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 25 

Abstract 26 

Gene Co-expression Networks (GCNs) are obtained by a variety of mathematical of models 27 

commonly derived on data sampled from diverse developmental processes, tissue types, 28 
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 2 

pathologies, mutant backgrounds, and stress conditions. These networks aim to identify genes 29 

with similar expression dynamics, but are prone to introduce false-positive and -negative 30 

relations, especially in the instance of large and highly complex datasets. With the aim of 31 

optimizing the relevance of edges in GCNs and enhancing global biological insight, we propose 32 

a novel approach that involves a data-centering step performed simultaneously per gene and 33 

per sub-experiment, called centralisation within sub-experiments (CSE).  34 

Using a gene set encoding for the plant mitochondrial proteome as a case study, our results 35 

show that CSE-based GCNs had significantly more edges within the majority of the considered 36 

functional sub-networks, such as the mitochondrial electron transport chain and its sub-37 

complexes, than GCNs not using CSE; thus demonstrating that the CSE-based GCNs are 38 

efficient at predicting those canonical functions and associated pathways, also referred to as 39 

the “core network”. Furthermore, we show that CSE, in conjunction with conventional 40 

correlation analyses can be used to fine-tune the prediction of the function for uncharacterised 41 

genes; while in combination with analyses based on non-centralised data can augment those 42 

conventional stress analyses with the innate connections underpinning the dynamic system 43 

examined. 44 

Therefore, CSE appears as an alternative method to conventional batch correction 45 

approaches. The method is easy to implement into a pre-existing GCN analysis pipeline and 46 

can provide accentuated biological relevance to conventional GCNs by allowing users to 47 

delineate a “core” gene network. 48 

 49 

Author Summary 50 

Gene Co-expression networks (GCNs) are the product of a variety of mathematical models 51 

that identify causal relationships in gene expression dynamics, but are prone to the 52 

misdiagnoses of false -positives and -negatives, especially in the instance of large and highly 53 

complex datasets. In light of the burgeoning output of next generation sequencing projects 54 

performed on any species, under different developmental or clinical conditions, the statistical 55 

power and complexity of these networks will undoubtedly increase, while their biological 56 
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relevance will be fiercely challenged. Here, we propose a novel approach to primarily generate 57 

a “core” GCN with augmented biological relevance. Our method, which involves data-centering 58 

steps and thus effectively removes all primary treatment / tissue /patient effects, is simple to 59 

employ and can be easily implemented into pre-existing GCN analysis pipelines. The gained 60 

biological relevance of such an approach was validated using a subcellular gene set encoding 61 

for the plant mitochondrial proteome, and by applying numerous steps to challenge its 62 

application. 63 

 64 

Keywords 65 

Correlation, gene co-expression network, metabolism, method, mitochondria, plant 66 

 67 

Introduction 68 

Over the last two decades, the exponential growth of available transcriptome data in an 69 

increasing number of species has given rise to the establishment of a multitude of gene co-70 

expression networks (GCNs). By constructing these networks on data sampled from diverse 71 

developmental processes, tissue types, pathologies, mutant backgrounds or stress conditions, 72 

researchers can better comprehend the physiological and molecular pathways that underpin 73 

complex biological systems (Carrera et al., 2009; Emmert-Streib et al. 2014; Castro et al. 74 

2019). These networks are reliant on mathematical models to identify causal relationships in 75 

gene expression dynamics, and although there are many different permutations of these 76 

models, the most prevalent are those based on conventional correlation approaches such as 77 

Pearson correlation coefficient or Spearman’s rank correlation coefficient. 78 

 79 

These conventional correlation methods have been demonstrably successful at identifying 80 

cohorts of strongly co-expressed genes, and thus extensively used to generate GCNs; 81 

however, these methods also have their drawbacks. This is especially apparent in large and 82 

complex datasets where a large fraction of the predicted correlations are expected to be 83 

statistically significant, and causal gene-to-gene connections are obscured by the over-84 
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whelming presence of false -positives and -negatives. Non-causal relationships can arise from 85 

indirect connections with other gene products and from non-biological sources such as 86 

influences stemming from experimental design. Partial correlation is a standard approach used 87 

to attenuate non-causal relationships generated by the influence of other genes. One such 88 

approach, Gaussian Graphical Modelling, is commonly used as it allows researchers to 89 

interrogate the direct association between two genes, independent of the effects of 90 

surrounding genes present in the dataset. A number of thorough Gaussian Graphical Modelling 91 

studies in the model plant species Arabidopsis thaliana (Arabidopsis) have demonstrated the 92 

statistical power of this technique, and generated GCNs of select pathways and on a genome-93 

wide scale (Wille et al., 2004; Ma et al., 2007; Ma et al., 2015). Another useful step for 94 

analysing complex datasets encompassing a wide range of tissues, developmental stages and 95 

stresses, is the use of batch-effect removal approaches. Conventional batch-effect removal 96 

approaches effectively eliminate the systematic, technical errors inherent to multi-experiment 97 

comparisons (Chen et al. 2011; Nygaard et al. 2016). However, GCNs obtained utilizing partial 98 

correlation and batch-effect removal approaches will not reduce non-causal relationships 99 

caused by unquantifiable factors, e.g. treatment/tissue effects between samples. Hence, there 100 

is currently a lack of methodology to robustly derive informative GCNs from complex datasets 101 

generated by multiple experiments. 102 

 103 

Although these GCNs are not an end on to themselves, they can be utilised in a number of 104 

innovative ways to reveal evidence of functions for otherwise uncharacterised gene products, 105 

identify novel protein localisation, and to better describe complex biological pathways which 106 

can react fluidly to different stresses/developmental processes. In the field of plant science, 107 

GCN inferences have been utilised to great effect, particularly in the model species 108 

Arabidopsis, both to construct genome-spanning global networks and biological sub-pathways 109 

(Liesecke et al., 2018). Yet, beyond its statistical value, the biological relevance of an edge 110 

between two nodes in such networks can rightfully be questioned. Furthermore, validation of 111 

GCNs can be challenging, as there are a limited number of gene-to-gene relationships 112 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 27, 2019. ; https://doi.org/10.1101/682492doi: bioRxiv preprint 

https://doi.org/10.1101/682492
http://creativecommons.org/licenses/by-nc-nd/4.0/


 5 

demonstrated to be positive (i.e. a causal relationship) or negative (i.e. a non-causal 113 

relationship) (Qian and Dougherty, 2013; Chai et al. 2014; Banf and Rhee, 2017). An 114 

alternative is to base the validation (i.e. the biological relevance of the output) on functional 115 

proximity and functional categories, arguing that the fraction of causal relationships should be 116 

relatively high within sets of genes encoding proteins that comprise the same protein complex 117 

or are involved in the same metabolic pathway.  118 

 119 

With the aim of optimizing the biological relevance of edges in GCNs and enhancing global 120 

biological insight, we challenged different methodologies in the generation of these networks 121 

by using, for biological validation, a subset of nuclear genes encoding plant mitochondrial-122 

targeted proteins (As defined in Chrobok et al., 2016). To achieve this, we applied a novel pre-123 

processing step that we called centralisation within sub-experiments (CSE), which removes 124 

batch-effects and reduces the impact of confounding effects of treatment-induced and tissue-125 

specific responses. In contrast to conventional batch-effect removal approaches, the 126 

centralisation step is applied to datasets where the observations are biological replicates 127 

derived under the same experimental conditions. Hence, CSE removes treatment-induced or 128 

tissue-specific effects, and technical bias introduced by variability between experiments. Here, 129 

