1 Nitric oxide acts as a cotransmitter in a subset of dopaminergic neurons to diversify

2 memory dynamics

- 3
- 4 Yoshinori Aso¹*, Robert Ray¹, Xi Long¹, Karol Cichewicz², Teri-TB Ngo¹, Brandi
- 5 Sharp¹, Christina Christoforou¹, Andrew Lemire¹, Jay Hirsh², Ashok Litwin-Kumar³,

```
6 Gerald M. Rubin<sup>1</sup>*
```

- 7
- ⁸ ¹ Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn,
- 9 VA 20147, USA
- ¹⁰ ² Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
- ¹¹ ³Department of Neuroscience, Columbia University, 3227 Broadway, New York, NY
- 12 10027, USA
- 13 Contact Info
- 14 Correspondence: asoy@janelia.hhmi.org and rubing@janelia.hhmi.org
- 15

16 Summary

17	Animals employ multiple and distributed neuronal networks with diverse learning rules and
18	synaptic plasticity dynamics to record distinct temporal and statistical information about
19	the world. However, the molecular mechanisms underlying this diversity are poorly
20	understood. The anatomically defined compartments of the insect mushroom body function
21	as parallel units of associative learning, with different learning rates, memory decay
22	dynamics and flexibility (Aso & Rubin 2016). Here we show that nitric oxide (NO) acts as
23	a neurotransmitter in a subset of dopaminergic neurons in Drosophila. NO's effects
24	develop more slowly than those of dopamine and depend on soluble guanylate cyclase in
25	postsynaptic Kenyon cells. NO acts antagonistically to dopamine; it shortens memory
26	retention and facilitates the rapid updating of memories. The interplay of NO and dopamine
27	enables memories stored in local domains along Kenyon cell axons to be specialized for
28	predicting the value of odors based only on recent events. Our results provide key
29	mechanistic insights into how diverse memory dynamics are established in parallel memory
30	systems.
31	
32	

33 Keywords

34 memory dynamics, associative learning, cotransmitter, dopamine, nitric oxide, mushroom
35 body, *Drosophila*

36

38 Introduction

39	An animal's survival in a dynamically changing world depends on storing distinct
40	sensory information about their environment as well as the temporal and probabilistic
41	relationship between those cues and punishment or reward. Thus it is not suprising that
42	multiple distributed neuronal circuits in the mammalian brain have been shown to process
43	and store distinct facets of information acquired during learning (White & McDonald,
44	2002). Even a simple form of associative learning such as fear conditioning induces
45	enduring changes, referred to as memory engrams, in circuits distributed across different
46	brain areas (Herry & Johansen, 2014). Do these multiple engrams serve different
47	mnemonic functions, what molecular and circuit mechnisms underly these differences,
48	and how are they integrated to control behavior? Localizing these distributed engrams,
49	understanding what information is stored in each individual memory unit and how units
50	interact to function as one network are important but highly challenging problems.
51	The Drosophila mushroom body (MB) provides a well-characterized and experimentally
52	tractable system to study parallel memory circuits. Olfactory memory formation and
53	retrieval in insects requires the MB (Debelle & Heisenberg, 1994; Dubnau, Grady,
54	Kitamoto, & Tully, 2001; Erber, MASUHR, & MENZEL, 1980; Heisenberg, 2003;
55	McGuire, Le, & Davis, 2001). In associative olfactory learning, exposure to an odor
56	paired with a reward or punishment results in formation of a positive- or negative-valence
57	memory, respectively (Quinn, Harris, & Benzer, 1974; Tempel, Bonini, Dawson, &
58	Quinn, 1983; Tully & Quinn, 1985). In the MB, sensory stimuli are represented by the
59	sparse activity of ~2,000 Kenyon cells (KCs). Each of 20 types of dopaminergic neurons

60	(DANs) innervates compartmental regions along the parallel axonal fibers of the KCs.
61	Similarly, 22 types of mushroom body output neurons (MBONs) arborize their dendrites
62	in specific axonal segments of the KCs; together, the arbors of the DANs and MBONs
63	define the compartmental units of the MB (Aso, Hattori, et al., 2014; Mao & Davis, 2009;
64	Tanaka, Tanimoto, & Ito, 2008). Activation of individual MBONs can cause behavioral
65	attraction or repulsion, depending on the compartment in which their dendrites aborize,
66	and MBONs appear to use a population code to govern behavior (Owald et al 2015; Aso
67	et al 2014b).
68	A large body of evidence indicates that these anatomically defined compartments of the
69	MB are also the units of associative learning (Aso et al., 2012; Aso, Sitaraman, et al.,
70	2014; Aso et al., 2010; Berry, Phan, & Davis, 2018; A. L. Blum, W. Li, M. Cressy, & J.
71	Dubnau, 2009; Bouzaiane, Trannoy, Scheunemann, Placais, & Preat, 2015; Burke et al.,
72	2012; Claridge-Chang et al., 2009; Huetteroth et al., 2015; Ichinose et al., 2015; Isabel,
73	Pascual, & Preat, 2004; Krashes et al., 2009; Lin et al., 2014; Liu et al., 2012; Owald et
74	al., 2015; Pai et al., 2013; Placais, Trannoy, Friedrich, Tanimoto, & Preat, 2013;
75	Schwaerzel et al., 2003; Sejourne et al., 2011; Trannoy, Redt-Clouet, Dura, & Preat,
76	2011; Yamagata et al., 2015; Zars, Fischer, Schulz, & Heisenberg, 2000). Despite the
77	long history of behavioral genetics in fly learning and memory, many aspects of the
78	signaling pathways governing plasticity—especially whether they differ between
79	compartments-remain poorly understood. Nevertheless, dopaminergic neurons and
80	signaling play a key role in all MB compartments, and flies can be trained to form
81	associative memories by pairing the presentation of an odor with stimulation of a single
82	dopaminergic neuron (Aso et al., 2010). Punishment or reward activates distinct sets of

83	DANs that innervate specific compartments of the MB (Das et al., 2014; Galili et al.,
84	2014; Kirkhart & Scott, 2015; Liu et al., 2012; Mao & Davis, 2009; Riemensperger,
85	Voller, Stock, Buchner, & Fiala, 2005; Tomchik, 2013). Activation of the DAN
86	innervating a MB compartment induces enduring depression of KC-MBONs synapses in
87	those specific KCs that were active in that compartment at the time of dopamine release
88	(Berry et al., 2018; Bouzaiane et al., 2015; Cohn, Morantte, & Ruta, 2015; Hige, Aso,
89	Modi, Rubin, & Turner, 2015; Owald et al., 2015; Sejourne et al., 2011). Thus, which
90	compartment receives dopamine during training appears to determine the valence of the
91	memory, while which KCs were active during training determines the sensory specificity
92	of the memory (Figure 1A).
93	Compartments operate with distinct learning rules. Selective activation of DANs
94	innervating specific compartments has revealed that they can differ extensively in their
95	rates of memory formation, decay dynamics, storage capacity, and flexibility to learn new
96	associations (Aso et al., 2012; Aso & Rubin, 2016; Huetteroth et al., 2015; Yamagata et
97	al., 2015). For instance, the dopaminergic neuron PAM- α 1 can induce a 24h memory
98	with a single 1-minute training session, whereas PPL1- α 3 requires ten repetitions of the
99	same training to induce a 24h memory. PPL1-γ1pedc (aka MB-MP1) can induce a robust
100	short-lasting memory with a single 10-second training, but cannot induce long-term
101	memories even after 10 repetitions of a 1-minute training. PAM- α 1 can write a new
102	memory without compromising an existing memory, whereas PPL1- γ 1pedc extinguishes
103	the existing memory when writing a new memory (Aso & Rubin, 2016). What molecular
105	and cellular differences are responsible for the functional diversity of these
104	compartments? Some differences might be arise from differences among KC cell types
105	compartments: some unreferences might be arise from unreferences among KC tell types

- 106 (reviewed in Keene and Waddel, 2007, McGuire et al., 2005), but memory dynamics are
- 107 different even between compartments that lie along the axon bundles of the same Kenyon
- 108 cells (for example, $\alpha 1$ and $\alpha 3$). In this paper, we show that differences in memory
- 109 dynamics between compartments can arise from the deployment of distinct cotransmitters
- 110 by the DAN cell types that innervate them.
- 111
- 112
- 113

114 **Results**

115 Dopaminergic neurons can induce memories without dopamine, but with inverted

116 valence

- 117 DANs release diverse cotransmitters in the mammalian brain (Maher & Westbrook,
- 118 2008; Stuber, Hnasko, Britt, Edwards, & Bonci, 2010; Sulzer et al., 1998; Tecuapetla et
- al., 2010; Tritsch, Ding, & Sabatini, 2012). In *Drosophila*, the terminals of the MB DANs
- 120 contain both clear and dense-core vesicles (Takemura et al., 2017), prompting us to ask if
- 121 the DAN cell types innervating different MB compartments might use distinct
- 122 cotransmitters that could play a role in generating compartment-specific learning rules.

123 We individually activated several DAN cell types in a tyrosine hydroxylase (TH) mutant

background that eliminates dopamine synthesis in the nervous system (Cichewicz et al.,

125 2016; Riemensperger et al., 2011) and assayed their ability to induce associative learning

- 126 when paired with an odor stimulus.
- 127 We first examined the PPL1 cluster of DANs, which innervate several MB compartments
- 128 involved in aversive learning, driven by stimuli such as electric shock, noxious
- 129 temperature, and bitter taste (Galili et al., 2014; Kirkhart & Scott, 2015; Mao & Davis,

130 2009; Riemensperger et al., 2005; Tomchik, 2013). Using an optogenetic olfactory arena

131 (Aso & Rubin, 2016), we trained flies by paring odor exposure with optogenetic

132 activation of these DANs using CsChrimson-mVenus and then immediately tested

- 133 memory formation (Figure 1B, C). In flies with a wild-type TH allele, this training
- 134 protocol induced robust negative-valence memory of the paired odor (Figure 1D), as
- 135 observed previously (Claridge-Chang et al., 2009; Schroll et al., 2006). In the dopamine-

136 deficient background, activation of the same DANs still induced a robust odor memory, 137 but its valence was now positive (Figure 1E). This result is consistent with previous 138 findings that TH mutant flies show a weak positive-valence memory after odor-shock 139 conditioning (Riemensperger et al., 2011), although the positive-valence memory we 140 observed is much stronger. 141 Arguing against the possibility that this valence-inversion phenotype resulted from a 142 developmental defect caused by the constitutive absence of dopamine (Niens et al., 143 2017), feeding L-DOPA and carbidopa to adult-stage flies fully restored normal valence 144 memory (Figure 1F). Nor did the valence-inversion phenotype result from lack of 145 dopamine signaling outside the MB, as restoring TH expression specifically in the PPL1 146 DANs was sufficient to restore formation of negative-valence memory (Figure 1G; 147 Figure 1-figure supplement 1). Moreover, valence-inversion in the absence of dopamine 148 was not limited to punishment-representing DANs. Activation of reward-representing 149 PAM cluster DANs (Burke et al., 2012; Liu et al., 2012) in the TH mutant background 150 also induced odor memory of opposite valence, in this case negative rather than positive 151 (Figure 1D,E); as we found for PPL1-induced memories, either L-DOPA and carbidopa 152 feeding or TH expression in reward-representing DANs restored the ability to form a

- 153 memory of the valence that is observed in wild-type flies (Figure 1F,G). These
- 154 observations suggested the possible presence of a cotransmitter in these DANs that exerts
- an opposite effect from dopamine on synaptic plasticity and memory.

