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Abstract

Mendelian randomization (MR) is a valuable tool for detecting evidence of causal relationships between
pairs of traits. Opportunities to apply MR are growing rapidly as the number of genome-wide association
studies (GWAS) with publicly available summary statistics grows. Unfortunately, existing MR methods
are prone to false positives caused by pleiotropic variants. Correlated pleiotropy, which arises when genetic
variants affect both traits through a heritable shared factor, is a particularly challenging problem and is not
addressed by most existing methods. Additionally, most MR methods only use genome-wide significant
loci, which can limit power and introduce bias. We propose a new method (Causal Analysis Using
Summary Effect Estimates; CAUSE) that uses genome-wide summary statistics to identify patterns that
are consistent with causal effects, while accounting for pleiotropic effects, including correlated pleiotropy.
We demonstrate in simulations that CAUSE is much better at controlling false positive rate in the presence
of pleiotropic effects than other methods. We apply CAUSE to study relationships between pairs of
complex traits and between blood cell composition and autoimmune disorders. We find that CAUSE
detects causal relationships with strong literature support, including an effect of blood pressure on heart
disease risk that is not found using other methods. Our results suggest that many pairs of traits identified
as causal using alternative methods may be false positives driven by pleiotropic effects.

1 Introduction

Inferring causal relationships between traits is important for understanding the etiology of disease and
designing new treatments. However, inferring causal relationships is also hard. Randomized trials are
considered the gold standard, but are expensive and sometimes impossible. Observational studies are cheaper
and easier, but associations measured in observational studies may be biased by confounding and reverse
causality.

Mendelian randomization (MR) is a potentially-powerful approach to studying causal relationships using
data from observational studies. The key idea of MR is to treat genotypes as naturally occurring “random-
izations” [1, 2, 3]. Suppose we are interested in the causal effect of trait M (for “Mediator”) on trait Y .
Under certain assumptions, summarized in Figure 1, the associations of a genetic variant Gj with traits M
and Y will satisfy

βY,j = γβM,j , (1)

where βY,j is the association of Gj with Y , βM,j is the association of Gj with M and γ is the causal effect
of M on Y . This relationship is the core of simple MR methods. Many methods based on Equation (1),
including the commonly used inverse variance weighted (IVW) regression, first obtain estimates of βY,j and
βM,j for several genetic variants Gj , and then estimate γ by regressing the estimates of βY,j on the estimates
of βM,j [4].

Unfortunately, the assumptions made by simple MR methods are often violated in practice, leading to
non-zero estimates of causal effects when no causal relationship exists (false positives). Specifically, simple
MR relies on the assumption that no variants are pleiotropic, meaning that no variants affect M and also
affect Y through a pathway not mediated by M . Pleiotropy is a major source of false positives for simple MR
methods, and therefore a major focus of ongoing MR research [3]. It is helpful to distinguish between two
different types of pleiotropy: horizontal pleiotropy – where the pleiotropic effects on Y are uncorrelated with
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Figure 1: Causal diagram assumed by simple MR. Arrows indicate causal effects. Crosses mark causal effects
that are assumed absent by simple MR methods. The causal effect of trait M on trait Y , γ, is the target of
inference. Variant Gj affects trait M but is assumed to have no effects on Y that are not mediated through
M . Pleiotropic effects on Y that are independent of the effect of Gj on M are referred to as horizontal
pleiotropy. Effects that are mediated by a shared factor, U , are referred to as correlated pleiotropy.

effects on M – and correlated pleiotropy where the pleiotropic effects on Y are correlated with the effects
on M . Horizontal pleiotropy occurs when a genetic variant affects Y and M through separate mechanisms,
whereas correlated pleiotropy occurs if a genetic variant affects Y and M through a shared heritable factor,
U (Figure 1). U may represent a shared biological process or pathway. Both types of pleiotropy may occur
for any pair of traits.

Of these two types of pleiotropy, horizontal pleiotropy is easier to account for because it only adds noise
to the relationship in Equation (1) rather than inducing a systematic correlation between βY,j and βM,j .
Several methods have recently been developed to deal with this, including the weighted median estimator [5],
Egger regression [6, 7], and several methods that rely on an outlier removal step including GSMR [8] and MR-
PRESSO [9]. However, because these methods ignore correlated pleiotropy, they remain vulnerable to false
positives in its presence (see Figure 2a). Evidence from genetic correlation studies suggests that correlated
pleiotropy is common [10]. Many traits, including pairs that are unlikely to be causally linked, share common
genetic factors [10]. For example, many mental disorders are found to be genetically correlated, a pattern
that is better explained by shared biological processes than by causal relationships [11]. Thus correlated
pleiotropy is an important potential source of false positives in MR analyses [12, 13].

Here we present a new MR analysis method that accounts for both horizontal and correlated pleiotropy.
Causal Analysis Using Summary Effect Estimates (CAUSE) uses genome-wide summary statistics to identify
pairs of traits that are consistent with a causal effect. The intuition is that, if M indeed causally affects Y
then every variant affecting M will have a correlated effect on Y (Figure 2b). This can be distinguished from
correlated pleiotropy that leads to correlated effects for only a fraction of variants (Figure 2a). Variants
with strong effect on M but little effect on Y provide evidence against a causal effect of M on Y , even if
other genetic variants show correlated effects. Methods like IVW regression, which assess average correlation,
cannot take account of this, and can be mislead by even modest levels of correlated pleiotropy. CAUSE assess
whether observed summary statistics for a pair of traits are consistent with a causal effect of M on Y by
determining if effects are correlated for all variants or only a subset. Extreme cases of correlated pleiotropy,
where a large proportion of variants affect M and Y through a heritable shared factor or pathway, may
be impossible to distinguish from causal effects. Nonetheless, we demonstrate in simulations that CAUSE
makes fewer false detections in the presence of correlated pleiotropy than existing methods. In applications
to GWAS data for a large number of traits, CAUSE identifies a smaller number of trait pairs as consistent
with causal effects than methods that do not account for correlated pleiotropy. Many of the pairs that
CAUSE does detect have a plausible causal connection.

In addition to allowing for pleiotropic effects, CAUSE has two other important differences from simple
MR methods. First, it uses information at all variants, rather than only the variants most strongly associated
with M . This can increase power when the GWAS for trait M has low power. Second, when there is evidence
of correlated pleiotropy, CAUSE can identify which variants most likely act through a shared factor. This
can be useful for elucidating the biological mechanisms driving genetic correlation of related traits.
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(a) (b)

Figure 2: Simulated data illustrating (a) the pattern induced by a shared factor (correlated pleiotropy)
and (b) the pattern induced by a causal effect. In both plots, effect size estimates are indicated by points.
Error bars around points have length 1.96 times the standard error on each size. Only variants that are
strongly associated with M (p < 5 · 10−8) are shown. (a) Summary statistics are simulated for two traits
with no causal effect. 15% of variants are associated with a shared factor that affects both traits (triangles).
Although there are many variants associated with M and not with Y , the IVW estimator (dotted line) is
significantly different from zero (p = 0.01). (b) Summary statistics are simulated under a model where M
causally affects Y . Here every variant associated with M is also associated with Y and the effect sizes are
correlated.

2 Results

2.1 CAUSE models horizontal and correlated pleiotropy

We use effect estimates and standard errors from GWAS of traits M and Y to assess whether the data are
consistent with a causal effect of M on Y . In most MR methods, variants with strong associations with M
are pre-selected and assumed to follow the causal diagram in Figure 1. Our proposal, illustrated in Figure 3,
differs in three ways. First, we use all variants genome-wide and model uncertainty about the effect of each
variant on M . Second, we allow every variant to exhibit horizontal pleiotropy. This is modeled as an effect,
θj , of variant Gj on trait Y that is uncorrelated with the effect of Gj on M . Third, we allow a subset of
variants to exhibit correlated pleiotropy. We assume that a small proportion of variants, q, follow the causal
diagram in Figure 3b, affecting M and Y through an unobserved heritable shared factor, U . The remaining
variants are assumed to follow the causal diagram in Figure 3a, which is the same as the diagram in Figure 1
with the addition of a horizontal pleiotropic effect.