GCN approaches based on either Pearson or partial correlation using CSE were compared to 130 

corresponding approaches in the absence of the CSE step. The biological validation was 131 

conducted by categorizing a subset of genes encoding for plant mitochondrial proteins with 132 

respect to expression patterns, functional proximity, and functional categories. CSE combined 133 

with GCN (utilizing Pearson correlation) provided the optimum balance of ease of data 134 

processing vs. the utility of the output. Consequently, a mitochondrial network based on CSE 135 

Pearson correlation was selected for further downstream applications of the method.  136 

 137 

Results 138 

To gain clarity, this results section has been divided in 3 parts: Methodology, Validation and 139 

Application. 140 
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 141 

Methodology 142 

Definition of the problem 143 

We consider a problem where we have gene expression data from a large number of diverse 144 

experiments, e.g. experiments from different tissues, conditions and developmental stages.     145 

The objective is to predict the edges of an undirected graph with n nodes (i.e. genes), where 146 

an edge represents the most pronounced co-expression between a pair of genes. Often, the 147 

level of co-expression between genes will be context-dependent, e.g. tissue, growth condition 148 

or developmental stage. Here we are primarily interested in detecting the core network, i.e. to 149 

estimate the co-expression between genes that are prominent in the majority of the considered 150 

sub-experiments. A sub-experiment is defined as a set of assays derived under “identical 151 

settings”, i.e. the assays within the sub-experiment can be treated as biological replicates. We 152 

thus propose a pre-processing step (CSE) that enables prediction of the core network.      153 

 154 

Centralisation within sub-experiments 155 

We consider normalized gene-expression data from s sub-experiments i.e. 156 

 ,  1,..., ,  1,..., ,  1,..., ,ijk jx i n j s k r= = =
 157 

 158 

where xijk denotes the normalized gene-expression for gene i observed on the kth biological 159 

replicate in sub-experiment j. CSE is a simple pre-processing step whereby mean-160 

centralization within sub-experiments is applied to each gene separately, i.e. the CSE-161 

processed expressions are obtained as: 162 

.,
CSE
ijk ijk ijx x x= −

 163 

where .ijx  denote the mean-expression of gene i in the jth sub-experiment, i = 1,...,n, j = 1,…,s, 164 

k = 1,…,rj.  165 

It should be noted that the mean value of the centralised data within a sub-experiment will 166 

always be zero. The idea behind CSE is to avoid pronounced correlations driven by differences 167 
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between the sub-experiments. For example, a stress may induce gene expression in genes 168 

that are expressed in “independent” pathways resulting in false positive and false negative 169 

predictions (Supp. Fig. 1). 170 

 171 

Construction of Gene Co-expression Networks  172 

GCNs can be constructed in various way, but we focused on some commonly used 173 

conventional approaches to assess the effect of CSE application. The GCNs were constructed 174 

in a three-step procedure: (i) the pre-processed dataset was either centralised using CSE (C) 175 

or not centralised (NC), (ii) pairwise correlations were calculated using either Pearson 176 

correlation (PeC) or partial correlation (PaC), and (iii) the sign matrix (i.e. an adjacency matrix 177 

whose entries are either 1, 0 or -1) was constructed by controlling the fraction ω of edges at a 178 

desired level, i.e. controlling the sparcity at level ω. The network was defined by the output of 179 

the precision matrix; where a “one” represents an edge corresponding to a level of co-180 

expression between genes that satisfies a given cut-off. In this study, four different principal 181 

networks were evaluated: combining CSE and Pearson correlation (CPeC), CSE and partial 182 

correlation (CPaC), and Pearson and partial correlation applied in the absence of CSE 183 

(NCPeC and NCPaC, respectively). The sparsity of all GCNs was controlled at ω=0.005 and 184 

the Walktrap community detection algorithm (Pons and Latapy, 2005) was used to identify 185 

communities in the predicted GCN based on Pearson correlation, see Method for further 186 

details.  187 

It should be noted that the objective here was not to predict all edges in the core network, but 188 

to predict the most pronounced edges, which justifies the use of an arbitrary chosen threshold. 189 

Moreover, having the same sparsity in all predicted networks simplified the evaluation as 190 

described below. 191 

Applying the conceptual reasoning outlined above on a network using simulated data  192 

demonstrated that CPaC removes non-causal edges arising from the influence of other genes 193 

and non-causal edges caused by external factors (Supp. Fig. 1). Similar results were obtained 194 

for CPeC, with the exception that a few false, but relatively weak, edges appeared. The 195 
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network utilising non-centralised data and Pearson correlation, arguably a fairly standard 196 

approach, resulted in dense networks with several false positives.  Due to computational 197 

constraints, partial correlation approaches may not be suitable for constructing GCNs when 198 

the number of genes is much larger than the number of experiments, see Discussion.  199 

 200 

Evaluation of Gene Co-expression Networks  201 

We consider a core network C, with n nodes and k edges, where the edges corresponds to 202 

the fraction ω of the strongest co-expression correlation. A sub-network A  C, with nA nodes 203 

and kA edges is said to be pronounced if kA is larger than the expected number of edges in a 204 

randomly selected sub-network with nA nodes, i.e.     205 

.
2

A

A

n
k 

 
  

 
 206 

 207 

The network C is commonly unknown, but it may still be possible to identify several pronounced 208 

sub-networks, e.g. by considering physical or functional proximity, see Methods - Preparing 209 

elements of the mitochondrial working model (iii-iv). 210 

We propose that the relative performance of predicted GCNs, all with the same sparsity ω, can 211 

be evaluated based on the observed number of edges within pronounced sub-networks. In 212 

short, we argue that the more observed edges (the lower p-values) within pronounced sub-213 

networks, the better the predicted networks are, see Methods for further details. With that being 214 

said, there is a risk to overestimate the number of edges within the pronounced sub-networks 215 

resulting in an incorrect ranking of the considered networks, however, this risk decreases as 216 

the number of pronounced sub-networks is increased.   217 

 218 

Validation 219 

For this study, we chose the plant mitochondrion as a focal point for 3 main reasons: (i) 220 

assessing the biological relevance of our findings became much easier due to our pre-existing 221 

knowledge on the plant mitochondrial metabolism, (ii) the number of genes to work with is low 222 
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(ca. 1000 nuclear genes encoding for mitochondrial-targeted proteins), hence easing the 223 

application of partial correlation methods, and (iii) the interest in mitochondrial biology is 224 

undoubtable as this organelle is recognised as a central energetic, signalling, and stress 225 

response hub in (almost) all eukaryotic cells. 226 

 227 

The effect of tissue type on Gene Co-Expression Networks 228 

Visualisation of the four GCNs generated using Cytoscape (Organic layout; Shannon et al., 229 

2003) revealed networks that shared strong similarities in structure depending on whether CSE 230 

was applied or not (Figure 2; Supplemental Table 2). Those networks based on non-231 

centralised data displayed two distinct primary clusters of nodes (Figure 2A and B), while those 232 

based on centralised data were more integrated (Figure 2C and D).  To uncover the source of 233 

these distinct clusters in the non-centralised data, we returned to the original data from the 234 

AtGenExpress expression atlas, and defined each gene as presenting dominant expression in 235 

either below-ground tissues (e.g. roots) or above-ground photosynthetic tissues (e.g. shoots 236 

and leaves), see Methods for details. Using these definitions, nodes (genes) from the 237 