156 **Putative cotransmitter effects differ among DAN cell types**

157 If DAN cell types use different cotransmitters, we might expect the effects of activating

158	DANs in the TH mutant background to vary with cell type. We tested this idea by
159	comparing the associative memories formed in wild-type and TH mutant backgrounds
160	when an odor was paired with optogenetic activation of different subsets of DAN cell
161	types using seven split-GAL4 driver lines (Figure 2 and Figure 2-figure supplement 1).
162	We also demonstrated that valence inversion is not limited to training using direct DAN
163	stimulation with CsChrimson; activating bitter taste sensory neurons using Gr66a-GAL4,
164	which activate PPL1-DANs (Das et al., 2014; Kirkhart & Scott, 2015), likewise induced
165	memories of inverted valence (Figure 2). We identified two DAN cell types that
166	exhibited the valence-inversion phenotype: PPL1- γ 1pedc and PAM- γ 5/PAM- β '2a. With
167	PPL1-y1pedc stimulation, memory valence switched from negative to positive in TH
168	mutant animals. Conversely, with PAM- γ 5 and PAM- β '2a stimulation, memory valence
169	flipped in the opposite direction, from positive to negative in TH mutants.
170	The valence-inversion phenotype was not, however, observed in all compartments.
171	Activation of PPL1- $\gamma 2\alpha'$ 1 resulted in negative-valence memory in both TH mutant and
172	wild type, suggesting a cotransmitter with the same sign of action as dopamine.
173	Activation of PPL1- α 3 or PAM- β '1 in the TH mutant background did not induce
174	significant memory, indicating that these cells do not express a cotransmitter capable of
175	inducing memory without dopamine.
176	Identification of nitric oxide synthase in a subset of DAN cell types by transcript
177	profiling

- 177 profiling
- 178 To identify potential cotransmitters, we profiled (using RNA-Seq methods) the
- transcriptomes of the DAN cell types in these seven split-GAL4 lines, and looked for

180 candidates whose expression correlated with the valence-inversion effect. Isolation of 181 pure populations of specific DAN cell types is challenging because of their low 182 abundance. For example, PPL1 is a single cell in each brain hemisphere and thus requires 183 ~50,000-fold enrichment. We used a collection of split-GAL4 driver lines (Aso, Hattori, 184 et al., 2014) to fluorescently mark the soma of specific DAN cell types and confirmed 185 that the nuclear-targeted reporters we used for sorting visualized the same restricted set of 186 cells as the membrane-targeted reporters in the original study. In this way, we selected a 187 combination of reporter and driver lines that provided the most specific labeling of the 188 targeted cell type. The number of detected genes and the correlation across biological replicates of RNA profiling experiments has been observed to be highly dependent on 189 190 cDNA yield during library constuction (Fred P. Davis1, 2018). Due to different soma 191 sizes, the amount of mRNA per cell is expected to differ across cell types. To estimate 192 the number of cells necessary for our experimental condition, we started with MBON-193 γ 1pedc> α/β cells, a cell type that occurs once per hemisphere. Three replicates with ~350 194 cells yielded on average 5.3 µg of cDNA, and we observed a high correlation across 195 biological replicates on these dataset (Pearson R=0.90). Thus we aimed for similar cDNA 196 yields by sorting more cells for cell types with a smaller soma (i.e., KCs and PAM cluster 197 DANs). We collected data from ten driver lines for DAN cell types, with 2-4 biological 198 replicates per line. We also examined two classes of KCs and three additional MBON 199 cell types. On average, we collected 2,500 cells for KCs, 546 +/- 60 cells for PAM 200 DANs, and 310 +/- 18 cells for PPL1 DAN and MBON cell types per replicate, by hand 201 or fluorescence activated cell sorting (FACS), yielding 3.53 +/- 0.21 µg of cDNA, 22.3 202 +/-0.8 million mapped reads per replicate, and 0.80 +/-0.02 Pearson R across biological

203 replicates (Figure 3-figure supplement 1; Supplementary File 1).

204	We analyzed these data for different splicing isoforms (see Material and methods). Using
205	DE-seq2 (Love, Huber, & Anders, 2014), we searched for transcripts that were
206	differentially expressed among DAN cell types and, in particular, for those commonly
207	expressed in DAN cell types that showed the valence-inversion phenotype (PPL1- γ 1pedc
208	and PAM- γ 5), but not in other cell types (Figure 3A,B). Through this analysis, we
209	identified nitric oxide synthase (NOS) as a strong candidate for a cotransmitter. Similar
210	enrichment in PPL1- γ 1pedc and PAM- γ 5 was found in only five other transcripts, none
211	of which are likely to encode a neurotransmitter: (i) epac-RG, a cAMP-activated guanine
212	nucleotide exchange factor. (ii) br-RO, br-RI, both transcripts of the zinc finger
213	transcription factor broad, (iii) CG32547-RD, a G-protein coupled receptor, and (iv)
214	CG12717-RA, a SUMO-specific isopeptidase (data reviewed in FlyBase)(Thurmond et
215	al., 2019). In addition to these transcripts that matched our criteria, we found other
216	potential candidates whose expression was not a precise match. We detected a high level
217	of the <i>DH44</i> neuropeptide in PPL1- γ 1pedc, but not in PAM- γ 5. A receptor for DH44,
218	<i>DH44-R1</i> , was expressed in PAM- γ 4 and/or γ 4< γ 1 γ 2 and to lower extent in α/β Kenyon
219	cells, but neither of the two known receptors for DH44 was detected in γ Kenyon cells
220	(Figure 3-figure supplement 2). Transcripts of the neuropeptide gene Nplp1 were detected
221	in PPL1- γ 1pedc and PAM- γ 5, but other DANs and MBONs also expressed this gene
222	(Figure 3-figure supplement 2)(Croset, Treiber, & Waddell, 2018). Expression of
223	Gyc76C, the receptor for Nplp1, was barely detectable in KCs, DANs, and MBONs.
224	Complete transcript data are presented in Supplementary File 1, and the expression of
225	genes encoding neurotransmitters, neuropeptides and their receptors, as well as

components of gap junctions, is summarized in Figure 3-figure supplement 2. Although
we cannot formally rule out a contribution of other genes and pathways, we chose to
pursue NOS, as it was the most promising candidate for a cotransmitter that might be
responsible for the valence-inversion effect.

230 Drosophila has only one gene encoding nitric oxide synthase (Nos), but this gene has

231 multiple splicing isoforms (Figure 3C)(Rabinovich, Yaniv, Alyagor, & Schuldiner, 2016;

232 Regulski & Tully, 1995; Stasiv, Regulski, Kuzin, Tully, & Enikolopov, 2001). Only

NOS1, the full-length isoform, is functional, while the truncated isoforms can function as

a dominant-negative. Thus identifying the expressed splicing isoform of Nos was crucial

235 for understanding NOS functions in DANs. NOS1 was the most abundantly expressed

isoform as judged by RNA profiling. We confirmed NOS1 expression by combining

237 fluorescent *in situ* hybridization (FISH) and antibody staining. For whole-brain FISH

238 (Long, Colonell, Wong, Singer, & Lionnet, 2017), we used 40 probes against c-terminus

exons that are present in NOS1 and NOS4, but not NOS-RK, transcripts (Figures 3C and

240 Figure 3-figure supplement 1 D). PPL1-γ1pedc was labeled with these FISH probes

241 (Figure S3D), confirming expression of NOS1 or NOS4 in these cells. For

242 immunohistochemistry, we used an antibody raised against exon 16 of NOS (Kuntz,

Poeck, & Strauss, 2017; Yakubovich, Silva, & O'Farrell, 2010) that is present in NOS1

and NOS-RK, but not in NOS4 (Figure 3C). We validated its specificity by

245 demonstrating a loss of the staining that accompanied RNAi-mediated knockdown of

NOS in PPL1-γ1pedc (Figures 3D and Figure 3-figure supplement 1 B)(Ni et al., 2011).

247 In the MB lobes, the γ 1 pedc and γ 5 compartments showed enriched anti-NOS

248 immunoreactivity, as expected from RNA-Seq data. In addition, γ3 and γ4 also showed

249	significant anti-NOS immunoreactivity (Figures 3E). However, the low NOS transcript
250	levels observed via RNA-Seq in PAM- γ 3 and PAM- γ 4 are most consistent with anti-NOS
251	immunoreactivity in γ 3 and γ 4 arising from non-DAN cell types or developmental
252	expression. The cell-type-specific expression and localization of NOS1 in a subset of
253	DANs associated with compartments that display the valence-inversion phenotype
254	prompted us to test the hypothesis that NO plays a direct role in generating the diversity
255	of memory dynamics observed in different compartments.

256 NOS in dopaminergic neurons contributes to memory formation

257 We next evaluated the role of NOS in memory formation in the absence of dopamine 258 biosynthesis. If NO is indeed the cotransmitter that supports the valence-inverted memory 259 in TH mutant flies, we would predict that inhibiting NOS should block this effect, and 260 that flies would show no memory. To assess the requirement for NO synthesis, we fed 261 flies the competitive NOS inhibitor L-NNA for one day before training and then 262 measured the memory induced by optogenetic training using PPL1- γ 1pedc in a TH 263 mutant background. We found that this treatment reduced valence-inverted memory 264 formation in a dose-dependent manner (Figure 4A). While NOS is broadly expressed in 265 the brain (Kuntz et al., 2017), two lines of evidence suggest that L-NNA fed flies are 266 capable of olfactory learning. First, when we bypassed the TH mutant by by feeding L-267 DOPA and carbidopa to restore dopamine levels, the L-NNA fed flies showed a normal 268 level of negative-valence odor memory formation in response to pairing an odor with 269 PPL1- γ1pedc activation (Figure 4A). Second, the effect of L-NNA feeding was cell-type 270 specific; memory formed by activation of either PPL1- γ 1pedc or PAM- γ 5/ β '2a was

271 affected but that formed by activation of PPL1- $\gamma 2\alpha' 1$, was not (Figure 4B). We obtained 272 consistent results in knockdown experiments where we expressed NOS-RNAi in all PPL1 273 DANs (Figure 4C).

274 We also examined whether we could transfer this valence-inversion property to another

275 compartment by ectopically expressing NOS. We expressed NOS in PPL1- α 3, a

276 compartment where we observed no intrinsic NOS expression, and where extended

277 optogenetic training induces a negative-valence memory (Aso & Rubin, 2016). TH

278 mutant flies formed no odor association with PPL1-α3 activation, but when NOS was

ectopically expressed in the α 3 compartment, the same training protocol induced a

280 positive-valence memory (Figure 4D and E). In other words, NO was able to form an

association of opposite valence to that formed by dopamine. These results demonstrate

the functional significance of NOS in DANs, but leave open its mechanism of action.