Under this model, the relationship between βY,j and βM,j is

βY,j = γβM,j︸ ︷︷ ︸
causal effect

+ZjηβM,j︸ ︷︷ ︸
correlated
pleiotropy

+ θj︸︷︷︸
horizontal
pleiotropy

, (2)

where Zj is an indicator that is 1 if Gj affects U and 0 otherwise, and η is the effect of U on Y . This
relationship is an extension of Equation (1) that includes terms allowing for both types of pleiotropic effect.
We assume that q is small, so that Zj is equal to 0 for most variants (see Methods). We see in Equation 2
that, if there is no causal effect (γ = 0) and no variants affect a shared factor (q = 0), then βY,j and βM,j

are uncorrelated for all variants. If γ = 0 and q and η are non-zero, then βY,j and βM,j are correlated for the
small subset of variants with Zj = 1. This is the pattern observed in Figure 2a. If there is a causal effect
(γ 6= 0), βY,j and βM,j are correlated for all variants (Figure 2b). We include every variant genome-wide
in this model, but assume that θj and βM,j are equal to zero for most variants. This allows us to model
uncertainty about variant effects, avoid pre-selection, and gain power from variants with weak evidence of
association with M (see Methods).
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(a) Causal diagram for variants that are independent of the
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(b) Causal diagram for variants that act on M through U .

Figure 3: CAUSE assumes that variants affect trait M through one of two mechanisms. A proportion 1− q
of variants have the causal diagram in (a), while the remaining proportion, q, have the causal diagram in
(b). (a) Gj has an effect on M of size βM,j and is independent of U . Gj can affect Y through two pathways:
through the horizontal effect, θj , and through the effect of M on Y (if γ 6= 0). (b) The effect of Gj on M
is mediated by U . We have assumed that U is scaled so that its effect on M is 1. This makes the effect of
Gj on U equal to the effect of Gj on M , βM,j . The effect of U on Y is equal to η, an unknown parameter.
Gj can affect Y through three pathways: through θj , through the causal effect of M on Y , and through the
effect of U on Y .

We assess whether estimates of βM,j and βY,j obtained from GWAS are consistent with a causal effect
by comparing two nested models: the sharing model which has γ fixed at 0 allowing for only pleiotropic
effects and no causal effect and the causal model in which γ is a free parameter. We compare the models
using the expected log pointwise posterior density (ELPD; [14]), which measures how well the posterior
distributions of a particular model are expected to predict a new set of summary statistics, for example, if
both GWAS were repeated with new samples (see Methods). We estimate the difference in ELPD between
the two models, ∆ELPD and the standard error of the estimator to generate a z-score and a corresponding
one-sided p-value. A large, positive z-score provides support for the causal model, indicating that the data
are consistent with a causal effect.

For computational simplicity, we use a likelihood for independent variants and prune variants for LD
before estimating posterior distributions and computing test statistics. The effects of LD are discussed in
more detail in Supplementary Note Section 5.4. Numerical evaluations in Section 2.2 are conducted using
data simulated with a realistic LD pattern and pruned using the same method applied to biological data in
Sections 2.3 and 2.5.

The causal diagram in Figure 3b is related to the model used in the latent causal variable (LCV)
method proposed by [13]. The connection between CAUSE and LCV is discussed in Supplementary Note
Section 5.5. LCV, however, is conceptually different from CAUSE and other MR approaches. Rather than
estimating and testing for causal effects of M on Y , LCV considers the proportion of heritability of each
trait that is mediated by a heritable shared factor. This is summarized as the “genetic causality proportion”
(GCP) which ranges from -1 to 1. Higher magnitude GCP indicates that the shared factor explains more
genetic variation of one trait than the other, described as “partial causality” by [13]. GCP has no direct
interpretation in CAUSE or other MR models and some non-causal scenarios have large magnitude GCP.
In these scenarios, LCV produces misleading results if non-zero GCP is interpreted as evidence of a causal
relationship (see Supplementary Note Section 5.5).

2.2 CAUSE can distinguish causality from pleiotropic effects in simulations

We simulate summary statistics with realistic LD patterns to assess CAUSE in a variety of scenarios and
compare performance with other MR methods. The power of trait M and Y GWAS can influence perfor-
mance of all methods, so we consider low power (sample size 12,000) and a high power (sample size 40,000)
settings for both traits. Both traits are simulated with a polygenic trait architecture – an average of 1,000
effect variants contribute to a total heritability of 0.25. Under the low and high power settings respectively,
a median of 8 and 107 independent variants are genome-wide significant at p < 5 · 10−8. Variant effects
on trait Y are generated from the relationship in Equation (2) and effect estimates are computed from
true variant effects and the variant correlation (LD) structure using results of [15] (see Methods). The LD
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structure for simulated data is estimated from the 1,000 genomes CEU samples [16].
We compare CAUSE to five MR methods: IVW regression [4], Egger regression [6], GSMR [8], MR-

PRESSO [9], and the weighted median method of [5]. These methods require pre-selection of variants with
strong evidence of association with trait M . We followed the typical practice of selecting variants with
p < 5 · 10−8 for association with M and pruning for LD so that no pair of variants has pairwise r2 > 0.1.

We first evaluate the robustness of each method to correlated pleiotropy by simulating data with no
causal effect and a proportion q = 0 − 50% of variants acting through a shared factor (Figure 4a). In
all settings, methods except for CAUSE have an elevated false positive rate in the presence of correlated
pleiotropy (q > 0). CAUSE makes more false detections when q is large and the GWAS have higher power.
This is expected because the data pattern resulting from a high proportion of shared variants is similar
to the pattern that results from a causal effect. Nonetheless, in all settings and for all parameter values,
CAUSE has substantially lower false positive rates than any other method.

We next compare the power of each method when there is a true causal effect of M on Y and no shared
factor (Figure 4b). The causal effect size is parameterized by the proportion of Y heritability explained

by the causal effect of M ,
γ2h2M
h2Y

= γ2 (M and Y have equal heritability in these experiments). CAUSE

has somewhat lower power than other methods in most settings. This is expected since CAUSE requires
stronger evidence in order to conclude that the data are consistent with a causal effect. However, when the
trait M GWAS has low power, CAUSE can achieve better power than other methods when causal effects
are relatively large (at NM = 12, 000 and NY = 40, 000). This is a result of using all variants genome-wide,
rather than limiting only to those reaching genome-wide significance.

We note that the difference in performance of CAUSE and other MR methods cannot be explained
simply by using a more stringent threshold to call causal effects under CAUSE. The CAUSE test statistic
is better able to distinguish data simulated with a causal effect from data simulated with 30% correlated
pleiotropy (Figure 4c). Remarkably, CAUSE is also better able to distinguish data simulated with a causal
effect from data with no causal effect and no correltaed pleiotropy (Supplementary Figure S2).

2.3 Identifying causal relationships between pairs of complex traits

We use CAUSE to analyze pairwise relationships for 20 traits with summary statistics available from pub-
lished GWAS, (Supplementary Table S1). These include anthropometric traits, cardio-metabolic biomarkers
(e.g. blood pressure, lipids) and complex diseases such as coronary artery disease (CAD) and type 2 dia-
betes (T2D). For each pair of traits we use CAUSE to compare the sharing model with the causal model.
To account for multiplicity, we use the Benjamini-Hochberg procedure [17] to convert CAUSE p-values to
q-values [18].

We analyze the same data using IVW regression, Egger regression [6] and MR-PRESSO [9] to test for a
causal effect of M on Y for each pair of traits. As with CAUSE, p-values for each method are converted to
q-values. For all three methods, we include variants with p < 5 · 10−8 and mutual r2 < 0.1 in the GWAS of
trait M (see Methods). The results of these methods are qualitatively similar (Supplementary Figure S4)
so we limit our discussion to comparing CAUSE and IVW regression.