Cytoscape-generated networks were coloured based on their classification as either below-238 

ground dominant (brown), above-ground dominant (green) or dominance in neither tissue 239 

(yellow) (Figure 2). This rapidly demonstrated the strong influence tissue-of-origin has over the 240 

resulting co-expression networks, and the efficacy of CSE in resolving this. Notably, in addition 241 

to the increased integration of genes with different tissue-dominances, the number of nodes 242 

present (thus, the number of nodes with at least one edge to another node) in the four networks 243 

was significantly larger following CSE. Furthermore, the distribution of genes with tissue-244 

dominance established an increased inclusion of genes with no tissue dominance (Neither), 245 

which brought these networks closer to the native distribution of tissue of origin dominance 246 

observed in the total set. This suggests that by removing external biases, CSE of data could 247 

introduce a wider cross-section of genes into a GCN and thus reveals novel interactions.  248 

 249 

Assessing interactions based on functional proximity 250 
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Our first approach at challenging the four different co-expression networks was to examine the 251 

resulting distribution of edges upon a small isolated subset of the mitochondrial network, 252 

encoding components of the mitochondrial electron transport chain (mETC). The mETC is 253 

central to the bioenergetic function of mitochondria and the array of genes that comprise its 254 

five complexes have been demonstrated to be expressed at relatively stable levels in a variety 255 

of tissue types and developmental stages (Lee et al., 2011). A comparison between the mETC 256 

set isolated from the four networks revealed a significantly higher number of edges (derived 257 

from connections within and between the five complexes) in the networks based on centralised 258 

data, while the influence of Partial correlation vs. Pearson correlation was comparatively small 259 

(Figure 3A).  As the same sparsity is applied to all four approaches, the total number of edges 260 

in the entire network is held consistent between them; thus, the enrichment of edges within the 261 

mETC observed here represents a valuable indication of putative biological interaction. Our 262 

next step was to assess the distribution of edges within a single complex of the mETC. The 263 

NADH dehydrogenase, commonly known as Complex I, is composed of three domains: the 264 

peripheral arm domain (PAD), the membrane arm domain (MAD), and the carbonic anhydrase 265 

domain (CAD) (Klodmann et al. 2010). Each domain in turn is composed of an assembly of 266 

proteins that carry out highly specialised functions, and thus proved ideal to assess the 267 

relevance of the distribution of edges between the four different approaches (Methods; Figure 268 

3B). Similar to the distribution of edges for the entire mETC, there were far more edges 269 

between the nodes of Complex I in centralised than in non-centralised data, while the 270 

difference in the number of edges between networks based on Pearson or Partial correlation 271 

is negligible (Supplemental Table 3). In almost all cases, when comparing the number of edges 272 

expected to occur by chance between the genes of the three domains with the actual observed 273 

edges, this enrichment was found to be highly significant (Figure 3B). When this examination 274 

was expanded to look at the distribution of edges within and between all five complexes of the 275 

mETC, a similar enrichment of significant interactions was observed in the centralised data, 276 

but not in the non-centralised data (Figure 3C). Interestingly, when the distribution of edges 277 

between individual complexes and either (i) pooled complexes of the mETC, or (ii) the rest of 278 
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mitochondrial set (total mitochondrial set, excluding the mETC), the networks based on non-279 

centralised data showed relatively poor correlations with the pooled mETC and even weaker 280 

connections with the non-mETC components (Figure 3D). In contrast, the centralised data 281 

showed significantly (P<0.001) strong connections between the individual complexes and the 282 

pooled mETC, with weaker connections to the non-mETC components. One important 283 

exception to this was the significant (P<0.001 in CPaC, and P<0.01 in CPeC) connection 284 

observed between Complex II and the non-mETC components. Notably, Complex II (also 285 

called Succinate Dehydrogenase) lies at the confluence of two essential bioenergetic functions 286 

of the mitochondrion: the mETC and the TCA cycle. As such, it is particularly notable that the 287 

centralised data identified Complex II as having significant interaction with non-mETC 288 

components. Examination of the composition of edges between Complex II and these non-289 

mETC genes revealed that they were indeed significantly (P<0.0001) enriched in components 290 

of the TCA cycle. Taken together, these observations strongly support that CSE of data prior 291 

to correlation analysis can reveal gene-to-gene interactions indicative of highly valuable 292 

biological relationships such as association to shared protein domains or consecutive enzymes 293 

in a metabolic pathway. 294 

 295 

Assessing interactions based on connectivity within and between mitochondrial functional 296 

categories. 297 

Using the newly updated functional annotations established for the MapMan platform (MapMan 298 

X4 Release 1.0, 2018; Usadel et al., 2009), each gene of the mitochondrial set was assigned 299 

to one of 29 functional categories. By grouping genes belonging to the same functional 300 

categories, we were able to measure the number of edges between genes within a functional 301 

category, versus those between different but interrelated functional categories (Figure 4). In 302 

brief, when CSE had been carried out (Figure 4C and D), the number of significant edges 303 

between genes within the same category is much higher (ca. doubled) than is observed when 304 

the data is non-centralised (Figure 4A and B). Additionally, in the two centralised datasets, the 305 

number of significant edges between different functional categories also increases, when 306 
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compared to their non-centralised counterparts. These inter-category edges were often highly 307 

biologically relevant: for example a significant (P<0.0001) edge was observed between 308 

nucleotide metabolism and protein biosynthesis in each of the four methodologies (Figure 4A-309 

D), which is hardly surprising given their canonic interconnectivity. In contrast, some 310 

connections were only observed in the case of the centralised datasets (Figure 4A-B), such as 311 

the significant (P<0.0001) edges between cellular respiration and carbohydrate and lipid 312 

metabolism, as well as the connection between protein biosynthesis and protein translocation. 313 

For these processes to operate efficiently, a high level of coordination in the regulation of the 314 

genes involved is required, which supports these additional inter-category edges. In summary, 315 

the known biological pathways strongly corroborate the input from the centralized co-316 

expression data generated with our mitochondrial dataset and undoubtedly strengthen its 317 

consideration for future analyses. Following these validation steps, the negligible difference in 318 

results between centralised Pearson correlation and partial correlation, contrasted with 319 

computational demands associated with the latter, led us to progress with the subsequent 320 

application using centralised Pearson correlation (CPeC). 321 

 322 

Application 323 

Using the network to predict the function of an uncharacterised mitochondrial gene 324 

The functional annotations applied to the genes comprising the mitochondrial network 325 

(introduced above) encompassed a subset of mitochondrial genes that at the time of the 326 

publication of the MapMan hierarchical set of functional categories (BINs; MapMan X4 Release 327 

1.0, 2018), encoded proteins with no assigned functions (NAFs; Functional Category 35). This 328 

provided an ideal target group that we could systematically interrogate, in a “guilt by 329 

association manner”, to determine if their relationship to other genes of known functions could 330 

support their putative function. A subsequent mitochondrial network was established, which 331 

comprised 111 NAF genes and 257 mitochondrial genes encoding proteins with known 332 

functions that had at least one edge to a NAF gene (Figure 5A; Supplemental Table 4). The 333 

NAF genes were then arranged in descending order based on those with the greatest number 334 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 27, 2019. ; https://doi.org/10.1101/682492doi: bioRxiv preprint 

https://doi.org/10.1101/682492
http://creativecommons.org/licenses/by-nc-nd/4.0/


 13 

of edges to genes with known functions. We then selected the top 5 NAF genes and identified 335 

the genes they interacted with. Next, the distribution of their associated functional annotations 336 

was determined and assessed to see if they were enriched in a particular function (Figure 5B). 337 