283 Soluble guanylate cyclase in Kenyon cells is required to form NO-dependent

284 memories

In the MB, dopamine induces synaptic plasticity by binding to dopamine receptors on the

axons of KCs and activating the *rutabaga*-encoded adenylyl cyclase in these cells

287 (Gervasi, Tchenio, & Preat, 2010; Tomchik & Davis, 2009). Does NO released from

288 DANs also act on receptors in the KCs? RNA-seq data revealed expression of the

subunits of soluble gyanylate cyclase (sGC), Gycα99B and Gycβ100B, in KCs, DANs,

and MBONs (Figure 5A-B). Similar to its mammalian homologs, Drosophila sGC is

activated upon binding NO (Morton, Langlais, Stewart, & Vermehren, 2005). Transcripts

292 for other guanylyl cyclases were found at lower levels, if at all (Figure 5A-B;

293	Supplementary File 1), suggesting that sGC formed by Gyc α 99B and Gyc β 100B is the
294	primary source of cGMP in KCs. Consistent with these transcriptomic data, we observed
295	that a protein trap Gyc β 100B-EGFP fusion protein (MI08892; (Venken et al., 2011) was
296	broadly expressed in the MB lobes (Figure 5-figure supplement 1).
297	We tested the role of Gyc β 100B with acute RNAi knockdown in KCs using the MB-
298	switch system (McGuire, Le, Osborn, Matsumoto, & Davis, 2003). This adult-specific
299	knockdown abolished the valence-inverted memory induced by activation of PPL1-
300	γ 1pedc in a TH mutant background (Figure 5C). This effect is unlikely to be caused by a
301	developmental defect in KCs, as we could restore normal memory by feeding flies L-
302	DOPA (Figure 5C). Taken together, our data argue strongly that NO functions as
303	cotransmitter that is released by DANs and acts on sGC in postsynaptic KCs to regulate
304	cGMP levels, although our results do not exclude the possibility that NO has other
305	targets.

306 NO-dependent and dopamine-dependent memories have different kinetics

307 We next compared the dynamics of memory inducion by NO and dopamine and explored

308 the consequences of their combined action. First, we examined memory acquisition rates

309 when flies were trained by activation of PPL1- γ 1pedc (Figure 6A). In wild-type flies,

310 PPL1-γ1pedc activation as brief as 10s can induce significant negative-valence memory.

311 Blocking NOS activity with L-NNA did not affect the memory scores observed shortly

after a wide range of training protocols (Figure 6B). In contrast, longer and repetitive

313 training was required to induce robust NO-dependent positive-valence memory in the

absence of dopamine (Figure 6A-B).

315	Riemensperger et al. (2011) reported that dopamine-deficient flies developed weak
316	positive-valence memory after odor-shock conditioning, but this memory was not
317	detectable until two hours after the training. Motivated by this observation, we examined
318	the kinetics of NO-dependent memory formation and the role of NOS in memory
319	retention. When we used a single cycle of training, we found that NO-dependent memory
320	develops slowly over time. Memory scores were not significantly different from zero at
321	1, 3, 5 min after training, and only became significant after 10 min. Once formed,
322	however, these NO-dependent memories were long lasting and were still more than half
323	maximal after 6 hours (Figure 6C). This result contrasts with the time course of memory
324	formation by PPL1- γ 1pedc activation in a wild-type background, where memory is
325	detectable within 1 min after training, but has a half-life of only 2-3 hours (Aso et al.,
326	2012). These observations raised the possibility that NO signaling, with its opposite
327	valence and slower dynamics, might serve to limit memory retention in a wild-type
328	background. Indeed, we found that expression of NOS-RNAi or L-NNA feeding
329	prolonged the retention of memories induced by either optogenetic training with PPL1-
330	γ1pedc or odor-shock conditioning (Figure 6D, Figure 6-figure supplement 1A-B).
2.2.1	

Memory persistence is often enhanced by repetitive training. However, PPL1- γ 1pedc fails to induce long-lasting memory even after 10x repetitive training at spaced intervals (Aso & Rubin, 2016). In contrast, other DANs from the PPL1 cluster that do not exhibit significant NOS expression, PPL1- α 3 or a combination of PPL1- γ 2 α '1 and PPL1- α '2 α 2, are able to induce stable memory lasting for four days after 10x spaced training (Aso & Rubin, 2016). Our results strongly suggest that NO signaling is responsible for this difference in memory retention. Spaced training with PPL1- γ 1pedc induced memory

338	lasting 1 day when NOS signaling was compromised, either by knockdown with RNAi
339	(Figure 6E) or inhibition by L-NNA (Figure 6-figure supplement 1C). The valence-
340	inverted memories formed in the γ 1pedc compartment following repetitive training in TH
341	mutants also lasted 1 day after training (Figure 6E). Thus, the effects of NOS signaling
342	accumulate slowly, but can be long lasting. These effects are antagonistic to memories
343	formed by dopamine signaling, and serve to sculpt the time course of memory retention.
344	As discussed below, NO-signaling also contributes to other features of memory
345	dynamics.

346 Nitric oxide enhances fast updating of memory

347 We designed behavioral experiments to examine memory dynamics when flies that had 348 been previously trained encounter a new experience. We tested three different types of 349 new experience: (1) switching which odor is paired with DAN activation during odor 350 conditioning (reversal conditioning); (2) exposing flies to odors without DAN activation; 351 and (3) activating DANs without odor exposure (Figure 7A). In wild-type flies, odor 352 preference can be altered by a single trial of reversal conditioning with PPL1- γ 1pedc 353 activation (Figure 7B, left), whereas this process became slower and required more 354 training when NOS was inhibited (Figure 7B; center), such that switching odor 355 preference required a repetition of reversal conditioning. In TH mutants, NO-dependent 356 memory was also altered by reversal conditioning, but with an even slower time course 357 (Figure 7B; right). The second type of new experience, exposure to odors alone, did not 358 change the existing memory in this assay (Figure 7C). The third type of new experience, 359 DAN activation alone, quickly reduced conditioned odor response in wild-type flies.

Inhibiting NOS slowed this process (Figure 7D; center). NO-dependent memory was also
reduced by unpaired activation of DANs, but it took five trials to detect significant
reduction (Figure 7D; right). These results suggest that both the slow formation and the
persistence of NO-dependent memory facilitate the fast updating of memories stored in
NOS-positive MB compartments in response to changing conditions.

365

366 Modeling the function of NO and DA in memory dynamics

367 To understand the interplay between DA and NO dependent plasticity, we fit a minimal 368 model to our data that accounts for the observed effects of these two pathways on 369 formation of odor memories. We then used this model both to infer the parameters of a 370 synaptic plasticity rule consistent with the data as well as to test hypotheses about the 371 mechanisms of DA and NO-mediated synaptic modifications that would be able to 372 generate the memory dynamics we observed. Imaging and physiology experiments have 373 demonstrated that DANs induce intracellular signaling cascades in KCs and 374 bidirectionally modulate the weights of KC-MBON synapses, with the direction of the 375 plasticity determined by whether each KC is active or inactive (Cohn et al., 2015, Gervasi 376 et al., 2010, Hattori et al., 2017, Hige et al., 2015, Berry et al., 2018, Boto et al., 2014, 377 Tomchik and Davis, 2009, Owald et al., 2015, Bouzaiane et al., 2015)(Cassenaer & 378 Laurent, 2012; Okada, Rybak, Manz, & Menzel, 2007). This dependence on presynaptic 379 KC firing ensures the odor-specificity of memories formed following DAN activation. 380 NO-dependent memories, like DA-dependent memories, are odor-specific, suggesting 381 that plasticity induced by NO also depends on KC activity. Based on this observation and

382	the results of previous studies, we constructed our model by assuming that: (1) both
383	dopamine and NO bidirectionally modulate KC-MBON synapses depending on KC
384	activity, (2) memory decay is due to background levels of DAN activity following
385	conditioning (Placais et al., 2012, Berry et al., 2015, Sitaraman et al., 2015), and (3) the
386	effects of DA and NO occur via independent pathways and can coexist (Figure 6).
387	Specifically, we denoted the effects of DA and NO-dependent synaptic plasticity at time t
388	by two quantities, $D(t)$ and $N(t)$, that lie between 0 and 1. We assumed that coincident
389	KC-DAN activation increases D and N with a timescale of 30 s and 10 min, respectively,
390	to account for the slower induction of NO-mediated effects (Fig. 8A,B). Based on
391	previous observations in TH wild type flies that pairing of activation of the PPL1- γ 1pedc
392	DAN with odor induces synaptic depression between odor activated KCs and MBON-
393	γ 1pedc> α/β (Hige et al., 2015), we assumed that the effect of an increase in <i>D</i> is a
394	reduction in the weight of the corresponding KC-MBON synapse (Fig. 8B, left). As the
395	activity of this MBON promotes approach behavior (Aso et al., 2014b, Owald et al.,
396	2015), its reduced response to the conditioned odor after DA-dependent synaptic
397	depression results in avoidance during subsequent odor presentations. In the TH-null
398	background, in contrast, we have shown that PPL1- γ 1pedc activation leads to a positive-
399	valence memory (Figure 2). This is most readily explained in our model by assuming
400	that, in such flies, NO induces potentiation of synapses between odor-activated KCs and
401	MBONs (Fig. 8B, right). Thus, in the model, the effect of an increase in N is an increase
402	in synaptic weight, opposite to the effect of D . Finally, based on observations that
403	activation of DANs alone can reverse synaptic depression induced by KC-DAN pairing
404	(Cohn et al., 2015, Hattori et al., 2017, Berry et al., 2018), we assumed that DAN

405 activation in the absence of KC activity causes a reduction in *D* and *N*, recovering the406 synapse to its baseline weight.

