. Note that negative ICCs are set to 0 for visualization. 333 
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 334 
 335 

Second, the reliability of task activation in non-target ROIs was also low (Fig. 5; mean ICC = .239; 336 

95% CI, .188 - .289), but not significantly lower than the reliability in target ROIs (P = .474).  337 

Third, the reliability of task activation calculated from left and right ROIs separately resembled 338 

estimates from averaged ROIs (mean left ICC = .207 in target ROIs and .196 in non-target ROIs, mean 339 

right ICC = .259 in target ROIs and .236 in non-target ROIs; Supplemental Fig. S6). 340 

Fourth, the reliability of task activation in functionally defined ROIs was also low (mean ICC = 341 

.381; 95% CI, .317 - .446), with only the motor and social tasks exhibiting ICCs greater than .4 (ICCs = 342 

.550 and .446 respectively; see Supplemental Fig. S6). 343 

As an additional step, to account for the family structure present in the HCP, we re-estimated 344 

reliability after removing one of each sibling/twin pair in the test-retest sample. Reliability in bilateral 345 

anatomical ROIs in the subsample of N=26 unrelated individuals yielded reliabilities very similar to the 346 

overall sample (mean ICC = .301 in target ROIs and .218 in non-target ROIs; Supplemental Fig. S6).  347 

Reliability of regional activation in the Dunedin Study. First, as shown by the estimates circled in 348 

black in Fig. 5, activation in the anatomically defined target ROI for each of the four tasks had low 349 

reliability (mean ICC = .309; 95% CI, .145 - .472), with no ICCs reaching the "good" range (ICC > .6). 350 

Second, the reliability of activation in the non-target ROIs was also low (Fig. 5; mean ICC = .193; 351 

95% CI, .100 - .286), but not significantly lower than the reliability in target ROIs (P = .140).  352 

Third, the reliability of task activation calculated for the left and right hemispheres separately was 353 

similar to averaged ROIs (mean left ICC = .243 in target ROIs and .202 in non-target ROIs, mean right ICC 354 

= .358 in target ROIs and .192 in non-target ROIs; Supplemental Fig. S6). 355 

Fourth, functionally defined ROIs again did not meaningfully improve reliability (mean ICC = 356 

.325; 95% CI, .197 - .453; see Supplemental Fig. S6). 357 

Reliability of structural measures. To provide a benchmark for evaluating the test-retest reliability 358 

of task-fMRI, we investigated the reliability of three commonly used structural MRI measures: cortical 359 
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thickness, surface area and subcortical grey matter volume. Consistent with prior evidence (Han et al., 2006; 360 

Maclaren et al., 2014) that structural MRI phenotypes have excellent reliability (i.e., ICCs > .9), global and 361 

regional structural MRI measures in the present samples demonstrated very high test-retest reliabilities (Fig. 362 

5). For average cortical thickness, ICCs were .953 and .939 in the HCP and Dunedin Study datasets, 363 

respectively. In the HCP, parcel-wise (i.e., regional) cortical thickness reliabilities averaged .886 (range 364 

.547 - .964), with 100% crossing the "fair" threshold, 98.6% the "good" threshold, and 94.2% the "excellent" 365 

threshold. In the Dunedin Study, parcel-wise cortical thickness reliabilities averaged .846 (range .385 - 366 

.975), with 99.7% of ICCs above the "fair" threshold, 96.4% above "good", and 84.7% above “excellent.” 367 

For total surface area, ICCs were .999 and .996 in the HCP and Dunedin Study datasets, respectively. In 368 

the HCP, parcel-wise surface area ICCs averaged .937 (range .526 - .992), with 100% crossing the "fair" 369 

threshold, 98.9% crossing the "good" threshold, and 96.9% crossing the "excellent" threshold. In the 370 

Dunedin Study, surface area ICCs averaged .942 (range .572 - .991), with 100% above the "fair" threshold, 371 

99.7% above "good," and 98.1% above "excellent." For subcortical volumes, ICCs in the HCP averaged 372 

.903 (range .791 - .984), with all ICCs above the "excellent" threshold. In the Dunedin Study, subcortical 373 

volumes averaged .931 (range .767 - .979), with all ICCs above the "excellent" threshold. See Supplemental 374 

Table S3 for reliabilities of each subcortical region evaluated. 375 

 376 

Discussion 377 

We found evidence that commonly used task-fMRI measures generally do not have the test-retest 378 

reliability necessary for biomarker discovery or brain-behavior mapping. Our meta-analysis of task-fMRI 379 

reliability revealed an average test-retest reliability coefficient of .397, which is below the minimum 380 

required for good reliability (ICC = .6 (Cicchetti & Sparrow, 1981)) and far below the recommended cutoffs 381 

for clinical application (ICC = .8) or individual-level interpretation (ICC = .9) (Guilford, 1946). Of course, 382 

not all task-fMRI measures are the same, and it is not possible to assign a single reliability estimate to all 383 
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individual-difference measures gathered in fMRI research. However, we found little evidence that task type, 384 

task length, or test-retest interval had an appreciable impact on the reliability of task-fMRI. 385 