 338 

The top 5 NAF genes displayed significant over-representations with a range of different 339 

functional categories. The NAF with the greatest number of connections with genes of known 340 

function, AT4G26780, had a significant enrichment of edges with (i) protein biosynthesis - 341 

organelle translation machineries (P<0.05), (ii) protein translocation - TOM translocation and 342 

TIM insertion systems (P<0.05), and (iii) external stimuli response - heat-shock-responsive 343 

protein (P<0.05). Interestingly, this protein has been proposed to encode Mge2, which is one 344 

of two mitochondrial GrpE proteins in Arabidopsis. The remaining homologue, Mge1 serves 345 

as a co-chaperone alongside Hsp70, which together form a vital part of the presequence-346 

assisted motor (PAM) complex that aids in the transport of precursor proteins through the 347 

TIM17:23 translocase (Hu et al., 2012; Ghifari et al., 2018). While Mge1 appears to have more 348 

constitutive house-keeping duties, Hu et al., (2012) demonstrated that Mge2 was specifically 349 

induced by heat and suggested that it could be required for mitochondrial protein import and 350 

folding during periods of heat stress, a hypothesis that appears to be supported by our GCN 351 

predictions. The second gene interrogated (AT1G02150), had a significant enrichment of 352 

edges with (i) photosynthesis functions (P<0.01), (ii) amino acid metabolism (P<0.05), and (iii) 353 

protein biosynthesis - aminoacyl-tRNA synthetase (P<0.001). At present, little is known about 354 

this protein, however, the Arabidopsis Information Portal (Araport) 11 classifies it as belonging 355 

to the tetratricopeptide repeat (TPR)-like superfamily (Cheng et al., 2017). TPR domains can 356 

be found in a diverse number of proteins, where they mediate protein-protein interactions; 357 

particularly in the formation of protein complexes. The strong significant (P<0.001) over-358 

representation with aminoacyl-tRNA synthetase functions (and the weaker, though still 359 

significant over-representation of amino acid metabolism functions) observed here is 360 

particularly interesting, as there is evidence that TPR-containing proteins can act as interacting 361 

mediators and co-chaperones in the formation of aminoacyl-tRNA synthetases (Han et al., 362 
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2007; Kim et al., 2014); suggesting that this protein may have a role in assisting amino acid 363 

loading of tRNAs in Arabidopsis. The third gene interrogated (AT1G80270) had a significant 364 

enrichment of edges with (i) RNA processing (P<0.001) and (ii) protein biosynthesis - organelle 365 

translation machineries (P<0.05). Assessing the available literature, this protein has been 366 

reported as belonging to the pentatricopeptide (PPR) superfamily (Doniwa et al., 2010), which 367 

are predominately mitochondrial or plastid targeted proteins and have been demonstrated to 368 

have a diverse array of roles associated with RNA metabolism, such as RNA editing, splicing, 369 

stability and translation (Barkan and Small, 2014). AT1G80270, known as PPR596, has been 370 

demonstrated to be involved in the C-to-U editing efficiency of ribosomal protein S3 (RPS3; 371 

AtMg00090), which is noteworthy as in our study, PPR596 was also significantly enriched in 372 

connections with organelle translation machinery functions (Doniwa et al., 2010). Regarding 373 

AT3G47520, despite the surprising lack of a proper annotation by Mapman, this gene had 374 

been characterized and encodes an isoform of the mitochondrial dehydrogenase (mMDH2; 375 

Tomaz et al., 2010; Lindén et al., 2016). Although no functional categories were enriched, the 376 

big proportion taken by the categories redox homeostasis, cellular respiration and protein 377 

biosynthesis strongly supports the physiological role of mMDH2. Finally, the protein encoded 378 

by AT4G35850 had a significant (p<0.001) enrichment of edges with protein biosynthesis - 379 

organelle translation machineries (large and small mitoribosome subunit) functions. Very little 380 

is known about this protein, but it has been classified as belonging to the PPR superfamily by 381 

Araport11, and could thus have a similar role to that of PPR596; as an editing factor associated 382 

with the correct processing of transcripts encoding mitoribosomal subunits, or be associated 383 

with ribosomes in other ways described in the literature; such as maintaining the stability of 384 

assembled mito-ribosomes following translation (Schmitz-Linneweber and Small, 2008); or 385 

promoting translational initiation by selectively recruiting mitoribosomes to the start codon of 386 

their target transcripts (Manavski et al., 2012; Haïli et al., 2016). Taken together, these findings 387 

suggest that guilt by association-style analysis of networks founded on data subjected to CSE 388 

offers an attractive first step in the process of characterising genes where little is known about 389 

them.  390 
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 391 

Synergy of centralisation approaches in the analysis of plant stress 392 

In the field of transcriptomics, the application of conventional co-expression networks has 393 

proven a highly powerful approach in characterising stress responses in a diversity of 394 

organisms. In this study, we have demonstrated that CSE of data prior to correlation analysis 395 

effectively identifies the innate relationship between genes, and thus delineates a “core gene-396 

network”. However, as previously mentioned, a caveat of this approach is that it is predicated 397 

on the suppression of extraneous effects, such as stress, tissue, treatment, or genotype from 398 

a given dataset, which therefore prevents us from interrogating the impact of these outside 399 

influences on the dynamics of the co-expression network generated. On the other hand, quite 400 

often researchers must adjust different parameters (cut-offs, thresholds, etc.) to introduce 401 

enough genes to reposition the stress-responsive network in a wider biological context and 402 

gain understanding. Here we propose an alternative method, with a powerful reference tool 403 

that can augment conventional co-expression analyses. By clustering the CSE data of the 404 

entire AtGenExpress Expression Atlas using a Walktrap community detection algorithm (Pons 405 

and Latapy, 2005), we generated a hierarchical CSE Reference Community composed of 27 406 

communities (Figure 6A). This additional filter based on co-expression metadata could then be 407 

layered onto a conventional co-expression network (based on any treatment, developmental 408 

stage, or tissue type selected by the researcher), and thus provide a more detailed and 409 

nuanced view of the innate relationships between the genes, when 410 

stress/treatment/tissue/genotype effects have been nullified.  411 

 412 

To illustrate this, we identified a subset of 65 mitochondrial genes that are highly co-expressed 413 

in shoot tissues in response to the following four stress treatments: Heat, Cold, Drought, and 414 

Salt, using non-CSE pre-processed data (Kilian et al., 2007). As shown in Figure 6B, 415 

conventional co-expression analysis (here based on Pearson correlation coefficient) provides 416 

an initial network, which illustrates the influence of stress on the relationship between specific 417 

stress-responsive genes. When the expression network of the core stress responsive genes 418 
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was cross-referenced with the CSE Reference Community, the resulting subdivisions revealed 419 

unique insights into the functional composition and basal connectivity of this network (Figure 420 

6C). For example, most of genes grouped in Community 1 were associated with 421 

photorespiration and thiamine biosynthesis, two metabolic pathways often associated with 422 

stress response in plants, and notably in photosynthetic parts (Supplemental Figure 2; Hodges 423 

et al., 2016; Rapala-Kozik et al. 2012).  Furthermore, Community 3 was overwhelmingly 424 

composed of functions associated with translation (e.g. ribosomal protein L36), import (e.g. 425 

TOM6, TIM9, and the TIM-family protein AT1G18320), and assembly (e.g. HSP60-3A, HSP6, 426 