407	We fit the model by assuming that the performance index (PI) is determined by the odor-
408	evoked activation of the MBON and then determining the parameters that best match the
409	behavioral data reported in Figure 6B-D. We used data that isolates the effects of DA and
410	NO dependent plasticity mechanisms to fit the parameters for the two pathways
411	separately (see Methods). In the resulting model, NO-dependent plasticity develops more
412	gradually and requires more KC-DAN pairings to produce a memory of equal magnitude,
413	compared to DA-dependent plasticity (Fig. 8C).
414	We next asked how these plasticity mechanisms interact to determine effective KC-to-
415	MBON synaptic weights when both DA and NO pathways are active. The synaptic
416	weight is a function of both DA and NO-mediated effects, $w = f(D,N)$. One possibility for
417	the function f is a difference between terms corresponding to DA-dependent depression
418	and NO-dependent facilitation; that is, $w \propto N - D$. When we fit a model with this
419	functional form to our data, we found that it incorrectly predicts a reduction in memory
420	strength after repeated pairings, because of the slower accumulation of NO-dependent
421	facilitation after DA-dependent potentiation has saturated (Figure 8D, gray curve).
422	Another possibility for f is a multiplicative form, e.g. $w \propto (1 - D) \times (1 + N)$. While we
423	cannot unambiguously determine the identity of the biophysical parameters underlying
424	DA and NO-mediated effects, such a form would arise naturally if the two pathways
425	modulated parameters such as quantal size and the probability of synaptic vesicle release
426	from KCs. We found that the multiplicative model provides a good match to our data

427	(Figure 8C, blue curve). In this model, strong DA-dependent depression (i.e. D close to
428	1) leads to a small synaptic weight even in the presence of NO-dependent facilitation.
429	We further tested our model by investigating its behavior in other paradigms. Assuming
430	that spontaneous activity in DANs leads to memory decay (Placais et al., 2012, Berry et
431	al., 2015, Sitaraman et al., 2015) accounted for the NO-dependent reduction in memory
432	lifetime that we observed (Figure 8E). Fitting the magnitudes of DA-dependent
433	facilitation and NO-dependent depression in the absence of KC activity using the data of
434	Figure 7D also predicted the dynamics of reversal learning and its facilitation by NO with
435	no additional free parameters (Figure 8F). In total, modeling a multiplicative interaction
436	between DA- and NO-dependent plasticity accounts for the immediate effects of these
437	pathways on odor memories that we observed experimentally. A notable exception is
438	that this model cannot account for the enhanced persistence of memories after 10x
439	training for DA or NO-null conditions (Figure 6E), suggesting a recruitment of additional
440	consolidation mechanisms after spaced conditioning, as previously proposed (Pagani et
441	al., 2009, Tully et al., 1994, Pai et al., 2013, Scheunemann et al., 2018, Cervantes-
442	Sandoval et al., 2013, Miyashita et al., 2018, Huang et al., 2012, Akalal et al., 2011).
443	

Discussion

445	Evidence from a wide range of organisms establishes that dopaminergic neurons often
446	release a second neurotransmitter, but the role of such cotransmitters in diversifying
447	neuronal signaling is much less clear. In rodents, subsets of dopaminergic neurons co-
448	release glutamate or GABA (Maher & Westbrook, 2008; Stuber et al., 2010; Sulzer et al.,
449	1998; Tecuapetla et al., 2010; Tritsch et al., 2012). In mice and Drosophila, single-cell
450	expression profiling reveals expression of diverse neuropeptides in dopaminergic neurons
451	(Croset et al., 2018; Poulin et al., 2014). EM connectome studies of the mushroom body
452	in adult and larval Drosophila reveal the co-existence of small-clear-core and large-
453	dense-core synaptic vesicles in individual terminals of dopaminergic neurons (Eichler et
454	al., 2017; Takemura et al., 2017); moreover, the size of the observed large-dense-core
455	vesicles differs between DAN cell types (Takemura et al., 2017).
456	We found that NOS, the enzyme that synthesizes NO, was located in the terminals
457	of a subset of DAN cell types. NOS catalyzes the production of nitric oxide (NO) from L-
458	arginine. Drosophila NOS is regulated by Ca ²⁺ /calmodulin (Regulski & Tully, 1995), as
459	is the neuronal isoform of NOS in the mammalian brain (Abu-Soud & Stuehr, 1993),
460	raising the possibility that NO synthesis might be activity dependent. Furthermore, the
461	localization of the NOS1 protein in the axonal terminals of DANs (Figure 3D) is
462	consistent with NO serving as a cotransmitter. Our conclusion that NO acts as a
463	neurotransmitter is supported by the observation that NO signaling requires the presence
464	of a putative receptor, soluble guanylate cyclase, in the postsynaptic Kenyon cells. This

466	which NO appears to target proteins within the NOS-expressing ring neurons themselves,
467	rather than conveying a signal to neighboring cells (Kuntz et al., 2017).
468	The valence-inversion phenotype we observed when PPL1- γ 1pedc was
469	optogenetically activated in a dopamine-deficient background can be most easily
470	explained if NO induces synaptic potentiation between odor-activated KCs and their
471	target MBONs. Our modeling work is consistent with this idea, but testing this idea and
472	other possible mechanisms for NO action will require physiological experiments.
473	
474	Antagonistic functions of dopamine and nitric oxide
475	During olfactory learning, the concentration of Ca ²⁺ in KC axons represents olfactory
476	information. The coincidence of a Ca^{2+} rise in spiking KCs and activation of the G-
477	protein-coupled Dop1R1 dopamine receptor increases adenylyl cyclase activity (Abrams,
478	Yovell, Onyike, Cohen, & Jarrard, 1998; Boto, Louis, Jindachomthong, Jalink, &
479	Tomchik, 2014; Byrne et al., 1991; Kim, Lee, & Han, 2007; McGuire et al., 2003;
480	Tomchik & Davis, 2009). The resultant cAMP in turn activates protein kinase A (Gervasi
481	et al., 2010; Skoulakis, Kalderon, & Davis, 1993), a signaling cascade that is important
482	for synaptic plasticity and memory formation throughout the animal phyla (e.g. Davis,
483	Cherry, Dauwalder, Han, & Skoulakis, 1995). In contrast, when DANs are activated
484	without KC activity, and thus during low intracellular Ca ²⁺ in the KCs, molecular
485	pathways involving the Dop1R2 receptor, Rac1 and Scribble facilitate decay of memory
486	(Berry, Cervantes-Sandoval, Nicholas, & Davis, 2012; Cervantes-Sandoval, Chakraborty,
487	MacMullen, & Davis, 2016; Kim et al., 2007; Shuai et al., 2010).

488 We found that NOS in PPL1- γ 1pedc shortens memory retention, while facilitating 489 fast updating of memories in response to new experiences. These observations could be 490 interpreted as indicating that NO regulates forgetting. However, it is an open question 491 whether the signaling pathways for forgetting, which presumably induce recovery from 492 synaptic depression (Berry et al., 2018; Cohn et al., 2015), are related to signaling 493 cascades downstream of NO and guanylate cyclase, which appear to be able to induce 494 memory without prior induction of synaptic depression by dopamine. Lack of detectable 495 1-day memory formation after spaced training with PPL1- γ 1 pedc can be viewed as a 496 balance between two distinct, parallel biochemical signals, one induced by dopamine and 497 the other by NO, rather than the loss of information (that is, forgetting). Confirming this 498 interpretation will require better understanding of the signaling pathways downstream of 499 dopamine and NO. The search for such pathways will be informed by the prediction from 500 our modeling that dopamine and NO may alter two independent parameters that define 501 synaptic weights with a multiplicative interaction.

502 In the vertebrate cerebellum, which has many architectural similarities to the MB 503 (Farris, 2011; Marr, 1969; Medina, Repa, Mauk, & LeDoux, 2002), long-term-depression 504 at parallel fiber-Purkinje cell synapses (equivalent to KC-MBON synapses) induced by 505 climbing fibers (equivalent to DANs) can coexist with long-term-potentiation by NO 506 (Bredt, Hwang, & Snyder, 1990; Lev-Ram, Wong, Storm, & Tsien, 2002; Shibuki & 507 Okada, 1991). In this case, the unaltered net synaptic weight results from a balance 508 between coexisting LTD and LTP rather than recovery from LTD. This balance was 509 suggested to play an important role in preventing memory saturation in the cerebellum 510 and allowing reversal of motor learning. In the *Drosophila* MB, we observed a similar

facilitation of reversal learning by NO (Figure 7B). The antagonistic roles of NO and
synaptic depression may be a yet another common feature of the mushroom body and the
cerebellum.

514

515 Distinct dynamics of dopamine and nitric oxide

516 Opposing cotransmitters have been observed widely in both invertebrate and vertebrate 517 neurons (Nusbaum, Blitz, & Marder, 2017). A common feature in these cases is that the 518 transmitters have distinct time courses of action. For instance, hypothalamic hypocretin-519 dynorphin neurons that are critical for sleep and arousal synthesize excitatory hypocretin 520 and inhibitory dynorphin. When they are released together repeatedly, the distinct 521 kinetics of their receptors result in an initial outward current, then little current, and then 522 an inward current in the postsynaptic cells (Y. Li & van den Pol, 2006). In line with these 523 observations, we found that dopamine and NO show distinct temporal dynamics: NO-524 dependent memory requires repetitive training and takes longer to develop than dopamine-dependent memory. What molecular mechanisms underlie these differences? 525 526 Activation of NOS may require stronger or more prolonged DAN activation than does 527 dopamine release. Alternatively, efficient induction of the signaling cascade in the 528 postsynaptic KCs might require repetitive waves of NO input. Direct measurements of 529 release of dopamine and NO, and downstream signaling events by novel sensors will be 530 needed to address these open questions (Chen, Saulnier, Yellen, & Sabatini, 2014; Eroglu 531 et al., 2016; Patriarchi et al., 2018; Sun et al., 2018; Tang & Yasuda, 2017). 532

- 533 Toward subcellular functional mapping of memory genes
- 534

535 Decades of behavioral genetic studies have identified more than one hundred genes 536 underlying olfactory conditioning in Drosophila (Keene & Waddell, 2007; McGuire, 537 Deshazer, & Davis, 2005; Thurmond et al., 2019; Walkinshaw et al., 2015). Mutant and 538 targeted rescue studies have been used to map the function of many memory-related genes 539 encoding synaptic or intracellular signaling proteins (for example, rutabaga, DopR1/dumb, 540 DopR2/DAMB, PKA-C1/DC0, Synapsin, Bruchpilot, Orb2 and Rac1) to specific subsets 541 of Kenyon cells (Akalal et al., 2006; Berry et al., 2012; A. L. Blum, W. H. Li, M. Cressy, 542 & J. Dubnau, 2009; Gervasi et al., 2010; Han, Millar, Grotewiel, & Davis, 1996; Kim et 543 al., 2007; Knapek, Sigrist, & Tanimoto, 2011; Kruttner et al., 2015; McGuire et al., 2003; 544 Niewalda et al., 2015; Pavot, Carbognin, & Martin, 2015; Qin et al., 2012; Shuai et al., 545 2010; Skoulakis et al., 1993; Trannoy et al., 2011; Vanover et al., 2018; Zars et al., 2000). 546 However, it is largely unknown if these proteins physically colocalize at the same KC 547 synapses to form intracellular signaling cascades. Some of these proteins might 548 preferentially localize to specific MB compartments. Alternatively, they may distribute 549 uniformly along the axon of Kenyon cells, but be activated in only specific compartments. 550 Our identification of cell-type-specific cotransmitters in DANs enabled us to begin to 551 explore this question.