We additionally evaluated the reliability of 11 commonly used task-fMRI measures in the HCP and 386 

Dunedin Study. Unlike many of the studies included in our meta-analysis, these two studies were completed 387 

recently on modern scanners using cutting-edge acquisition parameters, up-to-date artifact reduction, and 388 

state-of-the-art preprocessing pipelines. Regardless, the average test-retest reliability was again poor (ICC 389 

= .228). In these analyses, we found no evidence that ROIs “targeted” by the task were more reliable than 390 

other, non-target ROIs (mean ICC = .270 for target, .228 for non-target) or that any specific task or target 391 

ROI consistently produced measures with high reliability. Of interest, the reliability estimate from these 392 

two studies was considerably smaller than the meta-analysis estimate (meta-analytic ICC = .397), possibly 393 

due to the phenomenon that pre-registered analyses often yield smaller effect sizes than analyses from 394 

publications without pre-registration, which affords increased flexibility in analytic decision-making 395 

(Schäfer & Schwarz, 2019). 396 

 397 

The two disciplines of fMRI research 398 

Our results harken back to Lee Cronbach’s classic 1957 article in which he described the “two 399 

disciplines of scientific psychology” (Cronbach, 1957). According to Cronbach, the “experimental” 400 

discipline strives to uncover universal human traits and abilities through experimental control and group 401 

averaging, whereas the “correlational” discipline strives to explain variation between people by measuring 402 

how they differ from one another. A fundamental distinction between the two disciplines is how they treat 403 

individual differences. For the experimental researcher, variation between people is error that must be 404 

minimized to detect the largest experimental effect. For the correlational investigator, variation between 405 

people is the primary unit of analysis and must be measured carefully to extract reliable individual 406 

differences (Cronbach, 1957; Hedge et al., 2018).  407 

Current task-fMRI paradigms are largely descended from the “experimental” discipline. Task-408 

fMRI paradigms are intentionally designed to reveal how the average human brain responds to provocation, 409 

while minimizing between-subject variance. Paradigms that are able to elicit robust targeted brain activity 410 
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at the group-level are subsequently converted into tools for assessing individual differences. Within-subject 411 

robustness is, then, often inappropriately invoked to suggest between-subject reliability, despite the fact 412 

that reliable within-subject experimental effects at a group level can arise from unreliable between-subjects 413 

measurements (Fröhner et al., 2019). 414 

This reasoning is not unique to task-fMRI research. Behavioral measures that elicit robust within-415 

subject (i.e., group) effects have been shown to have low between-subjects reliability; for example, the 416 

mean test-retest reliability of the Stroop Test (ICC = .45; (Hedge et al., 2018)) is strikingly similar to the 417 

mean reliability of our task-fMRI meta-analysis (ICC = .397). Nor is it the case that MRI measures, or even 418 

the BOLD signal itself, are inherently unreliable. Both structural MRI measures in our analyses (see Fig. 419 

5), as well as measures of intrinsic functional connectivity estimated from long fMRI scans (Elliott et al., 420 

2019; Gratton et al., 2018), demonstrate high test-retest reliability. Thus, it is not the tool that is problematic 421 

but rather the strategy of adopting tasks developed for experimental cognitive neuroscience that appear to 422 

be poorly suited for reliably measuring differences in brain activation between people. 423 

 424 

Recommendations and Future Directions 425 

We next consider several avenues for maximizing the value of existing datasets as well as 426 

improving the reliability of task-fMRI moving forward. We begin with recommendations that can be 427 

implemented immediately (1, 2), before moving on to recommendations that will require additional data 428 

collection and innovation (3, 4). 429 

 430 

1) Immediate opportunities for task-fMRI: from brain hotspots to whole-brain signatures 431 

Currently, the majority of task-fMRI measures are based on contrasts between conditions (i.e., 432 

change scores), extracted from ROIs. However, change scores will always have lower reliability than their 433 

constituent measures (Hedge et al., 2018), and have been shown to undermine the reliability of task-fMRI 434 

(Infantolino et al., 2018). However, contrast-based activation values extracted from ROIs represent only 435 

one possible measure of individual differences that can be derived from task-fMRI data. For example, 436 

several multivariate methods have been proposed to increase the reliability and predictive utility of task-437 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 16, 2020. ; https://doi.org/10.1101/681700doi: bioRxiv preprint 

https://doi.org/10.1101/681700
http://creativecommons.org/licenses/by/4.0/


 