Hsp89.1, CR88, and MGE2). Interestingly, a number of the genes in this shoot core stress set 427 

were also present in a corresponding network prepared from root data (denoted with a black 428 

outline in Figure 6B). Of these shared genes, 2/3rd are found in Community 3, which again 429 

emphasises their importance. Therefore, we propose that viewing traditional co-expression 430 

networks through a prism of a CSE Reference Community can rapidly reveal hidden degrees 431 

of connectivity between genes and could have far-reaching applications in the field of 432 

transcriptomics, regardless of organisms, treatments or even pathologies.  433 

 434 

Discussion 435 

In light of the burgeoning output of next generation sequencing projects performed on any 436 

species, under different developmental or clinical conditions, the statistical power and 437 

complexity of these networks will undoubtedly increase, while their biological relevance will be 438 

fiercely challenged. Therefore, it is essential that current methodologies be refined to keep 439 

apace of this progress and utilise these resources to generate more accurate and informative 440 

gene networks to answer hypothesis-driven questions. With the present study, we proposed 441 

an alternative method to conventional batch corrections and demonstrated that the 442 

implementation of CSE (performed simultaneously per gene and per sub-experiment) and 443 

used in isolation or coupled to traditional correlation approaches, can provide additional 444 

biological relevance to conventional co-expression networks. 445 
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Arguably, there is not a unique defining co-expression network, since the degree of co-446 

expression clearly depends on the context considered, e.g. tissue, growth condition or 447 

developmental stage. Nonetheless, we believe there is utility in generating a core network, 448 

where the edges corresponds to essential interactions and pathways that are commonly 449 

present. Furthermore, the predicted number of edges in a GCN is determined by user defined 450 

inclusion rules, e.g. an edge is predicted if the correlation is significant and/or has a value  451 

greater than a given threshold. From a biological point of view, these inclusion criteria are 452 

problematic since the number of edges depends on the number of samples (the more samples, 453 

the lower the p-values and thus the more edges) and which method is used to quantify the co-454 

expression. For example, GCNs using CSE will on average estimate less extreme correlations 455 

than GCNs not using CSE, although they may share several edges (see Supp. Fig. 3). We 456 

argue that a sensible alternative approach is to control the sparsity of the network and to 457 

consider the predicted edges simply as the most pronounced co-expressions.  458 

 459 

The predicted core network depends on the coverage of included samples, which necessitates 460 

extensive sampling; covering different tissue types, developmental stages, and stresses. A 461 

challenge of sampling broadly is the difficulty of combining samples from contextually different 462 

experiments, with core gene co-expression being obscured by treatment-associated co-463 

expression. One solution would be to split the experimental data into subsets where each 464 

subset consists of data from similar experiments, and predict a separate network for each 465 

dataset, and finally estimate the core network with a consensus network. However, this 466 

approach suffers from some shortcomings; it may be difficult to define the subsets, there may 467 

be relatively few samples within the subsets and it is unclear how to derive the consensus 468 

network. The proposed pre-processing method CSE, which can be combined with any GCN 469 

method, defines the subsets (i.e. the sub-experiments) conservatively and mechanically, 470 

where each sub-experiment consists of biological replicates, and removes all treatment effects 471 

including batch effects, allowing for a direct estimation of the core network based on all 472 

available samples. A drawback with the CSE approach is that it will reduce the signal-to-noise 473 
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ratio. For the considered Arabidopsis data, with 887 samples, this seems to be minor problem, 474 

but for relative small data sets it remains an open question whether this could become a hurdle. 475 

 476 

Evaluation and validation of GCNs is a challenge, since we have limited information on the 477 

“true” relationship that exists between genes. We commonly have experimentally confirmed 478 

protein-protein interactions and for some subsets of genes it may be reasonable to assume a 479 

relatively high degree of co-expression. We usually lack information on truly non-existing 480 

edges. In fact, from a theoretical point of view, we may argue that all pairs of genes are co-481 

expressed to some extent. We propose that the validation should be based on pronounced 482 

sub-networks for which we expect to observe more co-expression (i.e. more edges) than 483 

expected by chance. This approach allows us to compare different GCNs, all with the same 484 

sparsity, and to easily access statistical significance. It should be stressed that the result of 485 

the validation depends on the sparsity level and which pronounced sub-networks are used in 486 

this validation. In particular, if the number of genes is high it may be recommended to construct 487 

a relatively dense network and to include several pronounced sub-networks to ensure high 488 

power of the tests.  489 

 490 

Here, we used a plant mitochondrial case study, where a series of validation steps established 491 

the strength of GCNs built upon data that had been pre-processed with CSE. Plant 492 

mitochondria are highly adaptive organelles that can tailor their protein complement to 493 

undertake a multitude of specialised roles. Nonetheless, there are a set of canonical functions 494 

and associated pathways that are maintained/operated  in most  tissues, growth conditions, 495 

developmental stage, etc. even though such pathways (e.g. respiration, TCA cycle, amino 496 

acids catabolism) can of course be differentially regulated to modulate their intensity i.e. 497 

regulate the metabolic flux through them. This means that the genes encoding proteins 498 

involved in those pathways are functionally correlated even though their respective expression 499 

profiles may diverge slightly to satisfy a certain metabolic modularity. Our results show that 500 

CSE-based GCNs had significantly more edges within the majority of the considered 501 
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pronounced sub-networks (i.e. the mETC-complex and its sub-complexes and networks 502 

defined by annotation) than GCNs not using CSE (Fig. 3, Fig. 4); which demonstrates that the 503 

CSE-based GCNs are efficient at predicting those canonical functions and associated 504 

pathways, also referred to as the core network. Furthermore, we showed that CSE, in 505 

conjunction with conventional Pearson correlation can be used to fine-tune the prediction of 506 

the function for uncharacterised genes (Fig. 5); while a combination with non-centralised data 507 

can augment conventional stress analyses with the innate connections underpinning the 508 

dynamic system examined (Fig. 6). Indeed, the trade-off of a CSE approach is that the 509 

biological precision gained by strengthening a core gene-network results in a loss of 510 

information from any stress/treatment/genotype components of the dataset. Despite this, if the 511 

focus of a given study is centred on determining the network articulated around specific stress-512 

responsive genes, one can apply a CSE Reference Community onto a conventional “stress” 513 

co-expression network. This augments the network with extended biological insights, and 514 

provides the user with a resource to better interrogate the biological context of the data. Such 515 

context is often hindered by the use of stringent cut-offs and thresholds throughout the gene 516 

network establishment. Finally, although based on a plant mitochondrial set to simplify the 517 

biological validation of our method, the present study provides an alternative method for 518 

interrogating the biological relevance of any gene co-expression network, regardless of 519 

organism or biological context. 520 

 521 

Methods 522 

Dataset generation 523 

To obtain the widest coverage possible of a plant transcriptome, the AtGenExpress expression 524 

atlas was utilised. This resource is the result of a multinational consortium that aimed to define 525 

an exhaustive transcriptome, covering (i) Arabidopsis developmental stages and tissues types 526 

(Schmid et al., 2005), (ii) biotic and abiotic stress treatments (Killian et al., 2007), and (iii) 527 

hormone and chemical treatments (Goda et al., 2008). These studies used Affymetrix ATH1 528 

arrays and, where possible, maintained consistent experimental practices between samples 529 
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so as to optimise comparability. For this study, 887 CEL files from the AtGenExpress set 530 