We used optogenetic activation of specific DANs to induce memory in specific MB compartments, while manipulating genes in specific types of Kenyon cells. This approach allowed us to map and characterize the function of memory-related genes at a subcellular level. For example, the Gycbeta100B gene, which encodes a subunit of sGC, has been identified as "memory suppressor gene" that enhances memory formation when pan-neuronally knocked down (Walkinshaw et al., 2015), but the site of its action was

558	unknown. Gycbeta100B appears to be broadly dispersed throughout KC axons, based on
559	the observed distribution of a Gycbeta100B-EGFP fusion protein (Figure 5 -figure
560	supplement 1). Our experiments ectopically expressing NOS in PPL1- α 3 DANs that do
561	not normally signal with NO is most easily explained if sGC is available for activation in
562	all MB compartments (Figure 4D-E).
563	What are the molecular pathways downstream to cGMP? How do dopamine and
564	NO signaling pathways interact in regulation of KC synapses? Previous studies and
565	RNA-Seq data suggest several points of possible crosstalk. In cultured KCs from cricket
566	brains, cGMP-dependent protein kinase (PKG) mediates NO-induced augmentation of a
567	Ca ²⁺ channel current (Kosakai, Tsujiuchi, & Yoshino, 2015). However, we failed to
568	detect expression of either of the genes encoding Drosophila PKGs (foraging and
569	Pkg21D) in KCs in our RNA-Seq studies (Figure 3-figure supplement 2). On the other
570	hand, cyclic nucleotide-gated channels and the cGMP-specific phosphodiesterase Pde9
571	are expressed in KCs. Biochemical studies have shown that the activity of sGC is calcium
572	dependent and that PKA can enhance the NO-induced activity of sGC by phosphorylating
573	sGC; sGC isolated from flies mutant for adenylate cyclase, <i>rutabaga</i> , show lower activity
574	than sGC from wild-type brains (Morton et al., 2005; Shah & Hyde, 1995), suggesting
575	crosstalk between the cAMP and cGMP pathways.
576 577 578	The benefits of parallel memory units with heterogeneous dynamics

579 All memory systems must contend with a tension between the strength and longevity of 580 the memories they form. The formation of a strong immediate memory interferes with 581 and shortens the lifetimes of previously formed memories, and reducing this interference

582	requires a reduction in initial memory strength that can only be overcome through
583	repeated exposure (Amit & Fusi 1994). Theoretical studies have argued that this tension
584	can be resolved by memory systems that exhibit a heterogeneity of timescales, balancing
585	the need for both fast, labile memory and slow consolidation of reliable memories (Fusi,
586	Drew & Abbott 2005, Lahiri & Ganguli 2013, Benna & Fusi 2016). The mechanisms
587	responsible for this heterogeneity, and whether they arise from complex signaling within
588	synapses themselves (Benna & Fusi 2016), heterogeneity across brain areas (Roxin &
589	Fusi 2013), or both, have not been identified.
590	
591	We found that NO acts antagonistically to dopamine and reduces memory retention
592	(Figure 6) while facilitating the rapid updating of memory following a new experience
593	(Figure 7). Viewed in isolation, the NO-dependent reduction in memory retention within
594	a single compartment may seem disadvantageous, but in the presence of parallel learning
595	pathways, this shortened retention may represent a key mechanism for the generation of
596	multiple memory timescales that are crucial for effective learning. During shock
597	conditioning, for example, multiple DANs respond to the aversive stimulus, including
598	PPL1-γ1pedc, PPL1-γ2α'1, PPL1-α3 (Mao and Davis, 2009, Riemensperger et al., 2005).
599	We have shown that optogenetic activation of these DAN cell types individually induces
600	negative-valence olfactory memory with distinct learning rates (Aso & Rubin, 2016). The
601	NOS-expressing PPL1- γ 1pedc induces memory with the fastest learning rate in a wild-
602	type background, and we show here that it induces an NO-dependent memory trace when
603	dopamine synthesis is blocked, with a much slower learning rate and opposite valence.
(04	

604 Robust and stable NO-dependent effects were only observed when training was repeated

605	10 times (Figure 6E). Under such repeated training, compartments with slower learning
606	rates, such as $\alpha 3$, form memory traces in parallel to $\gamma 1$ pedc (Pai et al., 2013; Sejourne et
607	al., 2011; Wu et al., 2017). Thus, flies may benefit from the fast and labile memory
608	formed in γ 1pedc (Figure 7) without suffering the potential disadvantages of shortened
609	memory retention, as long-term memories are formed in parallel in other compartments.
610	The Drosophila MB provides a tractable experimental system to study the mechanisms
611	and benefits of diversifying learning rate, retention, and flexibility in parallel memory
612	units, as well as exploring how the outputs from such units are integrated to drive
613	behavior.

616 Acknowledgements

617	We thank Jui-Chun Kao, and the Janelia Fly Facility for help with fly husbandry. We
618	thank Eizaburo Doi, Joshua Dudman, Yichun Shuai, Mehrab Modi, Karen Hibbard
619	Gowan Tervo, Adam Hantman, Daisuke Hattori, Larry Abbott, Vanessa Ruta, Stott
620	Waddell, Hiromu Tanimoto, Toshihide Hige, Brett Mensh and Glenn Turner for
621	stimulating discussions and for comments on earlier drafts of the manuscript. Nikita
622	Yakubovich and Patrick O'Farrell shared anti-NOS 16 serum pET28a-dNOS exon 16
623	plasmid. Phil Borden, Gaby Paez, Silvia Sanchez Martinez, Ariana Tkachuk, Tim Brown,
624	Yan Zhang, Lauren Porter, Jonathan Marvin, and Loren Looger provided guidance on
625	affinity purification of the anti-NOS antibody. Burkhard Poeck and Roland Strauß shared
626	confocal images of fly brains stained with anti-NOS. Rebecca Vorimo, Allison Sowell,
627	Kari Close, Project Technical Resources, and the FlyLight Project Team at Janelia
628	Research Campus provided brain dissection and histological preparation. The laboratory
629	of J.H. was supported by NIH R01 GM GM84128.
630	

631 Author Contributions

- 632 Y.A. and G.M.R. conceived and designed the study. Y.A. acquired the behavioral and
- anatomical data. R.R. and A.L. performed the RNA-Seq data acquisition and analysis.
- 634 X.L. performed RNA FISH experiments. A.L.-K. performed computational modeling.
- 635 K.C. and J.H. provided key reagents. B. S., T.N. and C.C. provided technical assistance.

636 Y.A, A.L.-K. and G.M.R. wrote the article.

Declaration of Interests

640 The authors declare no competing interests.

642 Materials and methods

643 **KEY RESOURCES TABLE**

REAGENT or RESOURCE	SOURCE	IDENTIFIER
Antibodies		
Mouse monoclonal anti-Brp	Developmental Studies	nc82
Mouse monoclonal anti-TH	Hybridoma Bank Millipore-Sigma	MAB318
Rabbit polyclonal anti-NOS exon 16	Yakubovich et al., 2010	N.A.
Rabbit polycional anti-NOS exon 10	PMID: 20178753	N.A.
	This paper	
Chicken polyclonal anti-GFP	abcam	ab13970
Goat anti-Rabbit IgG (H+L) Highly Cross-Adsorbed Secondary Antibody, Alexa Fluor 568	Invitrogen	A-11036
Goat anti-Chicken IgY (H+L) Secondary Antibody, Alexa	Invitrogen	A-11039
Fluor 488		
Anti-Mouse IgG (H&L) (Goat), ATTO 647N conjugated	ROCKLAND	610-156-121
Bacterial and Virus Strains	antibodies & assays	
	New England Diel also	02042
T7 Express lysY/lq	New England BioLabs	C3013
Chemicals, Peptides, and Recombinant Proteins		
S-(-)-Carbidopa	Millipore-Sigma	C1335
L-DOPA	Millipore-Sigma	D9628
L-NNA (Nu-nitro-L-arginin)	Millipore-Sigma	N5501
Schneider's Drosophila Medium	Thermo Fisher Scientific	21720024
RU-486	Millipore-Sigma	475838
Cy®5 Mono	GE Healthcare	PA25001
Cy®3 Mono	GE Healthcare	PA23001
RNase-free water: Molecular Biology Grade Water	Corning	46-000-CM
RNase-free 1x PBS	Fisher	BP2438-4
CH3COOH: Acetic Acid	Fisher	A38S-500
NaBH4: Sodium borohydride, 99%, VenPure™ SF powder	Acros Organics	AC448481000
20xSSC	Fisher	AM9763
Hi-Di formamide	Applied Biosystems	4440753
50x Denhardt's solution	Alfa Aesar	AAJ63135AD
tRNA: baker's yeast	Roche	10109495001
UltraPure [™] Salmon Sperm DNA Solution	Thermofisher	15632011
10% SDS	Corning	46-040-CI
Formamide (Deionized)	Ambion	AM9342
Liberase DH	Roche	5401054001
Critical Commercial Assays	I	
PicoPure RNA Isolation Kit	Life Technologies	NEG772014MC
AminoLink Immobilization Kit	Thermo Scientific	#44890
Experimental Models: Organisms/Strains		
D. melanogaster: 20xUAS-CsChrimson-mVenus attP18	Klapoetke et al., 2014 PMID: 24509633	N.A.
D. melanogaster. ple2, DTHFS ^{+/-} BAC in attP2	Cichewicz et al., 2017 PMID: 27762066	N.A.

D. melanogaster: UAS-DTH	Cichewicz et al., 2017 PMID: 27762066	N.A.
D. melanogaster: TH-ZpGAL4DBD in VK00027	Aso et al., 2014a PMID: 25535793	N.A.
D. melanogaster: DDC-ZpGAL4DBD in VK00027	Aso et al., 2014a PMID: 25535793	N.A.
D. melanogaster: R52H03-p65ADZp attP40	Aso et al., 2014a PMID: 25535793	N.A.
D. melanogaster: R58E02-p65ADZp attP40	Aso et al., 2014a PMID: 25535793	N.A.
D. melanogaster: Gr66a-LexA	Aso et al., 2014a PMID: 25535793	N.A.
D. melanogaster: 13xLexAop2-CsChrimson-mVenus attP18	Klapoetke et al., 2014 PMID: 24509633	N.A.
D. melanogaster: pBPp65ADZpUw attP40	Seeds et al., 2014 PMID: 25139955	N.A.
D. melanogaster: VT045661-LexAp65 in JK22C	Aso et al., 2016 PMID: 27441388	N.A.
D. melanogaster: R73F07-p65ADZp attP40	Aso et al., 2014a PMID: 25535793	N.A.
D. melanogaster: R72B05-p65ADZp attP40	Aso et al., 2014a PMID: 25535793	N.A.
D. melanogaster: R24E12-p65ADZp attP40	Aso et al., 2014a PMID: 25535793	N.A.
<i>D. melanogaster. UAS-NOS-shRNA strain#1</i> y[1] sc[*] v[1]; P{y[+t7.7] v[+t1.8]=TRiP.HMC03076}attP2 (VALIUM20 vector; TCGGAGCAATATGCGAAGCAA)	Bloomington Drosophila Stock Center	50675
D. melanogaster. UAS-NOS-shRNA strain#2 SH09526.N in attP40 (VALIUM20 vector; ACCACTGGACATTATCAGCTA)	this study; Parkins et al., 2015 PMID: 26320097	N.A.
D. melanogaster. RNAi background for attP2	Bloomington Drosophila Stock Center	36303
D. melanogaster. RNAi background for attP40	Bloomington Drosophila Stock Center	36304
D. melanogaster. UAS-NOS	Bloomington Drosophila Stock Center	56823
D. melanogaster. MB-Switch	Mao et al., 2004 PMID: 14684832	N.A.
<i>D. melanogaster</i> : Gycbeta100B-RNAi w; P{y[+t7.7] v[+t1.8]=TRiP.HMJ22589}attP40	Bloomington Drosophila Stock Center	N.A.
D. melanogaster: Gycbeta100B[MI08892-GFSTF.2]	Bloomington Drosophila Stock Center Nagarkar-Jaiswal et al., 2015, PMID: 25824290	60565
D. melanogaster: MB320C-split-GAL4	Aso et al., 2014a PMID: 25535793	N.A.
D. melanogaster: UAS-7xHalo7::CAAX in attP40	Bloomington Drosophila Stock Center Sutcliffe et al., 2017 PMID: 28209589	67621
Oligonucleotides		
NOS FISH prob#01_CGCGCCGCAAGCTCAAGA	Biosearch Technologies	N.A.
NOS FISH prob#02_CCTAGCGCGACTTTTGAC	Biosearch Technologies	N.A.
NOS FISH prob#03_TCCTGGTGTGTCTCTATT	Biosearch Technologies	N.A.
NOS FISH prob#04_AACAGTCACTTCACTGGC	Biosearch Technologies	N.A.
NOS FISH prob#05_TCTTCTCACCTCTTTA	Biosearch Technologies	N.A.
NOS FISH prob#06_ACTTCGTTAACTCACGCC	Biosearch Technologies	N.A.