21 

fMRI measures by exploiting the high dimensionality inherent in fMRI data (Dubois & Adolphs, 2016; 438 

Yarkoni & Westfall, 2017). To name a few, the reliability of task-fMRI may be improved by developing 439 

measures with latent variable models (Cooper et al., 2019), measuring individual differences in 440 

representational spaces with multi-voxel pattern analysis (Norman et al., 2006), and training cross-validated 441 

machine learning models that establish reliability through prediction of individual differences in 442 

independent samples (Yarkoni & Westfall, 2017). In addition, in many already-collected datasets, task-443 

fMRI can be combined with resting-state fMRI data to produce reliable measures of intrinsic functional 444 

connectivity (Elliott et al., 2019; Greene et al., 2018). Thus, there are multiple available approaches to 445 

maximizing the value of existing task-fMRI datasets in the context of biomarker discovery and individual 446 

differences research. 447 

 448 

2) Create a norm of reporting the reliability of task-fMRI measures 449 

The “replicability revolution” in psychological science (Nosek et al., 2015) provides a timely 450 

example of how rapidly changing norms can shape research practices and standards. In just a few years, 451 

practices to enhance replicability, like pre-registration of hypotheses and analytic strategies, have risen in 452 

popularity (Nosek et al., 2018). We believe similar norms would be beneficial for task-fMRI in the context 453 

of biomarker discovery and brain-behavior mapping. In particular, researchers should report the reliabilities 454 

for all task-fMRI measures whenever they are used to study individual differences (Parsons et al., 2019). 455 

In doing so, however, researchers need to ensure adequate power to evaluate test-retest reliability with 456 

confidence. Given that correlations begin to stabilize with around 150 observations (Schönbrodt & Perugini, 457 

2013), our confidence in knowing “the” reliability of any specific task will depend on collecting larger test-458 

retest datasets. We provide evidence that the task-fMRI literature generally has low reliability; however, 459 

due to the relatively small size of each test-retest sample reported here, we urge readers to avoid making 460 

strong conclusions about the reliability of specific fMRI tasks. In the pursuit of precise reliability estimates, 461 

it will be important for researchers to collect larger test-retest samples, explore test-retest moderators (e.g. 462 

test-retest interval) and avoid reporting inflated reliabilities that can arise from circular statistical analyses 463 

(for detailed recommendations see (Kriegeskorte et al., 2010, 2009; Vul et al., 2009)). 464 
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Researchers can also provide evidence of between-subjects reliability in the form of internal 465 

consistency. While test-retest reliability provides an estimate of stability over time that is suited for trait 466 

and biomarker research, it is a conservative estimate that requires extra data collection and can be 467 

undermined by habituation effects and rapid fluctuations (Hajcak et al., 2017). In some cases, internal 468 

consistency will be more practical because it is cheaper, as it does not require additional data collection and 469 

can be used in any situation where the task-fMRI measure of interest is comprised of multiple trials 470 

(Streiner, 2003). Internal consistency is particularly well-suited for measures that are expected to change 471 

rapidly and index transient psychological states (e.g., current emotions or thoughts). However, internal 472 

consistency alone is not adequate for prognostic biomarkers. Establishing a norm of explicitly reporting 473 

measurement reliability would increase the replicability of task-fMRI findings and accelerate biomarker 474 

discovery. 475 

 476 

3) More data from more subjects 477 

 Our ability to detect reliable individual differences using task-fMRI will depend, in part, on the 478 

field embracing two complementary improvements to the status quo: 1) more subjects per study and 2) 479 

more data per subject. It has been suggested that neuroscience is generally an underpowered enterprise, and 480 

that small sample sizes undermine fMRI research in particular (Button et al., 2013; Szucs & Ioannidis, 481 

2017). The results presented here suggest that this “power failure” may be further compounded by low 482 

reliability in task-fMRI. The median sample size in fMRI research is 28.5 (Poldrack et al., 2017). However, 483 

as shown in Fig. 1, task-fMRI measures with ICCs of .397 (the meta-analytic mean reliability) would 484 

require N > 214 to achieve 80% power to detect brain-behavior correlations of .3, a moderate effect size 485 

equal to the size of the largest replicated brain-behavior associations (Elliott et al., 2018; Nave et al., 2019). 486 