(spanning over 370 unique experimental conditions) were quantile normalised together 531 

resulting in the pre-processed dataset.  For each unique condition (henceforth referred to as 532 

sub-experiment) there were two or three samples, which can be regarded as biological 533 

replicates observed under similar conditions, where the conditions were defined with respect 534 

to tissue developmental stage and treatment (e.g. a different type of stress). See Supplemental 535 

Table 1 (https://www.upsc.se/researchers/4638-olivier-keech-stress-induced-senescence-536 

and-its-subsequent-metabolic-regulations.html#resources).  537 

 538 

Construction of Gene Co-expression Networks  539 

All analysis, if nothing else is said, was conducted with the statistical programming language 540 

R version (R 3.5.1) (R Core Team, 2018). The R-code used to construct the GCNs described 541 

below are found in our GitHub repository (Kellgren and Rydén, 2019; 542 

https://github.com/Tezinha/Gene-Co-expression-Network).  543 

 544 

The precision matrices were derived by controlling the fraction of edges in the off-diagonal 545 

precision matrix at a user defined level ω. The elements of the precision matrix were derived 546 

from a correlation matrix where the elements were set to “one” if the absolute value of the 547 

correlations were larger than a cut-off , and “zero” otherwise. The threshold  was obtained 548 

by an iterative procedure controlling the sparsity at the level ω=0.005.  549 

The above approach was used for all analyses with the exception of exception of the analysis 550 

resulting in the predicted communities presented in Figure 6 where an alternative bootstrap 551 

approach was used. Here samples were randomly chosen with replacement, followed by 552 

calculation of the precision matrix as described above. This procedure was repeated 50 times 553 

and the resulting precision matrices were combined, generating a matrix with values ranging 554 

from 0 to 50. The elements of the precision matrix were derived from the aggregated matrix, 555 
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where the elements were set to “one” if the values exceeded a cut-off β, and “zero” otherwise. 556 

Here β was chosen to control the sparsity ω at 0.005.   557 

Due to computational reasons partial correlation approaches are often carried out on subsets 558 

of genes, rather than the whole genome of an organism. An example of this was detailed in 559 

Ma et al., (2007), which used a modified GCN approach to carry out partial correlation analysis 560 

on batches of ∼2000 genes at a time. Aided by iterative random samplings of genes, this study 561 

increased their coverage to that of the Affymetrix ATH1 array; resulting in a network composed 562 

of 18 625 interactions (edges) and 6760 genes (nodes) (Ma et al., 2007). Ren et al., (2015) 563 

expanded on this and proposed an algorithm for constructing GCN with high-dimensional data 564 

by implementing asymptotically normal estimation of large GCN, and in doing so, made it 565 

realistic to perform GCN at a whole-genome scale (Wang et al., 2016). Unsurprisingly, this 566 

approach is enormously computationally taxing, which can prove prohibitive to researchers 567 

lacking dedicated servers and advanced computer processing power. 568 

 569 

Evaluation of Gene Co-expression Networks  570 

For any sub-network A, with nA nodes and KA observed edges, of the predicted core network 571 

C, with n nodes and sparsity ω, it possible to test if the sub-network is pronounced (the hull 572 

hypothesis) versus that the sub-network is not pronounced (the null hypothesis). Under the 573 

null hypothesis KA is binomial distributed, i.e.  574 

, ,
2

A

A

n
K Bin 

  
   
  

 575 

and a binomial test can be used to derive a p-value. Here the R-function “binom.test” (R 3.5.1) 576 

was used to derive the p-values.  577 

It should be stressed that the p-values will depend on the network’s sparsity as well as the size 578 

of the sub-network, the larger the pronounced sub-networks are the lower p-values will be 579 

expected. Hence, all tough not necessary, having the same sparsity in all networks simplifies 580 

the evaluation. Moreover, the more pronounced sub-networks that can be correctly identified 581 

the more reliable the evaluation will be.        582 
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 583 

Preparing elements of the mitochondrial working model 584 

(i) Defining the mitochondrial gene list 585 

The manually curated list of genes encoding proteins targeted to the mitochondria from 586 

Chrobok et al., (2016) was used as a basis for a mitochondrial case-study. Matching this list 587 

with the AtGenExpress Expression Atlas resulted in a list of 984 mitochondrial genes, which 588 

were used for downstream analysis. The samples were taken from different tissues: flower, 589 

root, shoot, seedling, leaf, pollen and silique. Mitochondrial genes were categorised with 590 

respect to expression patterns, functional proximity and functional categories for downstream 591 

validation (Supplemental Table 1).  592 

 593 

(ii) Defining below-ground and above-ground dominant genes  594 

The mitochondrial genes were classified in two categories with respect to their expression 595 

patterns in below-ground tissues (e.g. root) and above-ground tissues (e.g. shoot and leaf). 596 

For each gene i, the difference between the mean expressions in below-ground tissues, �̅�𝐵𝑖 597 

and above-ground tissues, �̅�𝐴𝑖 was calculated, i.e. ∆𝑖= �̅�𝐵𝑖 − �̅�𝐴𝑖. Genes with a difference larger 598 

than one standard deviation, i.e. ∆𝑖> 𝑠∆, were classified as below-ground dominant genes, 599 

while those with a difference smaller than one standard deviation, , i.e. ∆𝑖< −𝑠∆, were classified 600 

as above-ground dominant genes. The estimated standard deviation was based on all the ∆-601 

values of genes.  602 

   603 

(iii) Defining components of Complex I of the mitochondrial electron transport chain 604 

Complex I of the mitochondrial electron transport chain (mETC) was an ideal model to test the 605 

effect of functional proximity of the resulting networks, as the identity and molecular 606 

arrangement of these constituents have been thoroughly characterised in Arabidopsis using 607 

proteomic approaches (Klodmann and Braun., 2010; Peters et al., 2013). 608 

 609 

(iv) MapMan annotations 610 
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Using the newly updated functional annotations established for the MapMan platform (MapMan 611 

X4 Release 1.0, 2018; Usadel et al., 2009), each gene of the mitochondrial set was assigned 612 

to one of 29 functional categories.  613 

 614 

Preparing a Reference Community Set  615 

The Walktrap community detection algorithm runs short random walks and merges separate 616 

communities in a bottom-up manner to produce clusters, and was applied to the derived 617 

networks to identify gene communities, i.e. sets of genes with a high degree of predicted intra-618 

gene-gene interactions. The function “walktrap.community” with default settings in the R 619 

package igraph (Csárdi and Nepusz, 2006)  was used to conduct the analyses. Here, gene 620 

communities were predicted based on a network obtained using centralized data from all 621 

experiments, Pearson correlation and a precision matrix derived using the absolute value of 622 

the correlations. The result was a CSE Reference Community composed of 27 clusters. 623 

 624 

Combining results obtained using centralized and non-centralized data 625 

We claim that gene communities should be estimated based on networks derived using all the 626 

available centralized data, while networks based on non-centralized data describe how genes 627 

are affected by an external factor, e.g. stress induced by heat, cold, salt or drought. Combining 628 

the two type of networks allowed us to study how gene communities were affected by stress.  629 

The combined analysis was made as follows. First the communities were predicted as 630 

described above, resulting in the community network. Secondly, for each of the considered 631 

stresses, samples exposed to the stress were selected (heat n=16, cold n=24, salt n=24, and 632 

drought n=28). A precision matrix was calculated using non-centralized data, Pearson 633 

correlation, and non-bootstrap approach with a cut-off=0.82. The sum of the four stress-related 634 

precision matrices was calculated and edges with an aggregated score equal to 4 were set to 635 