Using CAUSE, 49 pairs of traits are significant at q < 0.05, while IVW regression identifies 104 pairs
as significant at the same threshold (Figure 5). Seven pairs detected by CAUSE are not detected by IVW.
Four of these are effects of blood pressure phenotypes on CAD risk. The others are an effect of systolic
blood pressure on stroke risk, an effect of birth length on adult height, and an effect of fasting glucose on
type 2 diabetes risk. Effects of blood pressure on CAD are plausibly real causal effects based on evidence
from clinical trials [19]. The failure of IVW regression to detect these effects is likely due to low power in
the GWAS of the blood pressure phenotypes. The four phenoytpes have between five and nine independent
variants reaching genome-wide significance. However, there are many sub-threshold variants that contribute
to the CAUSE test statistic to bolster evidence for a causal effect (Figure 6a).

Many pairs of traits detected by both methods are plausible effects such as BMI and LDL cholesterol on
CAD risk (Figure 6b) and blood pressure on stroke risk. Others are very closely related phenotypes such as
body fat percentage and BMI. In many of these cases, CAUSE indicates that the data are consistent with
causal effects in both directions. However, we interprete of these results to indicate that almost all effect
variants are shared rather than that the traits are mutually causal (see Discussion).
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(a) False Positive Rate

(b) Power

(c) False Positive Rate vs Power

Figure 4: Performance of CAUSE and other MR methods in simulated data. (a) False positive rate averaged
over 100 simulated data sets in settings with no causal effect and η =

√
0.05. The proportion of correlated

pleiotropic variants (q) ranges from 0 to 50%. (b) Power averaged over 100 simulated data sets in settings
with a causal effect and no shared factor. Causal effect size is parametrized by the proportion of trait Y
heritability explained by the causal effect of M (τ). (c) We compare the power when γ =

√
0.05 to the false

positive rate when there is no causal effect, but a proportion q = 0.3 of variants act through a shared factor
with effect η =

√
0.05 on Y . There are 100 simulations each in the causal and non-causal scenarios. Curves

are created by varying the significance threshold from very stringent (lower left) to very permissive (upper
right). Points indicate the power and false positive rate achieved at a threshold of p ≤ 0.05.
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IVW regression detects a large number of trait pairs that are not detected by CAUSE. Many of these
may be false positives driven by variants affecting shared factors. For example, IVW detects significant
causal effects of CAD on a number of traits, some of which are highly implausible, e.g. CAD effect on
birth weight (Figure 5). Other examples include effects of blood pressure on BMI, and total cholesterol and
triglycerides on adult height.

CAD and LDL cholesterol provide an illustrative example of how correlated pleiotropy can induce errors
using IVW regression and how these are avoided by CAUSE. Both IVW and CAUSE detect an effect of
LDL cholesterol on CAD risk (IVW q-value 3.4 · 10−30; CAUSE q-value 3.2 · 10−5; Figure 6b), which is
consistent with the current predominant view of the relationship between LDL and CAD risk [20]. However,
IVW also detects a causal effect in the opposite direction, of CAD on LDL cholesterol (Figure 6c), which
is most plausably a false detection. This occurs because some of the variants associated with CAD are
acting through LDL and therefore have correlated effects on both traits, leading to the false finding by
IVW. CAUSE avoids this problem because there are many variants that affect CAD and are independent of
LDL. These variants provide evidence against a causal effect of CAD on LDL and make large contributions
to the CAUSE test statistic (Figure 6c).

CAUSE does not entirely avoid likely false detections. For example, recent research suggests that the
signal of an effect of HDL cholesterol on coronary artery disease (CAD) is driven by variants that affect
both LDL and HDL cholesterol [21, 22]. This effect is detected by both IVW regression and CAUSE. This is
likely driven by a very high proportion of shared variants, which is hard to differentiate from a causal effect.
Under the sharing model, CAUSE estimates that 54% of HDL variants are shared with CAD (Supplementary
Figure S3).

The CAUSE results suggest that many pairs of traits share variants that act through a common pathway.
Under the sharing model, the posterior median of q exceeds 10% for 114 trait pairs (the prior median is
7%; Supplementary Figure S3). These include 78 (75%) of the trait pairs detected as significant by IVW
regression. This overlap is expected because a positive IVW result indicates that top trait M variants have,
on average, correlated effects on Y . High levels of sharing are also suggested by large correlation estimates
made by cross-trait LD-score regression [23] (Supplementary Figure S5). However, in many cases, CAUSE
results suggest that these patterns can be explained by a shared factor rather than a causal effect. Together,
these results suggest that shared factors may be major contributors to false positives using traditional MR
methods.

2.4 CAUSE provides insights on biological mechanisms driving genetic correlation of
trait pairs

CAUSE posterior estimates under the sharing model can yield insights into the relationship between M and
Y when correlation is driven by a shared factor rather than a causal effect. CAUSE estimates a posterior
probability of acting through U for each variant, under the sharing model. Identifying variants that act
through a shared factor may help identify biological processes that influence both traits.

To illustrate, we consider the relationship between birth weight and T2D risk, treating birth weight
as the mediator. IVW regression identifies an average negative correlation of effect sizes between the two
traits (IVW q-value 7× 10−4), however, CAUSE does not find the data to be consistent with a causal effect
(CAUSE q-value 0.32; Figure 6d). To identify candidate genes and pathways that mediate sharing between
these traits, we first assign variants to genes using cis-eQTLs from the GTEx project. Variants that are
not cis-eQTLs are annotated to the nearest gene. We then test gene sets defined in the Gene Ontology
database [24, 25] for enrichment of genes associated with variants that have a high posterior probability of
acting through U (see Methods). The most enriched gene sets include those related to cell division, to PIP2
binding, and to the integrin complex (Supplementary Table S2). The integrin pathway results are driven
by several integrin subunit genes (Supplementary Table S3), one of which, ITGA1, is among the top loci
associated with related traits including T2D, fasting insulin, β-cell function and glucose tolerance [26].

2.5 Links between auto-immune disease and blood cell counts

There are a growing number of GWAS for intermediate or biomarker traits. Relationships between these
traits and clinical outcomes are appealing targets for MR studies because biomarkers may be more likely
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Figure 5: Each cell summarizes the IVW (upper, orange) and CAUSE (lower, blue) results for a pair of
traits. Points are shown only for pairs significant at an FDR threshold of 0.05. Grey squares indicate missing
values and occur for IVW regression when there are fewer than 2 genome-wide significant loci.
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(a) (b)

(c) (d)

Figure 6: Effect size estimates and variant level contribution to CAUSE test statistics for four trait pairs.
Effect estimates for trait M (horizontal axis) are plotted against estimates for trait Y (vertical axis). Point
size is proportional to the p-value for trait M . Error bars have length 1.96 times the standard error of
the estimate. Triangles indicate variants reaching genome-wide significance for trait M (p < 5 · 10−8).
Only points with trait M p-value < 5 · 10−5 are shown. Color indicates the contribution of each variant
to the CAUSE test statistic with positive values (purple) in favor of the causal model and negative values
(green) in favor of the sharing model. Dotted lines show the IVW estimate obtained using only genome-wide
significant variants. a) Systolic blood pressure (M) and CAD (Y ). Only seven variants reach genome-wide
significance so IVW regression is under-powered. Sub-threshold variants contribute to evidence in favor of
the causal model using CAUSE. b) LDL cholesterol (M) and CAD (Y ). Both methods detect a strong signal
consistent with a causal effect. c) CAD (M) and LDL cholesterol (Y ). Although the average correlation
in effect estimates significantly different from zero, variants with large effects on CAD and no effect on
LDL prevent CAUSE from making a false discovery. d) Birth weight (M) and type 2 diabetes (Y ). IVW
regression results suggest a causal effect while CAUSE results indicate that the data may be explained by
a shared factor, because many variants (green) contradict the ovreall negative correlation in effect sizes.
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than complex traits to causally affect disease risk, and may be accessible as drug targets. We use CAUSE
to search for evidence of causal relationships between 13 measures of blood cell composition and eight
auto-immune diseases with publicly available summary statistics (Supplementary Table S4).