For r = .1 (a small effect size common in psychological research (Funder & Ozer, 2019)), adequately 487 

powered studies require N > 2,000. And, these calculations are actually best-case scenarios given that they 488 

assume perfect reliability of the second “behavioral” variable (see Figure 1). Increasing the sample size of 489 

task-fMRI studies and requiring power analyses that take into account unreliability represent a meaningful 490 

way forward for boosting the replicability of individual differences research with task-fMRI. 491 
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Without substantially higher reliability, task-fMRI measures will fail to provide biomarkers that 492 

are meaningful on an individual level. One promising method to improve the reliability of fMRI is to collect 493 

more data per subject. Increasing the amount of data collected per subject has been shown to improve the 494 

reliability of functional connectivity (Elliott et al., 2019; Gratton et al., 2018) and preliminary efforts 495 

suggest this may be true for task-fMRI as well (Gordon et al., 2017). Pragmatically, collecting additional 496 

fMRI data will be burdensome for participants, especially in children and clinical populations, where longer 497 

scan times often result in greater data artifacts particularly from increased motion. Naturalistic fMRI 498 

represents one potential solution to this challenge. In naturalistic fMRI, participants watch stimulus-rich 499 

movies during scanning instead of completing traditional cognitive neuroscience tasks. Initial efforts 500 

suggest that movie watching is highly engaging for subjects, allows more data collection with less motion 501 

and may even better elicit individual differences in brain activity by emphasizing ecological validity over 502 

experimental control (Vanderwal et al., 2018). As the field launches large-scale neuroimaging studies (e.g. 503 

HCP, UK Biobank, ABCD) in the pursuit of brain biomarkers of disease risk, it is critical that we are 504 

confident in the psychometric properties of task-fMRI measurements. This will require funders to advocate 505 

and support the collection of more data from more subjects. 506 

 507 

4) Develop tasks from the ground up to optimize reliable and valid measurement  508 

 Instead of continuing to adopt fMRI tasks from experimental studies emphasizing within-subjects 509 

effects, we need to develop new tasks (and naturalistic stimuli) from the ground up with the goal of 510 

optimizing their utility in individual differences research (i.e., between-subjects effects). Psychometrics 511 

provides many tools and methods for developing reliable individual differences measures that have been 512 

underutilized in task-fMRI development. For example, stimuli in task-fMRI could be selected based on 513 

their ability to maximally distinguish groups of subjects or to elicit reliable between subject variance. As 514 

noted in recommendation 1, psychometric tools for test construction could be adopted to optimize reliable 515 

task-fMRI measures including item analysis, latent variable modelling, and internal-consistency measures 516 

(Crocker & Algina, 2006).  517 

 518 
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Conclusion 519 

A prominent goal of task-fMRI research has been to identify abnormal brain activity that could aid 520 

in the diagnosis, prognosis, and treatment of brain disorders. We find that commonly used task-fMRI 521 

measures lack minimal reliability standards necessary for accomplishing this goal. Intentional design and 522 

optimization of task-fMRI paradigms are needed to measure reliable variation between individuals. As task-523 

fMRI research faces the challenges of reproducibility and replicability, we draw attention to the importance 524 

of reliability as well. In the age of individualized medicine and precision neuroscience, funding is needed 525 

for novel task-fMRI research that embraces the psychometric rigor necessary to generate clinically 526 

actionable knowledge.  527 
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Box 1: Why is reliability critical for task-fMRI research? 528 
 529 

Test-retest reliability is widely quantified using the intraclass correlation coefficient (ICC (Shrout 530 

& Fleiss, 1979)). ICC can be thought of as the proportion of a measure’s total variance that is accounted 531 

for by variation between individuals. An ICC can take on values between -1 and 1, with values approaching 532 

1 indicating nearly perfect stability of individual differences across test-retest measurements, and values at 533 

or below 0 indicating no stability. Classical test theory states that all measures are made up of a true score 534 

plus measurement error (Novick, 1965). The ICC is used to estimate the amount of reliable, true-score 535 

variance present in an individual differences measure. When a measure is taken at two timepoints, the 536 

variance in scores that is due to measurement error will consist of random noise and will fail to correlate 537 

with itself across test-retest measurements. However, the variance in a score that is due to true score will 538 

be stable and correlate with itself across timepoints (Crocker & Algina, 2006). Measures with ICC < .40 539 

are thought to have "poor" reliability, those with ICCs between .40 - .60 "fair" reliability, .60 - .75 "good" 540 

reliability, and > .75 "excellent" reliability. An ICC > .80 is considered a clinically required standard for 541 

reliability in psychology (Cicchetti & Sparrow, 1981). 542 

Reliability is critical for research because the correlation observed between two measures, A and 543 

B, is constrained by the square root of the product of each measure’s reliability (Nunnally, 1959): 544 

 545 

Low reliability of a measure reduces statistical power and increases the sample size required to detect a 546 

correlation with another measure. Fig. 1 shows sample sizes required for 80% power to detect correlations 547 

between aa task-fMRI measure of individual differences in brain activation and a behavioral/clinical 548 

phenotype, across a range of reliabilities of the task-fMRI measure and expected effect sizes. Power curves 549 

are given for three levels of reliability of the hypothetical behavioral/clinical phenotype, where the first two 550 

panels (behavioral ICC = .6 and .8) represent most typical scenarios.  551 
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