		I
NOS FISH prob#07_CTCGGCGTCTTTCAAACG	Biosearch Technologies	N.A.
NOS FISH prob#08_ACCTCCCATTTAACAGGT	Biosearch Technologies	N.A.
NOS FISH prob#09_ACCAAGTGGACAACCGAC	Biosearch Technologies	N.A.
NOS FISH prob#10_TTGCTCCGTTTGTTAGTC	Biosearch Technologies	N.A.
NOS FISH prob#11_CTCGACGAGGTGCAAGGG	Biosearch Technologies	N.A.
NOS FISH prob#12_CTGTTCTACAGCGTCGTA	Biosearch Technologies	N.A.
NOS FISH prob#13_TTGGACGCTAAGCACTGG	Biosearch Technologies	N.A.
NOS FISH prob#14_CGTGTCTGTGTCGTTGTT	Biosearch Technologies	N.A.
NOS FISH prob#15_GTTTTGAGTTCGTTGCGG	Biosearch Technologies	N.A.
NOS FISH prob#16_CAACTTACCGTTACCCGA	Biosearch Technologies	N.A.
NOS FISH prob#17_ACTCGCCGTTAGGTTTAC	Biosearch Technologies	N.A.
NOS FISH prob#18_GCCACTGAGGAGCGGGTC	Biosearch Technologies	N.A.
NOS FISH prob#19_TACTTCACCTGGTAGGCC	Biosearch Technologies	N.A.
NOS FISH prob#20_GTGTTCCTCGAGTTCGTC	Biosearch Technologies	N.A.
NOS FISH prob#21_CCTCCGAACGGTAGAAGT	Biosearch Technologies	N.A.
NOS FISH prob#22_CGGTAACTCCGTGGTGTT	Biosearch Technologies	N.A.
NOS FISH prob#23_CGCGGTCATAGAGGTGTC	Biosearch Technologies	N.A.
NOS FISH prob#24_AGCGGAGGTTAGGCGCTT	Biosearch Technologies	N.A.
NOS FISH prob#25_CGTGGTTGTGGTCGTAGC	Biosearch Technologies	N.A.
NOS FISH prob#26_CAGCTTGACCTACCGTCA	Biosearch Technologies	N.A.
NOS FISH prob#27_ACCGCAACCGCAACCAGT	Biosearch Technologies	N.A.
NOS FISH prob#28_CACGCCCAACAGGAGGGA	Biosearch Technologies	N.A.
NOS FISH prob#29_GACGTGACGCAGGCCTTT	Biosearch Technologies	N.A.
NOS FISH prob#30_CAAGCGCCCTTGATAGCG	Biosearch Technologies	N.A.
NOS FISH prob#31_AGCGGCTTTTTGGTTGTC	Biosearch Technologies	N.A.
NOS FISH prob#32_CGGGTCTTTCTACAGTGT	Biosearch Technologies	N.A.
NOS FISH prob#33_TAATAGCCAGCGCACGGC	Biosearch Technologies	N.A.
NOS FISH prob#34_AATACGTGGACCTGCTGC	Biosearch Technologies	N.A.
NOS FISH prob#35_GTCAGACGACTACGCGTT	Biosearch Technologies	N.A.
NOS FISH prob#36_CTGACTTCTTGTAGCTCC	Biosearch Technologies	N.A.
NOS FISH prob#37_CTCCAGATGCTGTGCGAC	Biosearch Technologies	N.A.
NOS FISH prob#38_GACGTTCCCAGCGCTCTA	Biosearch Technologies	N.A.
NOS FISH prob#39_AAAGGACGAGCTTCCGGT	Biosearch Technologies	N.A.
NOS FISH prob#40_ACATGCTCGTCGTAATAC	Biosearch Technologies	N.A.
Recombinant DNA		
pET28a-dNOS exon 16	Yakubovich et al., 2010 PMID: 20178753	N.A.
pRSET-dNOS exon 16	This paper	N.A.
Software and Algorithms		
DE-seq2	Love et al., 2014 PMID: 25516281	N.A.

Fiji	Schindelin et al., 2012 PMID: 22743772	N.A.
MATLAB	MathWorks	N.A.
Prism	GraphPad	N.A.

644

645 Flies

646	Drosophila strains used in this study are listed in the KEY RESOURCES TABLE. Crosses
647	were kept on standard cornmeal food supplemented with retinal (0.2 mM all-trans-retinal
648	prior to eclosion and then 0.4 mM) at 21°C at 60% relative humidity in the dark. Female
649	flies were sorted on cold plates at least 1 d prior to the experiments, and 4-10 d old flies
650	were used for experiments. Additional drugs were administered by feeding with retinal
651	containing fly food mixed with drugs. The L-DOPA (D9628, Sigma) or L-NNA were mixed
652	directly into melted fly food at final concentrations of 1 mg/ml or 1-100mM, respectively.
653	S-(-)-Carbidopa (C1335, Sigma) was dissolved in 1 ml of water at 10x the final
654	concentration and mixed with 9 ml of melted fly food.
655	Olfactory learning assay
656	Groups of approximately 20 female flies, 4-10 d post-eclosion, were trained and tested at
657	25°C at 50% relative humidity in the fully automated olfactory arena for optogenetics
658	experiments (Aso & Rubin, 2016; Pettersson, 1970; Vet, Vanlenteren, Heymans, & Meelis,
659	1983). The odors were diluted in paraffin oil (Sigma-Aldrich): 3-octanol (OCT; 1:1000;
660	Merck) and 4-methylcyclohexanol (MCH; 1:750; Sigma-Aldrich). Videography was
661	performed at 30 frames per second and analyzed using Fiji (Schindelin et al., 2012).
662	Statistical comparisons were performed (Prism; Graphpad Inc, La Jolla, CA 92037) using
663	the Kruskal Wallis test followed by Dunn's post-test for multiple comparison, except those
664	in Figure 6 which used Wilcoxon signed-rank test with Bonferroni correction to compare
665	from zero.

666

667 Immunohistochemistry

- 668 Dissection and immunohistochemistry of fly brains were carried out as previously described
- 669 with minor modifications (Jenett et al., 2012) using the antibodies listed in KEY
- 670 RESOURCES TABLE. Brains and VNCs of 3- to 10-day old female flies were dissected in
- 671 Schneider's insect medium and fixed in 2% paraformaldehyde in Schneider's medium for 55
- 672 min at room temperature (RT). After washing in PBT (0.5% Triton X-100 in PBS), tissues
- 673 were blocked in 5% normal goat serum (or normal donkey serum, depending on the
- 674 secondary antibody) for 90 min. Subsequently, tissues were incubated in primary antibodies
- 675 diluted in 5% serum in PBT for 2–4 days on a nutator at 4°C, washed four times in PBT for
- 15 min or longer, then incubated in secondary antibodies diluted in 5% serum in PBT for 2–
- 4 days on a Nutator at 4°C. Tissues were washed thoroughly in PBT four times for 15 min
- 678 or longer and mounted on glass slides with DPX.
- 679 For immunolabeling of NOS, the serum against NOS exon 16 was obtained from N.
- 680 Yakuobovich and P. H. O'Farrell (Yakubovich et al., 2010), and then affinity purified as
- 681 described below. In order to minimize non-specific signals, we absorbed 200 μL of anti-
- NOS antibody (1:1000) for one day with 30 fly brains in which NOS was knocked down
- panneuronally using elav-GAL4 and NOS-RNAi strain#1 (TRiP.HMC03076), and the
- supernatant was used for subsequent immunohistochemistry.
- 685

686 Purification of dNOS proteins and antibody

The pRSET-dNOS exon 16 construct, containing an N-terminal His tag and T7 gene 10
leader RBS site, was assembled as follows. The NEBuilder Assembly tool was used to

689	design primers for the NEBuilder HiFi DNA assembly (New England Biolabs # E2621S)
690	of dNOS exon 16 as contained in pET28a-dNOS exon 16 (gift of Nikita Yakubovich, O-
691	Farrell lab, UCSF) into the backbone vector pRSET (gift of Ariana Tkachuk, Janelia)
692	which was digested with BamHI/EcoRI. The assembled product, pRSET-dNOS exon 16,
693	was first transformed into NEB 5-alpha competent cells (New England Biolabs
694	#E2621S) and plated on LB plus ampicillin (60 μ l/ml).
695	For protein purification, pRSET-dNOS exon 16 DNA was then transformed into
696	T7 Express lysY/lq <i>E.coli</i> protein expression cells (New England Biolabs #C3013) and
697	plated on LB plus ampicillin (60 $\mu l/ml$). For large-scale growth, 500 ml of Miller's LB
698	plus ampicillin (60 $\mu l/ml)$ was inoculated from 5 ml of a starter culture and grown for
699	~3 hrs (~0.D. 0.5-0.7) at 37 °C and then induced by adding 0.5 mM IPTG. The culture
700	was allowed to grow at 18-20 °C overnight before spinning down and freezing the
701	recovered pellets which were divided in two 250 ml bottles.
702	To resuspend the thawed pellets (frozen overnight), 10-12 ml of the nonionic detergent-
703	based lysis reagent B-PER (Thermo Scientific #78266) in phosphate buffer containing
704	1mg/ml of lysozyme (Thermo Scientific #89833), nuclease (0.1 μ l/ml, Thermo Scientific
705	# 88701), and 1X HALT protease inhibitors (Thermo Scientific #1861279). The
706	suspension, divided into two 50 ml conical tubes, was gently shaken for 15-20 min at 30
707	°C before spinning down at 8,000 x g for 15 mins at 4 °C. We found that that the majority
708	of the dNOS exon 16 protein was in inclusion bodies and therefore we carried out
709	purification starting with the pellet .
710	Each pellet was resuspended in ~ 10 ml B-PER containing 200 µg/ml lysozyme.