At an FDR threshold of 0.05, only 2 of the 104 pairs of traits are found to be consistent with a causal
effect using CAUSE (Supplementary Figures S6 and S7). These are positive effects of eosinophil count on
asthma and allergy risk, both of which are supported by literature [27]. IVW regression also identifies these
pairs at the same significance threshold. In addition IVW regression detects 20 other pairs (Supplementary
Figure S6), including causal relationships of red cell distribution width (RDW) and mean corpuscular
hemoglobin (MCH) on multiple traits. Since RDW and MCH have no known direct role in autoimmunity,
these results may be false positives due to sharing of variants that act through a common factor. Consistent
with this, CAUSE estimates more than 10% of variants to act through a shared factor for 13 of the trait
pairs found to be significant by IVW regression (Supplementary Figure S7).

3 Discussion

We have introduced CAUSE, a new approach to MR analysis that accounts for horizontal and correlated
pleiotropy. In simulations CAUSE avoids false positives in the presence of pleiotropic effects that bias other
methods. With highly powered GWAS, CAUSE tends to be more conservative than other methods, requiring
more evidence for a causal effect. However, when GWAS are under-powered, CAUSE improves power by
using all variants genome-wide rather than relying only on highly significant associations. Previous authors
have identified horizontal pleiotropy as a pervasive phenomenon [9] that may adversely impact MR analyses.
Our analyses demonstrate that correlated pleiotropy is also common and may explain a large fraction of
positive results obtained using other MR methods.

Caution must be used when interpreting results of CAUSE, as well as any other MR method. CAUSE
tests that the GWAS summary statistics for M and Y are consistent with a model in which every variant
M effect variant has a correlated effect on Y . This pattern occurs when M has a causal effect on Y but can
also occur in other circumstances. Notably, if most of the heritable variation of two traits is mediated by
the same unobserved process, we expect to observe this pattern in both trait directions. This can be seen in
our analysis of complex traits when CAUSE rejects the sharing model in both directions for pairs of traits
like BMI and body fat percentage that are very closely related. With this in mind, it may be useful to test
trait pairs in both directions and give more attention to effects that are seen in only one direction [12].

CAUSE has several limitations that provide interesting future research directions. First, it is not curently
possible to account for known shared factors or confounders when they are measured. For example, when
comparing HDL level vs. heart disease risk, it may be desirable to control for the effect of LDL cholesterol
on disease risk. Second, CAUSE models only a single shared factor, so it may not fully account for shared
genetic components between two traits of interest. This problem is partially alleviated by the flexibility of
the empirical prior distribution (see Methods). Finally, CAUSE simply prunes variants for LD rather than
explicitly modeling variant correlation. This helps ensure that the problem is computationally tractable,
however, using only one variant per LD block may lead to loss of information.
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4 Methods

4.1 CAUSE model for GWAS Summary Statistics

We use effect estimates and standard errors measured in GWAS of traits M and Y (summary statistics)
to look for evidence of a causal effect of M on Y . Let (β̂M,j , ŝM,j) and (β̂Y,j , ŝY,j) be effect estimates and
standard errors at variant Gj (j = 1, . . . , p) for traits M and Y respectively. Let βM,j and βY,j be the true
marginal associations of Gj with M and Y . We model effect estimates as normally distributed given the
true effects, allowing for global correlation that can result from overlapping GWAS samples. We model

p

(
β̂M,j , β̂Y,j

∣∣∣∣βM,j , βY,j , ρ, ŝM,j , ŝY,j

)
= N2

((
β̂M,j

β̂Y,j

)
;

(
βM,j

βY,j

)
, Sj(ρ)

)
, (3)

where where Sj(ρ) =

(
ŝ2
M,j ρŝM,j ŝY,j

ρŝM,j ŝY,j ŝ2
Y,j

)
and N2(x;µ,Σ) is the bivariate normal density with mean µ

and variance Σ evaluated at x. This model implicitly assumes that ŝM,j and ŝY,j are measured without
error. The correlation term, ρ, which accounts for the effects of sample overlap, is estimated empirically
(Supplementary Note Section 5.1).

In the CAUSE model, a proportion, q of variants exhibit correlated pleiotropy, modeled as an effect on a
shared factor, U (Figure 3b). The remaining proportion 1− q of variants are independent of U (Figure 3a).
All variants may have horizontal pleiotropic effects, θj on Y that are uncorrelated with their effects on M .
Let Zj be an indicator that variant j effects U . Then,

βY,j |Zj = γβM,j︸ ︷︷ ︸
causal effect

+ZjηβM,j︸ ︷︷ ︸
correlated
pleiotropy

+ θj︸︷︷︸
horizontal
pleiotropy

(4)

Zj ∼Bernoulli(q), (5)

where η is the effect of U on Y and U is scaled so that the effect of U on M is 1. Note that if there
are no horizontal or correlated pleiotropic effects, then Equation (5) reduces to βY,j = γβM,j , which is the
relationship assumed by simple MR approaches such as IVW regression. We substitute the right side of
Equation (5) into Equation 3 and integrate out Zj to obtain

p

(
β̂M,j , β̂Y,j

∣∣∣∣βM,j , θj , ρ, ŝM,j , ŝY,j , γ, η, q

)
=qN2

((
β̂M,j

β̂Y,j

)
;

(
βM,j

(γ + η)βM,j + θj

)
, Sj(ρ)

)
+

(1− q)N2

((
β̂M,j

β̂Y,j

)
;

(
βM,j

γβM,j + θj

)
, Sj(ρ)

)
. (6)

The parameters of interest in the CAUSE model are γ, η, and q. Rather than estimating individual
variant effects βM,j and θj , we model their joint distribution empirically and integrate them out to obtain

a marginal density for β̂M,j and β̂Y,j . We model βM,j and θj as draws from a mixture of bivariate nor-
mal distributions. This strategy is based on Adaptive Shrinkage (ASH) approach for modeling univariate
distributions Stephens2016 and provides a flexible unimodal distribution with mode at (0, 0). We model

p (βM,j , θj |π0, . . . , πK ,Σ0, . . . ,ΣK) =

K∑
k=0

πkN2

((
βM,j

θj

)
;

(
0
0

)
,Σk

)
, (7)

where Σ0,Σ1, . . . ,ΣK are a set of pre-specified covariance matrices of the form Σk =

(
σ2
k,1 0

0 σ2
k,2

)
, and

π0, . . . , πK are a set of mixing proportions that sum to 1. The set of parameters Ω = {π0, . . . , πK ,Σ0, . . . ,ΣK}
are estimated from the data along with ρ in a single pre-processing step (Supplementary Note Section 5.1).

11

.CC-BY-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 26, 2019. ; https://doi.org/10.1101/682237doi: bioRxiv preprint 

https://doi.org/10.1101/682237
http://creativecommons.org/licenses/by-nd/4.0/


Integrating the distribution of βM,j and θj out of Equation (6), we obtain

p(β̂M,j , β̂Y,j |γ, η, q, ŝM,j , ŝY,j ,Ω, ρ) =q
K∑
k=0

πkN

((
β̂M,j

β̂Y,j

)
;

(
0
0

)
, A(γ + η)ΣkA(γ + η)> + Sj(ρ)

)
+

(1− q)
K∑
k=0

πkN

((
β̂M,j

β̂Y,j

)
;

(
0
0

)
, A(γ)ΣkA(γ)> + Sj(ρ)

)
, (8)

where A(x) =

(
1 0
x 1

)
. Treating variants as independent, we obtain a joint density for the entire set of

summary statistics as a product over variants. We place independent prior distributions on γ, η, and q,
(Section 4.3), and estimate posterior distributions via adaptive grid approximation (Supplementary Note
Section 5.3). CAUSE is implemented in an open source R package (https://github.com/jean997/cause).
A flow-chart illustrating a CAUSE analysis including parameter estimation is shown in Supplementary
Figure S1.