“one” in the combined precision matrix (i.e. the stress network) and regarded as gene-gene 636 

interaction caused by a general stress response.   637 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 27, 2019. ; https://doi.org/10.1101/682492doi: bioRxiv preprint 

https://doi.org/10.1101/682492
http://creativecommons.org/licenses/by-nc-nd/4.0/


 24 

The community and stress networks were combined. Communities enriched with respect to 638 

general stress were identified similarly as described above. An enrichment analysis with 639 

respect to functional categories was made for each of the enriched communities.    640 
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 670 

Figure legends 671 

Figure 1. -  Figure 1. Schematic illustrating the utility of centralisation when comparing genes 672 

from a diverse background of treatments. (A) Conventional correlation analysis of two genes 673 

(Gene A and Gene B) under control conditions reveals a high positive correlation. 674 

Coresponding correlation analysis of the same two genes in response to a stress treatment 675 

again reveals a high positive correlation. (Bi) When both the control and stress experiments 676 

are combined, conventional correlation analysis results in a low level of correlation (false 677 

negative). (Bii) By carrying out centralisation within sub-experiments (CSE), the mean effect 678 

between replicates is removed, and subsequent conventional correlation analysis now reveals 679 

the “core” high correlation between Gene A and Gene B. 680 

 681 

Figure 2. Visualisation of the mitochondrial network using four different pre-processing 682 

and correlation approaches. A manually curated mitochondrial gene list was cross-683 

referenced with the AtGenExpress Expression Atlas spanning different tissues, developmental 684 

stages, and stresses (Schmid et al., 2005, Kilian et al., 2007 and Goda et al., 2008). This data 685 

was either subject to CSE or left unprocessed, prior to correlation analysis using either 686 

Pearson correlation or partial correlation. Each of the four resulting networks was visualised 687 

using Cytoscape. For each network, only nodes with at least one edge to another node were 688 

included. Each node (gene) was coloured based on their classification as either below-ground 689 

dominant (brown), above-ground dominant (green) or dominance in neither tissue (yellow). 690 

The diameter of each node is proportional to the number of edges it has to a neighbouring 691 

node. (A) Network of non-CSE Pearson correlation (B) Network of non-CSE Partial correlation 692 

(C) Network of CSE Pearson correlation (D) Network of CSE Partial correlation. 693 
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 694 

Figure 3. Comparative analysis of four different correlation methods in defining 695 

interactions based on functional proximity. The following gene subsets of the mitochondrial 696 

electron transport chain were analysed using non-CSE Pearson correlation (NCPeC), non-697 

CSE Partial correlation (NCPaC), CSE Pearson correlation (CPeC) and CSE Partial correlation 698 

(CPaC). P values were calculated for the probability associated with the expected vs. observed 699 

number of edges and a colour-grading scheme of the resulting P values applied. (A) A Venn 700 

diagram illustrating the overlap of connections between the complexes of the mitochondrial 701 

electron transport chain (mETC), when analysed using the four different correlation methods. 702 

(B) The significance of the edges between the three domains of Complex I. (C) The 703 

significance of the edges within a given complex or between the different complexes of the 704 

ETC. (D) Between the individual complexes of the mETC vs. the unified mETC or the rest of 705 

the mitochondrial set excluding the mETC. 706 

 707 

Figure 4. Comparative analysis of four different correlation methods based on 708 

connectivity between different functional categories in mitochondria. Using newly 709 

updated MapMan annotations (MapMan X4 Release 1.0, 2018; Usadel et al., 2009), the 710 

mitochondrial set was subdivided into 29 different functional categories. Only functional 711 

categories with at least one significant connection to another category are displayed for each 712 

method. Nodes with a black outline indicate functional categories with significant intra-713 

connectivity, nodes lacking an outline indicates functional categories that do not have 714 

significant intra-connectivity. (A) Non-CSE Pearson correlation (NCPeC), (B) Non-CSE Partial 715 

correlation (NCPaC), (C) CSE Pearson correlation (CPeC), and (D) CSE partial correlation 716 

(CPaC). 717 

 718 

Figure 5. Identification of candidate functions for mitochondrial proteins with unknown 719 

functions. Pearson correlation was carried out on centralised data spanning the mitochondrial 720 

set, over 370 unique conditions comprising the AtGenExpress Expression Atlas. Out of this 721 
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list, a sub-population of genes was established which had unknown functional annotations. 722 

This sub-population was then analysed to identify significant interactions with mitochondrial 723 

proteins with known functions, resulting in a suite of 109 mitochondrial proteins with unknown 724 

functions. By annotating the functional categories of the known mitochondrial genes, putative 725 

functional relationships can be assigned to these as yet uncharacterised proteins. (A) Network 726 

representation of the interactions between 109 mitochondrial proteins with no annotated 727 

functions and 248 mitochondrial proteins with known functions. (B) The five proteins with no 728 

annotated functions displaying the highest number of edges to the mitochondrial set are 729 

shown, with a functional breakdown of the distribution of edges. Significant over-representation 730 

of a given functional category has been marked with the following: p<0.05 = *; p<0.01 = **; 731 

p<0.001 = ***. 732 

 733 

Figure 6. Synthesis of a conventional co-expression network of Arabidopsis shoots 734 

common to four stresses with a CSE Reference Community. (A) A CSE Reference 735 

Community was generated utilising the entire AtGenExpress Expression Atlas, using CSE pre-736 

processed data. This network was divided into 27 primary clusters using a Walktrap community 737 

detection algorithm (Pons and Latapy, 2005). (B) A core set of stress-responsive genes was 738 

isolated from the AtGenExpress stress dataset (Kilian et al., 2007) covering Heat, Drought, 739 

Cold and Salt stresses and from this, a network was generated based on Pearson correlation 740 

coefficient with no CSE. (C) The initial network of non-centralised core stress response 741 

generated using Pearson correlation coefficient was cross-referenced with the centralised 742 

reference communities; providing deeper insight into the connectivity between genes, 743 

independent of outside influences such as stress or tissue type. The diameter of each node is 744 

proportional to the number of edges it has to a neighbouring node and node colouration 745 

denotes occupation within a given CSE Reference Community. 746 

 747 

Supplemental Figure 1. Schematic representations of the conclusions that can be drawn 748 

from different correlation analysis approaches of gene expression data. Five genes were 749 
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simulated to illustrate a network in the following way; Gene A expression affects Gene B 750 

expression, Gene C expression affects the expression of Gene D and Gene E. The gene’s 751 

expression values are regarded as functions of a normally distributed random variable, with a 752 

mean µ=0, and a standard deviation σ=0.5. The expression of two of the genes, Gene A and 753 

Gene C are also affected by an external stress treatment, which can be seen as a categorical 754 

variable with two levels. Level one represent no external influences and the variable takes a 755 

value of zero, at level two the gene is influenced by an external factor and the categorical 756 

variable takes the value ten. Gene B expression is affected by the expression of Gene A, so 757 

for each Gene B value a Gene A value multiplied by a constant β=0.5 is added. In the same 758 

way, Gene D and Gene E is simulated but with the exception that they are affected by Gene 759 