The suspension was then mixed with 100 ml of a wash buffer containing 1:10 B-PER in

ice cold 1xPBS (diluted from 10X PBS stock, Fisher Scientific #BP3994) by pipetting
the mixture up and down and gentle agitation. The mixture was spun down at 15,000
rpm for 15 min at 4 °C. The pellet was similarly washed four more times. The washed
pellet was either stored at -20 °C overnight or resuspended in 7-12 ml of inclusion
body solubilization reagent (Thermo Scientific #78115). The protein suspension was
shaken for 30-40 min at 20 °C and then ultracentrifuged at 35,000 x g for 20-30 min at
4 °C.

719 For affinitiv purification of anti-dNOS antibody, the supernatant fraction was 720 concentrated using 50 ml conical tubes Vivaspin 20, 10,000 MWCO concentrators 721 (Sartorius # VS2002) and then dialyzed in 3-12 ml dialysis cassettes 10,000 MWCO 722 (Thermo Scientific #66810) against 1L of 4M guanidine HCL (diluted from 6M stock, 723 Sigma #SRE0066) in 1X PBS pH 8.0 for \sim 6 hours at 4 °C. The medium was further diluted to 2M guanidine HCL and the protein continued to dialyze overnight. Affinity 724 725 purification of the protein-antibody complex was performed using the AminoLink 726 Immobilization Kit (Thermo Scientific #44890). Approximately 6 mg of soluble dNOS 727 exon 16 protein in 2M guanidine in 1X PBS was bound to the agarose beads in the 728 column as antigen, and 1.9 ml of crude rabbit anti sera to dNOS exon 16 (gift of Nikita 729 Yakubovich of Patrick O-Farrell's lab) was run through the column. The purified dNOS 730 exon 16 rabbit anti-antibody fractions were eluted with IgG Elution buffer (Thermo 731 Scientific # 21004) and then concentrated with Vivaspin 20 tube concentrators before 732 dialyzed in 1XPBS at 4 °C for 2.5 days with one change of fresh 1X PBS.

733

734 **FISH**

735	The fluorescence in situ hybridization (FISH) probe libraries were designed based on
736	transcript sequences and were purchased from Biosearch Technologies. The FISH protocol
737	and dye labeling procedures were described previously (Long et al., 2017). FISH probes for
738	detecting tyrosine hydroxylase transcripts were described (Meissner et al., 2019). FISH
739	probes for NOS are listed in KEY RESOURCES TABLE. Each probe contains a 3'-end
740	amine-modified nucleotide that allows directly couple to an NHS-ester Cy3 dye (GE
741	Healthcare, PA23001) according to the manufacturer's instructions. The brains of 3-5 d old
742	adult flies were dissected in 1xPBS and fixed in 2% paraformaldehyde diluted PBS at room
743	temperature for 55 min. Brain tissues were washed in 0.5% PBT, dehydrated, and stored in
744	100% ethanol at 4°C. After exposure to 5% acetic acid at 4 °C for 5 min, the tissues were
745	fixed in 2% paraformaldehyde in 1xPBS for 55 min at 25 °C. The tissues were then washed
746	in 1× PBS with 1% of NaBH ₄ at 4 °C for 30 min. Following a 2 h incubation in
747	prehybridization buffer (15% formamide, 2× SSC, 0.1% Triton X-100) at 50 °C, the brains
748	were introduced to hybridization buffer (10% formamide, 2x SSC, 5x Denhardt's solution, 1
749	mg/ml yeast tRNA, 100 μ g/ml, salmon sperm DNA, 0.1% SDS) containing FISH probes at
750	50 °C for 10 h and then at 37 °C for an additional 10 h. After a series of wash steps, the
751	brains were dehydrated, cleared in xylene, and mounted in DPX. Image Z-stacks were
752	collected using an LSM880 confocal microscope fitted with an LD LCI Plan-Apochromat
753	25x/0.8 oil or Plan-Apochromat 63x/1.4 oil objective after the tissue cured for 24 h.
754	

755 RNA-Seq

756 Expression checks

757	Neurons of interest were isolated by expressing a fluorescent protein, either mCD8-GFP
758	or tdTomato, using split-Gal4 drivers specific for particular cell types and then manually
759	picking the fluorescent neurons from dissociated brain tissue. As a preliminary to the
760	sorting process, each driver/reporter combination was 'expression checked' to determine
761	if the marked cells were sufficiently bright to sorted effectively and if there was any off-
762	target expression in neurons other than those of interest. Drivers that met both these
763	requirements were used in sorting experiments as described below.
764	
765	Sorting of fluorescent-labelled neurons
766	Drosophila adults were collected daily as they eclosed, and aged 3-5 days prior to
767	dissection. For each sample, 60-100 brains were dissected in freshly prepared, ice cold
768	Adult Hemolymph Solution (AHS; 108 mM NaCl, 5 mM KCl, 2 mM CaCl ₂ , 8.2 mM
769	MgCl ₂ , 4 mM NaHCO ₃ , 1 mM NaH ₂ PO ₄ , 5 mM HEPES, 6 mM Trehalose, 10 mM
770	Sucrose), and the major tracheal branches removed. The brains were transferred to an 1.5
771	ml Eppendorf tube containing 500 microliters 1 mg/ml Liberase DH (Roche, prepared
772	according to the manufacturer's recommendation) in AHS, and digested for 1 h at room
773	temperature. The Liberase solution was removed and the brains washed three times with
774	ice cold AHS. The final wash was removed completely and 400 microliters of AHS+2%
775	Fetal Bovine Serum (FBS, Sigma) were added. The brain samples were gently triturated
776	with a series of fire-polished, FBS-coated Pasteur pipettes of descending pore sizes until
777	the tissue was homogenized, after which the tube was allowed to stand for 2-3 m so that
778	the larger debris could settle.

779	For hand sorting, the cell suspension was transferred to a Sylgard-lined Glass
780	Bottom Dish (Willco Wells), leaving the debris at the bottom of the Eppendorf tube, and
781	distributed evenly in a rectangular area in the center of the plate with the pipet tip. The
782	cells were allowed to settle for 10-30 min prior to picking. Fluorescent cells were picked
783	with a mouth aspirator consisting of a 0.8 mm Nalgene Syringe Filter (Thermo), a short
784	stretch of tubing, a plastic needle holder, and a pulled Kwik-Fil Borosilicate Glass
785	capillary (Fisher). Cells picked off the primary plate were transferred to a Sylgard-lined
786	35 mm Mat Tek Glass Bottom Microwell Dishes (Mat Tek) filled with 170 microliters
787	AHS+2%FBS, allowed to settle, and then re-picked. Three washes were performed in this
788	way before the purified cells were picked and transferred into 50 microliters buffer XB
789	from the PicoPure RNA Isolation Kit (Life Technologies), lysed for 5 m at 42°C, and
790	stored at -80°C.
791	For FACS sorting, the cell suspension was passed through a Falcon 5 ml round-
792	bottom tube fitted with a 35 micrometer cell strainer cap (Fisher), and sorted on a Becton
793	Dickson FACSAria II cell sorter, gated for single cells with a fluorescence intensity
794	exceeding that of a non-fluorescent control. Positive events were sorted directly into 50
795	microliters PicoPure XB buffer, the sample lysed for 5 m at 42°C, and stored at -80°C.
796	
797	Library preparation and sequencing

798 Total RNA was extracted from 100-500 pooled cells using the PicoPure kit (Life

799 Technologies) according to the manufacturer's recommendation, including the on-

800 column DNAse step. The extracted RNA was converted to cDNA and amplified with the

801 Ovation RNA-Seq System V2 (NuGEN), and the yield quantified by NanoDrop

802 (Thermo). The cDNA	was fragmented	and the sec	uencing a	daptors liga	ted onto the

- 803 fragments using the Ovation Rapid Library System (NuGEN). Library quality and
- 804 concentration was determined with the Kapa Illumina Library Quantification Kit
- 805 (KK4854, Kapa Biosystems), and the libraries were pooled and sequenced on an Illumina
- 806 NextSeq 550 with 75 base pair reads. Sequencing adapters were trimmed from the reads
- 807 with Cutadapt (Martin, 2011) prior to alignment with STAR (Dobin et al., 2013) to the
- 808 Drosophila r6.17 genome assembly on Flybase (Thurmond et al., 2019). The resulting
- transcript alignments were passed to RSEM (B. Li & Dewey, 2011) to generate gene
- 810 expression counts.
- 811

812 Modeling

813 Inferring parameters of DA and NO plasticity

814 We assume that the immediate effects of DA-mediated and NO-mediated changes at a

815 KC-to-MBON synapse are described by two variables d(t) and n(t), respectively. When

the KC and corresponding DAN are coactive, these variables are modified according to:

817 $\frac{d}{dt}d(t) = A_D(1-d(t))$

818
$$\frac{d}{dt}n(t) = A_N(1-n(t))$$
(1)

819 When the DAN is active but the KC is inactive,

$$\frac{d}{dt}d(t) = -B_D d(t)$$

 $\frac{d}{dt}n(t) = -B_N n(t) \tag{2}$

A and B determine how quickly the variables approach their maximum value of 1 or

823 minimum value of 0.

824 To model the time it takes for the effects of synaptic plasticity to occur, we also define

825 two additional variables

826
827

$$\tau_D \frac{d}{dt} D(t) = d(t) - D(t)$$
827

$$\tau_N \frac{d}{dt} N(t) = n(t) - N(t)$$
(3)

828

B29 D(t) and N(t) follow the values of d(t) and n(t), but with slower timescales τD and τN B30 respectively. Based on the data, we assume $\tau D = 30$ (s), and $\tau N = 10$ (min). This accounts B31 for the slower induction of NO-mediated effects.

832 We start by inferring AD and AN from data by relating the values of D(t) and N(t) in our

833 model to the activation of the MBON, and finally to the PI. We assume that the

normalized KC-to-MBON synaptic weight is given by w(t) $\propto 1 - D(t)$ (DA-mediated

depression) if NO is absent, or w(t) $\propto 1 + N(t)$ (NO-dependent facilitation) if DA is

- absent. In our model, odors A and B activate a random 10% of KCs (the results do not
- depend on the total number of KCs N_{KC}), and the activation of the MBON is given by r =

838 $r = \frac{1}{N_{KC}} \sum_{i} w_i s_i$, where $s_i = 1$ if the *i*th KC is active and 0 otherwise. At the beginning

of each trial, D(t) = N(t) = 0, so $w_i = 1$. If r_A and r_B are the MBON activations for odors A

and B, then we assume the probability of the fly choosing odor A is equal to a softmax

841 function of this activation:

842
$$P_{odorA} = \frac{e^{gr_A}}{e^{gr_A} + e^{gr_B}}$$

We also infer g, which determines how strongly the MBON activation influences the decision, with g = 0 corresponding to random choices.