4.2 Accounting for Linkage Disequilibrium

We treat variants as independent when we compute the joint density of summary statistics. In reality,
variants are correlated due to linkage disequilibrium (LD). We define the LD-transformed effects β∗M =
SMRS

−1
M βM and β∗Y = SYRS

−1
Y βY , where R is the variant correlation matrix matrix and SM and SY are

diagonal matrices with elements (sM,j) and (sY,j) Zhu2016a. We assume that the correlation structure is

the same in both GWAS. The pair of estimates (β̂M,j , β̂Y,j) can be approximated as normally distributed
with mean (β∗M,j , β

∗
Y,j) and variance S(ρ). If the relationship in Equation (5) holds for direct effects and

either M effects are sparse relative to LD structure (most M effect variants are independent) or q is small,
then the relationship between the LD-transformed effects is

β∗Y,j = γβ∗M,j + Zjηβ
∗
M,j + θ∗j , (9)

where θ∗ = SYRS
−1
Y θ (see Supplementary Note Section 5.4). In this case, the mean relationship for summary

statistics at a single locus is the same with or without LD and Equation (6) and (8) remain valid for variants
in LD if βM,j and θj are replaced with β∗M,j and θ∗j .

Correlations among variants can affect the joint density of all summary statistics, which we compute as
a product of the densities at each variant. To account for this, we use a subset of variants with low mutual
LD (r2 < 0.1 by default), prioritizing variants with low trait M p-values ito improve power.

If M effect variants are dense relative to LD structure and q is large, LD can induce a positive correlation
between Y and M effect estimates for all variants even when there is no causal effect, leading to false positives
(see Supplementary Note Section 5.4).

4.3 Prior Distributions for γ, η, and q

We place normal prior distributions with mean zero on γ and η. We find in simulations that results are
robust to different choices of prior variance for γ and η, as long the same value is used for both parameters
(Supplementary Note Section 5.2). Since the magnitude of a possible causal effect is difficult to know a
priori due to differences in trait scaling and covariate adjustment across GWAS, we use the data to suggest
a prior variance (Supplementary Note Section 5.2).

By default, and in all analyses presented here, we use a Beta(1, 10) prior distribution for q. This
distribution gives a prior probability of 0.001 that q > 0.5 and 0.056 that q > 0.25. In our R implementation,
the parameters of the Beta distribution can be adjusted by the user to reflect different prior beliefs about
the size of q. For example, when one uses a stronger prior with prior mean closer to 0, q is restricted to be
nearly equal to 0. In the limit, this reduces to standard MR, while still accounting for polygenicity of traits,
sample overlap, and horizontal pleiotropy.
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4.4 Model Comparison Using ELPD

To determine whether GWAS summary statistics are consistent with a causal effect of M on Y we compare
a model in which the causal effect is fixed at zero (the partial sharing model) to a model that allows a
non-zero causal effect (the causal model). To compare the fit of these models, we estimate the difference
in the expected log pointwise posterior density (∆ELPD) Vehtari2016. The ELPD measures how well the
posterior distributions estimated under a given model are expected to predict a hypothetical new set of
summary statistics obtained from GWAS of M and Y in different samples.

Let Θ be the set of parameters (γ, η, q). Let pC(Θ|Data) and pS(Θ|Data) be the posterior density of Θ
given the observed summary statistics under the causal model and partial sharing model respectively. Let
y′j denote a new observation of (β̂M,j , β̂Y,j , ŝM,j , ŝY,j). The ELPD for model m ∈ {C, S} is

ELPDm =

p∑
j=1

(∫ (∫
p(y′j |Θ,Ω, ρ)pm(Θ|Data)dΘ

)
ptrue(y

′
j)dy

′
j

)
. (10)

where p(y′j |Θ,Ω, ρ) is given in Equation (8) and ptrue is the probability density under the true data generating
mechanism. If ∆ELPD = ELPDC − ELPDS is positive, then the posteriors from the causal model predict
the data better so the causal model is a better fit. If ∆ELPD≤ 0, then the partial sharing model fits at
least as well, indicating that the data are not consistent with a causal effect.

We estimate ∆ELPD and a standard error of the estimator using the Pareto-smoothed importance
sampling method described by [14] and implemented in the R package loo. We then compute a z-score,

zelpd = ∆êlpd

ŝe
(

∆êlpd
) , that is larger when posteriors estimated under the causal model fit the data better than

the posteriors estimated under the partial sharing model. We compute a one-sided p-value by comparing
the z-score to a standard normal distribution. The p-value estimates the probability of obtaining a z-score
larger than the one observed if the true value of ∆ELPD were less than or equal to zero.

4.5 Generating Simulated Summary Statistics

To create data with a realistic correlation structure, we estimate LD for 19,490 HapMap variants on chromo-
some 19 in the CEU 1,000 Genomes population using LDShrink ([28]; https://github.com/stephenslab/
ldshrink) and replicate this pattern 30 times to create a genome sized data set of p = 584, 700 variants. We
set the heritability of each trait h2

M and h2
Y , the sample size for each GWAS NM and NY , and the expected

number of effect variants mM and mθ. Additionally, we set γ, η, and q and generate effect estimates from
the CAUSE model in Equation (5). We note that mθ is the expected number of variants with θj 6= 0, rather
than the expected number of variants with non-zero effect on Y .

We simulate an effect estimate and standard error for each variant using the following procedure. First,
standardized effects β̃M,j and θ̃j are drawn from a mixture distribution:

β̃M,j ∼(1− πM )δ0 + πMN(0, σ2
M )

θ̃j ∼(1− πθ)δ0 + πθN(0, σ2
θ), (11)

where β̃M,j and θ̃j are standardized effects defined as defined as β̃M,j = βM,j

√
2fj(1− fj) and θ̃j =

θj
√

2fj(1− fj) and fj is the allele frequency n the 1,000 Genomes CEU population of variant j. Vari-

ances σ2
M and σ2

θ are chosen to give the desired expected heritability as σ2
M =

h2M
mM

and σ2
θ =

h2θ−(γ2+qη2)h2M
mθ

.

Mixing parameters are πM = mM/p and πθ = mθ/p. Note that γ2h2
M/h

2
Y is the proportion of trait Y

heritability mediated by the causal effect and qη2h2
M/h

2
Y is the proportion of trait Y heritability mediated

by U .
Second, standardized effects are converted to non-standardized effects and standard errors are computed

as as s·j =
√

1
(2∗N·∗fj∗(1−fj) , where · may be M or Y . Third, Zj are drawn from a Bernoulli(q) distribution

and true effects βγ,j are computed using Equation (5). Finally, effect estimates are simulated from true
effects as

β̂· ∼ Np(S·RS·β·, S·RS
−1
· ) (12)
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where S· is the diagonal matrix of standard errors and R is the variant correlation matrix Zhu2016a.
Simulations can be replicated using the online tutorial (https://jean997.github.io/cause/simulations.
html).

4.6 Exiting MR Methods

We compare the performance of CAUSE in simulated data with five alternate MR methods. These are
implemented as follows.

• IVW regression: Implemented by us in R.

• Egger regression: Implemented by us in R.

• MR-PRESSO: Performed using MRPRESSO R package ([9], https://github.com/rondolab/MR-PRESSO)
with outlier and distortion tests.

• GSMR: Performed using gsmr R package ([8], http://cnsgenomics.com/software/gsmr/) with the
Heidi outlier test, default threshold 0.01, and minimum number of instruments lowered to 1.

• Weighted median: Performed using R code available in [29].