C. For each of the scenarios 100 expression values were simulated for each gene. To compare 760 

Pearson’s correlation against partial correlation the relative correlation, i.e. the most correlated 761 

edge, was set as a baseline and received a correlation value of 1. This was done for each 762 

setup. In the first column the true network is represented and if it is affected by the external 763 

factor. In column 2 to 5 the strength of the relative correlations is represented by the thickness 764 

of the line. (A) The network is not affected by any external factor and all four methods have 765 

the correct edges among the top three candidates. There is no difference between non-766 

centralised and centralised data which is as expected when there is no external factor to 767 

remove with CSE. (B) The stress treatment is affecting gene C expression, which has an effect 768 

on the non-centralised networks. Pearson correlation gives a false positive among the top 769 

three candidates, the partial correlation networks gives the correct top three candidates but 770 

the edge between Gene A and B is weak. When we preform CSE both networks give the 771 

correct top three edges. (C) In this case, the stress treatment is affecting the expression of 772 

both Gene A and C, which leads to false positives with both methods. By carrying out CSE, 773 

the stress treatment, is removed and both Pearson and partial correlation output the correct 774 

top three edges.  775 

 776 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 27, 2019. ; https://doi.org/10.1101/682492doi: bioRxiv preprint 

https://doi.org/10.1101/682492
http://creativecommons.org/licenses/by-nc-nd/4.0/


 29 

Supplemental Figure 2. Synthesis of a conventional co-expression network of 777 

Arabidopsis shoots common to four stresses with a CSE Reference Community Set. A 778 

core set of stress-responsive genes isolated from non-centralised AtGenExpress stress 779 

dataset (Kilian et al., 2007) covering Heat, Drought, Cold and Salt stresses, cross-referenced 780 

with the CSE Reference Community. 781 

 782 

Supplemental Figure 3. Correlation between the 985 mitochondrion related genes were 783 

estimated using Pearson correlation without centralization (Non-Centralized data) and 784 

Pearson correlation with CSE preprocessing (CSE preprocessed data). For each 785 

approach 484,620 correlations were estimated and the 0.5 % (2423) gene correlations with 786 

the highest absolute value were used to predict edges in the corresponding gene co-787 

expression network. (A) Estimated density functions over all estimated correlations for non-788 

centralized data (green) and CSE preprocessed data (red). The black line shows the density 789 

for correlations estimated on simulated noise. (B) The estimated correlations for the two 790 

approaches plotted against each other. Edges shared by both approaches are marked blue 791 

(620 (25.6 %) of the edges were shared), unique edges for the CSE preprocessing network 792 

are marked red, and unique edges for the Non-centralized network are marked green. 793 

 794 

Supplemental Table 1. List of 984 genes encoding proteins targeted to the mitochondrion, 795 

referenced with the AtGenExpress Expression Atlas (Schmid et al., 2005, Kilian et al., 2007 796 

and Goda et al., 2008). Note that dues to its large size (ca. 250 MB), the file is available at: 797 

https://www.upsc.se/researchers/4638-olivier-keech-stress-induced-senescence-and-its-798 

subsequent-metabolic-regulations.html#resources 799 

 800 

Supplemental Table 2. i) Non-CSE Pearson correlation; ii) Non-CSE Partial correlation; iii) 801 

CSE Pearson correlation; iv) CSE Partial correlation. 802 

 803 
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Supplemental Table 3. Statistics supporting Figure 3. Table of the expected, observed, 804 

ratios, and associated P-values. This is carried out for interactions within Complex I, within and 805 

between the 5 Complexes of the mETC, and between the mETC and the rest of the 806 

mitochondrion. 807 

 808 

Supplemental Table 4. List of source and target genes comprising genes encoding proteins 809 

targeted to the mitochondrion, with unknown functions (as per MapMan X4 annotations) and 810 

their edges with known mitochondrial genes. 811 

 812 

Supplemental Table 5. Table of the 27 communities generated using the Walktrap algorithm 813 

on the whole AtGenExpress Set that has been centralised 814 
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Figure 1. Schematic illustrating the utility of centralisation when comparing genes from a diverse background 
of treatments. (A) Conventional correlation analysis of two genes (Gene A and Gene B) under control conditions 
reveals a high positive correlation. Coresponding correlation analysis of the same two genes in response to a stress 
treatment again reveals a high positive correlation. (Bi) When both the control and stress experiments are combined, 
conventional correlation analysis results in a low level of correlation (false negative). (Bii) By carrying out centralisation 
within sub-experiments (CSE), the mean effect between replicates is removed, and subsequent conventional correlation 
analysis now reveals the “core” high correlation between Gene A and Gene B.
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No significant (p>0.01) number of edges within a functional category

D) CSE Partial correlation
18 functions enriched with intra-category edges

C) CSE Pearson correlation
18 functions enriched with intra-category edges

B) Non-CSE Partial correlation
11 functions enriched with intra-category edges

A) Non-CSE Pearson correlation
9 functions enriched with intra-category edges

1 Photosynthesis
2 Cellular respiration
3 Carbohydrate metabolism
4 Amino acid metabolism
5 Lipid metabolism
6 Nucleotide metabolism
7 Coenzyme metabolism
8 Polyamine metabolism
9 Secondary metabolism
10 Redox homeostasis
11 Phytohormones
12 Chromatin organisation
13 Cell cycle
14 DNA damage response
15 RNA biosynthesis
16 RNA processing
17 Protein biosynthesis
18 Protein modification
19 Protein degradation
20 Cytoskeleton
21 Cell wall
22 Vesicle trafficking
23 Protein translocation
24 Solute transport
25 Nutrient uptake
26 External stimuli response
27 Multi-process regulation 
35 Not assigned
50 Enzyme function

Functional Annotations
(MapMan 2018)

Significant (p<0.01) number of edges within a functional category

Significant (p<0.001) number of edges within a functional category 

Significant (p<0.001) number of edges
between functional categories 
Significant (p<0.0001) number of edges
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*Protein biosynthesis organelle 
   translation machineries 
*Protein translocation
*External stimuli response
   - heat-shock-responsive protein

*

**Photosynthesis
*Amino Acid metabolism
***Protein biosynthesis
- aminoacyl-tRNA synthetase

***RNA processing
*Protein biosynthesis - organelle 
translation machineries

1 Photosynthesis
2 Cellular respiration
3 Carbohydrate metabolism
4 Amino acid metabolism
5 Lipid metabolism
6 Nucleotide metabolism
7 Coenzyme metabolism
8 Polyamine metabolism
9 Secondary metabolism
10 Redox homeostasis
11 Phytohormones
12 Chromatin organisation
13 Cell cycle
14 DNA damage response
15 RNA biosynthesis
16 RNA processing
17 Protein biosynthesis
18 Protein modification
19 Protein degradation
20 Cytoskeleton
21 Cell wall
22 Vesicle trafficking
23 Protein translocation
24 Solute transport
25 Nutrient uptake
26 External stimuli response
27 Multi-process regulation 
35 Not assigned

Functional Annotations (MapMan, 2018)Mitochondrial proteins with 
no assigned function (NAF)
n=111

Mitochondrial proteins with 
annotated functions
n=257

AT4G35850

***Protein biosynthesis 
- organelle translation machineries

***

A

B Top 5 proteins with highest number of edges to mitochondrial proteins with known functions
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*

*
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***

*

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 27, 2019. ; https://doi.org/10.1101/682492doi: bioRxiv preprint 

https://doi.org/10.1101/682492
http://creativecommons.org/licenses/by-nc-nd/4.0/


CSE Reference Community
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A

C Co-expression network augmented with a CSE Reference Community

B Conventional co-expression network
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Mitochondrial set 
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Pearson correlation

Mitochondrial set 
Entire AtGenExpress
CSE pre-processed
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