4.7 Gene set enrichment analysis with shared variants of trait pairs

When CAUSE results indicate that summary statistics for a pair of traits are not consistent with a causal
effect, but there is a substantial amount of correlated pleiotropy (i.e. the posterior distribution of q is large),
CAUSE posterior estimates can be used to identify which pathways contribute to this pleiotropy. We use
a four step procedure to identify pathways enriched for shared variants. First, we assign variants to genes.
We include only variants with p-value for association with M < 0.001, pruned for LD with a threshold
of r2 < 0.1. These are the variants used to compute the CAUSE posterior distributions. Variants that
are significantly associated with gene expression (q-value < 0.05) in any of 48 tissues in the GTEx catalog
(cis-eQTLs) are assigned to the genes they are associated with. Variants that are not cis-eQTLs are assigned
to the nearest gene. Some variants may be assigned to multiple genes. Second, genes are assigned to gene
sets defined by the Gene Ontology database (http://geneontology.org, [24, 25]). Variants are assigned to
gene sets transitively. Third, for each gene, i we compute the median posterior probability of acting through
U for all variants assigned to that gene, denoted Pi. Finally, for each gene set j, we assess evidence for an
enrichment of genes with variants that are likely to be shared using logistic regression. We model

logit(Gene i in set j) = α0,j + αe,jPi + εij . (13)

For each pathway we estimate αe,j and α0,j using logistic regression and test the hypothesis that αe,j is
equal to zero. We use a Benjamini-Hochberg correction to account for multiple testing.
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5 Supplementary Note (Appendix)

5.1 Empirical Parameter Estimation

CAUSE analysis involves two steps (see Supplementary Figure S1). We first empirically estimate ρ, the
global correlation of summary statistics that can result from GWAS sample overlap and the parameters
that define the joint prior distribution of βM,j and θj . We do this in two sub-steps: 1) Select a panel of
candidate covariance matrices Σ0, . . . ,ΣK and 2) Fix γ = η = 0 and calculate the maximum a posteriori
(MAP) values of ρ and π0, . . . , πK .

The set of candidate covariance matrices should be large enough that a flexible joint distribution can be
fit for βM,j and θj , but not so large that evaluating the likelihood in (8) becomes burdensome. To choose
this set, we first apply the Adaptive Shrinkage (ASH) method proposed by [30] to estimate the distributions
of βM and βY separately. Briefly, given a set of summary statistics for a single study, ASH estimates a
sparse unimodal distribution for the marginal effects. This distribution is flexible and parameterized as a
mixture of univariate normal distributions centered at 0. ASH uses the model

β·,j ∼
L∑
l=0

$lN(0, ς2
l ),

where ς0, . . . , ςL are a fixed grid of variances with ς0 = 0. ASH estimates the mixing proportions $0, . . . , $L

using a prior on $ that encourages more weight to be given to $0, the proportion of effects equal to 0.
Despite starting with a large number of candidate variances, ASH solutions tend to place most of the weight
on only a few values. The resulting solution is sparse (most of the estimated effects are 0) and parsimonious
(there are few components in the model with non-zero mixing proportion).

Let ςM,0, . . . , ςM,lM and ςY,0, . . . , ςY,lY be the set of variances with non-zero weight in the ASH estimates
for traits M and Y respectively. Because ASH encourages sparsity, in all cases ςM,0 = ςL,0 = 0. We construct
the panel of candidate 2×2 covariance matrices in by taking all pairs of these variances as diagonal elements
and setting the off diagonal elements to be 0. Thus if lM = 4 and lY = 3, our method produces a set of
(4 + 1)(3 + 1) = 20 candidate covariance matrices.

In the second step, we fix γ = η = 0 and calculate the MAP values of ρ and π0, . . . , πK . We use a
Dirichlet(10, 1, . . . , 1) prior on π0, . . . , πK with π0 corresponding to the covariance matrix of all zeros. This
prior is the same prior used by default in ASH and encourages a sparse solution, however the weights may be
adjusted by the user in the CAUSE software. We use a prior on z = tanh−1(ρ) = log(1+ρ)

2(1+ρ) of z ∼ N(0, 0.25),
which is a weak prior encouraging ρ to be close to zero. To calculate the MAP estimate, we use coordinate
descent, alternating between optimization of ρ with π fixed and optimization of π with ρ fixed. As observed
by [30] and others, maximization in π is a convex optimization problem that can be completed quickly. In
practice, we find that convergence is usually reached within five iterations.

5.2 Prior Distributions for γ and η

In most cases, little prior information is available about the size of the causal or confounding effect. Differ-
ences in variable scaling and covariate adjustment across GWAS may make it difficult to predict even the
magnitude of these effects. Fortunately, we find that CAUSE results are robust to a wide range in prior
distributions for these parameters. We require that the same prior be used for γ and η. If this is not the
case false positives can arise when the true shared factor effect is better represented by the prior on γ than
the prior on η. We use normal prior distributions with mean 0 and variance σ2

γη for γ and η.
To assess the robustness of CAUSE to changes in σ2

γη, we analyze data simulated from three scenarios
using a range of values for σ2

γη. The three scenarios include 1) a setting with a causal effect (γ̃ = 0.2, η̃ = 0,
q̃ = 0), 2) a setting with no causal effect but some correlated pleiotropy (γ̃ = 0, η̃ = 0.2, q̃ = 0.3), and 3)
a setting with neither a casual effect or correlated pleiotropy (γ̃ = 0, η̃ = 0, q̃ = 0) (See Supplementary
Table ??). We analyze simulated data using three values of σ2

γη. These are chosen so that 0.2, the value
of γ in setting 1 and the value of η in setting 2 is at the 80th, 65th, and 51st quantile of the N(0, σ2

γη)
distribution. We compare the posterior median estimates for γ, η, and q under the full and sharing models
as well as p-values comparing the two models across different values of σ2

γη. The Pearson correlation in
p-values was greater than 0.99 for all settings and between all pairs of prior variances. The correlation in
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posterior medians was higher than 0.9 for all parameters and all settings except for estimates of q in setting
1. These had a somewhat lower correlation (minimum correlation 0.63). However, in all cases the posterior
median of q in the causal model was between 0.02 and 0.06. These results demonstrate that very similar
inference can be obtained using a range of prior distributions for γ and η.

By default, σ2
γη is chosen using the data. We use a set of variants with trait M p-value < 10−3 and

compute γ̂max = max | β̂2
β̂1
|. This is the largest magnitude of causal estimate that could be achieved using

only one variant. We then choose σγη so that the prior probability that γ or η has magnitude larger than
γ̂max is 0.05.

5.3 Approximating posteriors of γ, η, and q

We use an adaptive variation of a simple grid posterior approximation[31] to approximate the joint posterior
distribution of γ, η, and q. To compute this approximation, we begin with initial bounds on γ and η of
(−1, 1). These will be adaptively expanded as needed. The bounds on q are fixed at (0, 1).

The approximation proceeds as follows:

1. The domain of (γ, η, q) is divided into a coarse set of cubes. The approximate posterior probability of
each cube is computed by approximating the likelihood within the cube as constant and equal to the
likelihood at the midpoint of the cube.

2. After the first rough approximation, the bounds of γ and η are expanded so that less that 0.001 of the
posterior mass falls in the cubes closest to the boundary. These bounds are then fixed.

3. The grid is then iteratively refined until no cube contains more than 1% of the posterior density. At
each iteration, all cubes containing more than this are subdivided into nine smaller cubes and the
posterior is re-estimated.

5.4 Effects of LD

In Sections 2.1 and 4.2 and we briefly describe the effects of LD. Here, we discuss these in greater details.
CAUSE relies on two assumptions. The first is that the joint likelihood of all pairs of summary statistics
can be factorized into the product of the likelihood for each variant. Variants in LD are not independent,
however, by pruning variants so that the set is nearly independent, we can approximate this condition.

The second is that

Cov(β̂Y,j , β̂M,j |Zj) = (γ + Zjη)Var(βM,j) = (γ + Zjη)
(

Var(β̂M,j)− s2
M,j

)
(14)

Without LD, this is a consequence of Equation (5) and the assumption that β̂M,j and β̂Y,j are unbiased

estimators for βM,j and βY,j . In the presence of LD, the effect estimate β̂·,j (· may be M or Y ) is not an
estimator of β·,j , but instead estimates β·,j plus a contribution from each of the neighbors of variant j. Using
results from [15],

E[β̂·,j ] =
∑
k

rjks·,j
s·,k

β·,k ≡ β∗·,j , (15)

where rjk is the correlation between variant j and variant k and we assume that the LD structure in the
samples used for the two GWAS are the same. We refer to β∗·,j as the LD-transformed effects. Note that
if allele frequencies are the same in the two GWAS populations then sM,j = csY,j where c is a constant
depending on sample size. Thus

rjksM,j

sM,k
=
rjksY,j
sY,k

≡ hj,k. (16)

We now derive Cov(β̂Y,j , β̂M,j |Z) in the presence of LD, where Z is a vector with jth element equal to Zj .
We assume that direct effect are independent so Cov(βM,j , βM,k) = 0 if j 6= k and Cov(βM,j , θj) = 0 for all
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j and k and that β̂M,j and β̂Y,j are independent conditional on β∗M,j and β∗Y,j . Then

Cov(β̂Y,j , β̂M,j |Z) =Cov(
∑
k

hj,kβY,k,
∑
k

hj,kβM,k|Z)

=
∑
k

h2
j,kCov(βY,k, βM,k|Zk)

=
∑
k

h2
j,k(γ + Zkη)Var(βM,k). (17)

Note that
Var(β̂M,j |Z) = Var(β∗M,j) + s2

M,j =
∑
k

h2
j,kVar(βM,k) + s2

M,j . (18)

Suppose that the variant correlation structure can be decomposed into independent LD blocks and that
there is at most one M effect variant per block. If this variant has index k′ then, for any variant in the block

Cov(β̂Y,j , β̂M,j |Z) = h2
j,k′(γ + Zk′η)Var(βM,k′) = (γ + Zk′η)Var(β∗M,j). (19)

This means that, if Zk′ = 1, then variant k′ induces correlation between effect estimates for other variants
in the block, even when γ = 0. However, if we use only one variant per LD block to estimate parameters
then there is no distortion in the proportion of correlated variants. If γ = 0, then the proportion of variants
with correlated effect estimates will be equal q, the proportion of true effect variants acting through U . In
this case, CAUSE will not have an increased false positive rate but may have lower power if the variants
selected to use in estimation are far from the true causal variants. To maximize power, we prune for LD
prioritizing variants with low trait M p-values.

More generally, a block may contain multiple causal variants of M , with some acting on U (shared
variants) and others not. Equation 17 suggests that any shared variant will induce non-zero correlation of
β̂Y,j and β̂M,j even if γ = 0. The presence of non-shared variants in a block reduces the correlation, but
will not eliminate it. When M is highly polygenic and q is large, the proportion of blocks containing at
least one shared variant will be large relative to the true proportion of shared variants, and this may lead to
inflated estimates of q and high false positive rates. CAUSE assumes that these settings are rare. However,
our simulations with realistic LD demonstrate that LD may have a limited impact on the performance of
CAUSE in terms of false positive rates.

5.5 Connections with LCV

[13] propose an approach to identifying pairs of traits with causal relationships that uses a latent causal
variable (LCV) model. This model is similar to the CAUSE model (Figure 3) with γ = 0. Rather than
explicitly modeling both correlated pleiotropy and a causal effect, the LCV model includes only a shared
factor (U in the CAUSE model) and estimates the “genetic causality proportion” (GCP). The GCP reflects
the relative proportions of heritability of each trait that are explained by a shared factor. A causal effect
(with no additional correlated pleiotropy from other sources) is equivalent to a model in which all variants
act through a shared factor. In this case, the GCP is equal to 1 or -1 depending on the directionality of the
effect.

LCV estimates the GCP and computes a test statistic testing whether GCP= 0. However, models with
non-zero GCP are not necessarily causal. In fact, many non-causal models have large magnitude GCPs, so
the LCV test cannot be interpreted as a test of causality. [13] use an estimated GCP larger than 0.6 to
suggest a possible causal relationship, but this cutoff is somewhat arbitrary.

Because the LCV model is similar to the CAUSE model with γ = 0, we can derive an expression for
GCP in terms of CAUSE parameters under this condition. The LCV model uses two parameters qlcvM and
qlcvY , the square root of the proportions of trait M and Y heritability explained by the shared factor. Here
we use the same trait M and Y notation used in our discussion of CAUSE for simplicity. In terms of CAUSE
parameters these are

qlcvM =
√
q (20)

qlcvY =

√
qηhM

hY
(21)
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The GCP is then defined as

GCP =
log |qlcvY | − log |qlcvM |
log |qlcvM |+ log |qlcvY |

=
log(ηhM/hY )

log(qηhM/hY )
. (22)

From this formula, we see that GCP is non-zero if η and q are both non-zero. For example, if the heritability
of the two traits is equal, q = 0.3 and η =

√
0.05 then GCP= 0.55. From this we see that testing whether

GCP= 0 is very different from testing whether γ = 0 as CAUSE and other MR methods do.
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6 Supplementary Figures
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Genome-wide summary statistics
β̂M,j , ŝM,j ,β̂Y,j , ŝY,j , j ∈ 1, . . . , p

LD Estimates from
reference data

Select a random subset of N
variants for parameter estima-
tion
N = 1,000,000

Prune for LD, prioritized by trait M p-value*
ld prune

r2 threshold: 0.1

Estimate Nuisance Parameters
est cause params

1. Select Σ0, . . . ,ΣK .

2. Obtain MAP estimate of ρ
and π0, . . . , πK .

Prior on π: Dirichlet(10, 1, . . . , 1)

Estimate Posteriors and Compute
Test Statistic
cause

1. Threshold variants on trait
M p-value to reduce
computational time.

2. Use data to choose prior
variance of γ and η.

3. Estimate posteriors for γ, η,
and q under sharing model.

4. Compute posterior of
P [Zj = 1] under sharing
model.

5. Estimate posteriors for γ, η,
and q under causal model.

6. Compute ELPD test
statistic.

p-value threshold: 0.001
Prior on q: Beta(1, 10)

Plot and Summarize
plot, summarize

Figure S1: Workflow of a CAUSE analysis. Dashed boxes represent input data. Each solid box is an
analysis step completed by the given function in the cause R package. LD pruning (*) can be parallelized
over chromosomes. Purple text indicates user provided parameters and their default values. All analyses
presented are run with default parameters.
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Figure S2: We compare the power in simulated data when γ =
√

0.05 to the false positive rate when there
is no causal effect and no correlated pleiotropy. There are 100 simulations each in the causal and non-
causal scenarios. Curves are created by varying the significance threshold from very stringent (lower left)
to very permissive (upper right). Points indicate the power and false positive rate achieved at a threshold
of p ≤ 0.05.
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Figure S3: Posterior estimates of q from the sharing model for pairs of GWAS triats (Section 2.3). The
parameter q is the proportion of trait 1 variants that effect trait 2 through the confounder or shared factor.
Shape indicates effect direction of U on Y (the sign of posterior median of η). Shaded symbols indicate that
the ELPD test statistic favors the causal model at an FDR threshold of 0.05. Point size is proportionate to
the posterior median of q under the sharing model. This value is also printed above each point. Points are
shown only for pairs with posterior median of q greater than the prior median of q.
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Figure S4: Each cell summarizes the IVW (upper, orange), Egger regression (middle, green) and MR-
PRESSO (lower, purple) results for a pair of traits. Points are shown only for pairs significant at an FDR
threshold of 0.05. Grey squares indicates that the method returned no results. This occurs when there are
fewer than 2 geonome-wide significant loci for IVW regression or 3 for Egger regression and MR-PRESSO.
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Figure S5: Estimates of genetic correlation from LD score regression for pairs of GWAS traits. Text over each
point gives the estimated genetic correlation (top) and false discovery rate (bottom) for the null hypothesis
of no genetic correlation. Text is shown only for pairs with FDR < 0.05.
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Figure S6: CAUSE and IVW results for blood cell and autoimmune traits (Section 2.5). Each cell summarizes
the IVW (upper, orange) and CAUSE (lower, blue) results for a pair of traits. Points are shown only for
pairs significant at an FDR threshold of 0.05.
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Figure S7: Posterior estimates of q from the sharing model for blood cell and autoimmune triats (Section 2.5).
The parameter q is the proportion of trait 1 variants that effect trait 2 through the confounder or shared
factor. Shape indicates effect direction of U on Y (the sign of posterior median of η). Shaded symbols
indicate that the ELPD test statistic favors the causal model at an FDR threshold of 0.05. Point size is
proportionate to the posterior median of q under the sharing model. This value is also printed above each
point. Points are shown only for pairs with posterior median of q greater than the prior median of q.
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Abbreviation Trait Sample Size Cases Controls PMID

trig Triglycerides 188577 24097068
ldl LDL Cholesterol 188577 24097068
hdl HDL Cholesterol 188577 24097068
total chol Total Cholesterol 188577 24097068
height Height 253288 25282103
bmi Body Mass Index 339224 25673413
body fat % Body Fat Percentage 100716 26833246
birth ln Birth Length 28459 25281659
birth wt Birth Weight 153781 27680694
head circ Head Circumference at Birth 10678 22504419
dbp Diastolic Blood Pressure 203056 21909115
sbp Systolic Blood Pressure 203056 21909115
map Mean Arterial Pressure 203056 21909115
pulse press Pulse Pressure 203056 21909115
cad Coronary Artery Disease 547261 122733 424528 29212778
stroke Stroke 446696 40585 406111 29531354
bone dens Bone Density 66628 29304378
egfr crea eGFR Creatinine 133814 26831199
fasting glucose Fasting Glucose 46186 20081858
t2d Type 2 Diabetes 69033 12171 56862 22885922

Table S1: Genome wide association studies analyzed in Section 2.3

7 Supplementary Tables
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GO term GO Description Enrichment Estimate p-value B-H q-value

GO:0007049 cell cycle 11.50 2.13 · 10−4 8.36 · 10−4

GO:0051301 cell division 13.40 1.50 · 10−4 8.55 · 10−4

GO:0005546 phosphatidylinositol-4,5-
bisphosphate binding

26.37 9.70 · 10−4 4.16 · 10−3

GO:0000775 chromosome, centromeric region 17.72 2.92 · 10−3 1.05 · 10−2

GO:0001895 retina homeostasis 31.53 3.88 · 10−3 1.35 · 10−2

GO:0048471 perinuclear region of cytoplasm 9.78 3.66 · 10−3 1.44 · 10−2

GO:0008305 integrin complex 28.19 4.45 · 10−3 1.54 · 10−2

GO:0070182 DNA polymerase binding 36.20 4.20 · 10−3 1.64 · 10−2

GO:0000777 condensed chromosome kinetochore 18.13 5.02 · 10−3 1.72 · 10−2

GO:0001917 photoreceptor inner segment 49.58 5.99 · 10−3 2.02 · 10−2

GO:0018026 peptidyl-lysine monomethylation 49.31 6.02 · 10−3 2.08 · 10−2

GO:0016605 PML body 19.39 6.09 · 10−3 2.08 · 10−2

GO:0032587 ruffle membrane 17.73 6.35 · 10−3 2.09 · 10−2

GO:0009408 response to heat 27.18 6.42 · 10−3 2.10 · 10−2

GO:0016458 gene silencing 47.79 6.28 · 10−3 2.12 · 10−2

GO:0051726 regulation of cell cycle 14.36 6.19 · 10−3 2.22 · 10−2

GO:0036297 interstrand cross-link repair 27.48 5.76 · 10−3 2.38 · 10−2

GO:0043325 phosphatidylinositol-3,4-
bisphosphate binding

63.69 8.60 · 10−3 2.48 · 10−2

GO:0000132 establishment of mitotic spindle ori-
entation

32.99 8.56 · 10−3 2.71 · 10−2

GO:0070192 chromosome organization involved
in meiotic cell cycle

42.94 8.42 · 10−3 2.81 · 10−2

GO:0051382 kinetochore assembly 26.15 9.23 · 10−3 3.03 · 10−2

GO:0031345 negative regulation of cell projection
organization

41.38 9.75 · 10−3 3.06 · 10−2

GO:0034260 negative regulation of GTPase ac-
tivity

29.08 8.19 · 10−3 3.15 · 10−2

GO:0000723 telomere maintenance 31.94 1.09 · 10−2 3.26 · 10−2

GO:0060231 mesenchymal to epithelial transition 32.13 1.05 · 10−2 3.31 · 10−2

GO:0014065 phosphatidylinositol 3-kinase sig-
naling

21.18 1.18 · 10−2 3.73 · 10−2

GO:0045022 early endosome to late endosome
transport

24.97 1.38 · 10−2 3.77 · 10−2

GO:0017148 negative regulation of translation 25.23 1.27 · 10−2 3.80 · 10−2

GO:0005694 chromosome 9.67 1.45 · 10−2 4.08 · 10−2

GO:0060421 positive regulation of heart growth 38.45 1.37 · 10−2 4.12 · 10−2

GO:0040008 regulation of growth 22.32 1.17 · 10−2 4.12 · 10−2

GO:0005768 endosome 8.76 1.52 · 10−2 4.26 · 10−2

GO:0032039 integrator complex 37.71 1.52 · 10−2 4.43 · 10−2

GO:0006415 translational termination 36.85 1.71 · 10−2 4.69 · 10−2

GO:0042059 negative regulation of epidermal
growth factor receptor signaling
pathway

27.28 1.41 · 10−2 4.79 · 10−2

GO:0030695 GTPase regulator activity 36.96 1.68 · 10−2 4.80 · 10−2

GO:0030291 protein serine/threonine kinase in-
hibitor activity

36.76 1.73 · 10−2 4.87 · 10−2

Table S2: Gene set enrichment results discussed in Section 2.4. Gene sets are ranked by evidence of
enrichment for genes associated with variants with high posterior probability of acting through a shared
factor affecting both T2D risk and birth weight. Gene sets with Benjamini-Hochberg adjusted q-value less
than 0.05 and positive enrichment estimates are shown.
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Gene SNP Chromosome Position Pi
ITGA6 rs10209443 2 173201204 0.13
ITGA1 rs1812128 5 52000024 0.18
ITGB6 rs3772071 2 161135544 0.19
ITGB5 rs4234221 3 124438329 0.10
ITGA3 rs4793636 17 48139500 0.14

Table S3: Genes in the integrin pathway discussed in Section 2.4. Each gene is associated with only one
variant. Pi gives the posterior probability that each variant affects a factor shared by T2D and birth weight.
For this pair of traits, the posterior median of q under the sharing model is 0.12.

Abbreviation Trait Sample Size Cases Controls PMID

sle Systemic Lupus Erythematosus 23210 7219 15991 26502338
ra Rheumatoid Arthritis 103638 29880 73758 24390342
cd Crohns Disease 69268 22575 46693 26192919
ibd Irritable Bowel Disease 96486 42950 53536 26192919
uc Ulcerative Colitis 72647 20417 52230 26192919
psc Primary Sclerosing Cholangitis 24751 4796 19955 27992413
allergy Allergic Disease 360838 180129 180709 29083406
asthma Asthma 142486 23948 118538 29273806

baso Basophil Count 173480 27863252
eo Eosinophil Count 173480 27863252
hct Hematocrit 173480 27863252
irf Immature Fraction of Reticulocytes 173480 27863252
lymph Lymphocyte Count 173480 27863252
mch Mean corpuscular hemoglobin 173480 27863252
mono Monocyte Count 173480 27863252
mpv Mean Platelet Volume 173480 27863252
neut Neutrophil Count 173480 27863252
pdw Platelet Distribution Width 173480 27863252
plt Platelet Count 173480 27863252
rdw Red Cell Distribution Width 173480 27863252
ret Reticulocyte Count 173480 27863252

Table S4: Genome wide association studies analyzed in Section 2.5
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