845	We infer A_D , A_N , and g separately for DA-null and NO-null conditions. To do so, we
846	determine the values of the parameters that minimize the mean squared distance between
847	model prediction and experimentally measured PIs for the 1x 10s, 1x 1min, 3x 1min, and
848	10x 1min protocols (Figure 6B). This is accomplished by simulating the model defined
849	by Equations Eq. 1 to Eq. 3 and calculating the resulting preference index using Equation
850	Eq. 4. Optimal values for A_D , A_N , and g are found using a grid search. The optimization
851	leads to $A_D = 4.3 \text{ (min}^{-1})$ and $A_N = 0.96 \text{ (min}^{-1})$ (the inferred values of g are similar for the
852	two cases; 14.8 and 12.6, respectively). These values indicate that the DA effect saturates
853	more quickly than the NO effect, nearly reaching its maximum effect after 1x 1min
854	pairing.
855	Next, we model synaptic weights when both DA and NO-dependent changes occur. We
856	consider two forms of interaction, an additive one with $w(t) \propto N(t) - D(t)$ and a
857	multiplicative one with $w(t) \propto (1 - D(t))(1 + N(t))$. We use the values of A_D and A_N
858	inferred previously but allow g to be readjusted to best match the data (for the
859	multiplicative model, $g = 14.3$, similar to above, while for the additive model $g = 24.6$).
860	Only the multiplicative model qualitatively matches the experimental data (Figure 8D).
861	Modeling memory decay after 1x 1 min pairing
862	Next, we ask how memory decays after a pairing protocol. We assume that, after the
863	pairing protocol is complete, there is a background level of activity in the DANs, which
864	leads to depression according
865	to Eq. 2. We infer the values of B_D^{bg} and B_N^{bg} (where the superscript denotes decay due to
866	background DAN activity) using a grid search to minimize the mean squared distance
0(7	

867 between the predicted and actual PI from Figure 6D. Other parameters are set to the

- 868 previously determined values using the multiplicative model above. This leads to $B_{D}^{bg} =$
- 869 2.7 $(10^{-3} \text{ min}^{-1})$ and $B_D^{bg} = 1.6 (10^{-3} \text{ min}^{-1})$.
- 870 Predicting memory dynamics in reversal learning
- Finally, we also model the effects of different pairing protocols. We start by considering
- B72 DAN ac- tivation in the absence of odor. We infer values for B_D and B_N (different from
- the background levels above, since DANs are now activated rather than at their
- background levels of activation) by minimizing the mean squared difference between
- predicted and actual PI for NO-null and DA-null conditions (Figure 7F), and with the
- remaining parameters determined previously for the multi- plicative model. This yields
- $B_D = 0.26 \text{ (min}^{-1})$ and $B_N = 0.16 \text{ (min}^{-1})$. These parameters are used to predict the
- 878 behavior during reversal learning (Figure 7F).
- 879
- 880
- 881

- 883
- 884

885 Supplemental Information

886 SUPPLEMENTAL FILE 1 RNA-seq data

887

888

889 SUPPLEMENTAL TABLE 1

Figure	Genotype	Drug and other treatments
Figure 1D top	w, 20xUAS-CsChrimson-mVenus in attP18/w; R52H03-p65ADZp attP40/+; TH- ZpGAL4DBD in VK00027/+	
Figure 1E top	w, 20xUAS-CsChrimson-mVenus in attP18/w; R52H03-p65ADZp attP40/+; TH- ZpGAL4DBD in VK00027, ple2, DTHFS ^{+/-} in attP2/ ple2, DTHFS ^{+/-} in attP2	
Figure 1F top	w, 20xUAS-CsChrimson-mVenus in attP18/w; R52H03-p65ADZp attP40/+; TH- ZpGAL4DBD in VK00027, ple2, DTHFS ^{+/-} in attP2/ ple2, DTHFS ^{+/-} in attP2	1mg/ml L-Dopa, 0.1 mg/ml S-(-)- Carbidopa for 12-16 hours
Figure 1G top	w, 20xUAS-CsChrimson-mVenus in attP18/w; R52H03-p65ADZp attP40/UAS-dTH; TH- ZpGAL4DBD in VK00027, ple2, DTHFS ^{+/-} in attP2/ ple2, DTHFS ^{+/-} in attP2	
Figure 1D bottom	w, 20xUAS-CsChrimson-mVenus in attP18/w; R58E02-p65ADZp attP40/+; DDC- ZpGAL4DBD in VK00027/+	
Figure 1E bottom	w, 20xUAS-CsChrimson-mVenus in attP18/w; R58E02-p65ADZp attP40/+; DDC- ZpGAL4DBD in VK00027, ple2, DTHFS ^{+/-} in attP2/ ple2, DTHFS ^{+/-} in attP2	
Figure 1F bottom	w, 20xUAS-CsChrimson-mVenus in attP18/w; R58E02-p65ADZp attP40/+; DDC- ZpGAL4DBD in VK00027, ple2, DTHFS ^{+/-} in attP2/ ple2, DTHFS ^{+/-} in attP2	1mg/ml L-Dopa, 0.1 mg/ml S-(-)- Carbidopa for 12-16 hours
Figure 1G bottom	w, 20xUAS-CsChrimson-mVenus in attP18/w; R58E02-p65ADZp attP40/UAS-dTH; DDC-ZpGAL4DBD in VK00027, ple2, DTHFS ^{+/-} in attP2/ ple2, DTHFS ^{+/-} in attP2	
Figure 1-figure supplement 1 PAM Wild type	w, 20xUAS-CsChrimson-mVenus in attP18/w; R58E02-p65ADZp attP40/+; DDC- ZpGAL4DBD in VK00027/+	
Figure 1- figure supplement 1	w, 20xUAS-CsChrimson-mVenus in attP18/w; R58E02-p65ADZp attP40/+; DDC-	
PAM Dopamine null	<i>ZpGAL4DBD in VK00027, ple2, DTHFS</i> ^{+/-} <i>in attP2/ ple2, DTHFS</i> ^{+/-} <i>in attP2</i>	
Figure 1- figure supplement 1	w, 20xUAS-CsChrimson-mVenus in attP18/w; R58E02-p65ADZp attP40/UAS-dTH;	
PAM Dopamine null TH rescue	DDC-ZpGAL4DBD in VK00027, ple2, DTHFS ^{+/-} in attP2/ ple2, DTHFS ^{+/-} in attP2 w, 20xUAS-CsChrimson-mVenus in attP18/w; R52H03-p65ADZp attP40/+; TH-	
Figure 1-figure supplement 1 PPL1 Dopamine null	w, $20xOAS$ -CsChrimson-mvenus in attP16/w; $K52H0S$ -p05/AD2p attP40/+; TH - ZpGAL4DBD in VK00027, ple2, DTHFS ^{+/-} in attP2/ ple2, DTHFS ^{+/-} in attP2	
Figure 1- figure supplement 1	w, 20xUAS-CsChrimson-mVenus in attP18/w; R52H03-p65ADZp attP40/UAS-dTH; TH-	
PPL1 TH rescue	<i>ZpGAL4DBD in VK00027, ple2, DTHFS</i> ^{+/-} <i>in attP2/ ple2, DTHFS</i> ^{+/-} <i>in attP2</i>	
Figure 2	w, 20xUAS-CsChrimson-mVenus in attP18/w; Gr66a-GAL4/+; +/ ple2, DTHFS*/~ in attP2	
Figure 2	w, 20xUAS-CsChrimson-mVenus in attP18/w; Gr66a-GAL4/+; ple2, DTHFS ^{+/-} in attP2/ TH-ZpGAL4DBD in VK00027, ple2, DTHFS ^{+/-} in attP2	
Figure 2	w, 20xUAS-CsChrimson-mVenus in attP18/w; R52H03-p65ADZp attP40/+; +/TH- ZpGAL4DBD in VK00027, ple2, DTHFS ^{+/-} in attP2	
Figure 2	w, 20xUAS-CsChrimson-mVenus in attP18/w; R52H03-p65ADZp attP40/+; ple2, DTHFS ^{+/−} in attP2/TH-ZpGAL4DBD in VK00027, ple2, DTHFS ^{+/−} in attP2	
Figure 2	w, 13xLeXAop-CsChrimson-tdTomato attp18/w; VT045661-LexA JK22C/+; +/TH- ZpGAL4DBD in VK00027, ple2, DTHFS ^{+/-} in attP2	
Figure 2	w, 13xLeXAop-CsChrimson-tdTomato attp18/w; VT045661-LexA JK22C/+; ple2, DTHFS ^{+/-} in attP2/ TH-ZpGAL4DBD in VK00027, ple2, DTHFS ^{+/-} in attP2	
Figure 2	w, 20xUAS-CsChrimson-mVenus in attP18/w; R73F07-p65ADZp attP40/+; +/TH- ZpGAL4DBD in VK00027, ple2, DTHFS ^{+/-} in attP2	
Figure 2	w, 20xUAS-CsChrimson-mVenus in attP18/w; R73F07-p65ADZp attP40/+; ple2, DTHFS ^{+/-} in attP2/TH-ZpGAL4DBD in VK00027, ple2, DTHFS ^{+/-} in attP2	
Figure 2	w, 20xUAS-CsChrimson-mVenus in attP18/w; R72B05-p65ADZp attP40/+; +/TH- ZpGAL4DBD in VK00027, ple2, DTHFS ^{+/-} in attP2	

Figure 2	w, 20xUAS-CsChrimson-mVenus in attP18/w; R72B05-p65ADZp attP40/+; ple2, DTHFS ^{+/-} in attP2/TH-ZpGAL4DBD in VK00027, ple2, DTHFS ^{+/-} in attP2	
Figure 2	w, 20xUAS-CsChrimson-mVenus in attP18/w; R24E12-p65ADZp attP40/+; +/DDC- ZpGAL4DBD in VK00027, ple2, DTHFS ^{+/-} in attP2	
Figure 2	w, 20xUAS-CsChrimson-mVenus in attP18/w; R24E12-p65ADZp attP40/+; ple2, DTHFS ^{+/-} in attP2/DDC-ZpGAL4DBD in VK00027, ple2, DTHFS ^{+/-} in attP2	
Figure 2	w, 20xUAS-CsChrimson-mVenus in attP18/w; R58E02-p65ADZp attP40/+; TH- ZpGAL4DBD in VK00027/+	
Figure 2	w, 20xUAS-CsChrimson-mVenus in attP18/w; R58E02-p65ADZp attP40/+; ple2, DTHFS ^{+/-} in attP2/TH-ZpGAL4DBD in VK00027, ple2, DTHFS ^{+/-} in attP2	
Figure 2	w, 20xUAS-CsChrimson-mVenus in attP18/w; R58E02-p65ADZp attP40/+; +/DDC- ZpGAL4DBD in VK00027, ple2, DTHFS ^{*/-} in attP2	
Figure 2	w, 20xUAS-CsChrimson-mVenus in attP18/w; R58E02-p65ADZp attP40/+; ple2, DTHFS ^{+/-} in attP2/DDC-ZpGAL4DBD in VK00027, ple2, DTHFS ^{+/-} in attP2	
Figure 2- figure supplement 1 left	w, 20xUAS-CsChrimson-mVenus in attP18/w; R73F07-p65ADZp attP40/+; +/TH- ZpGAL4DBD in VK00027, ple2, DTHFS ^{*/-} in attP2	
Figure 2- figure supplement 1 center	w, 20xUAS-CsChrimson-mVenus in attP18/w; R72B05-p65ADZp attP40/+; +/TH- ZpGAL4DBD in VK00027, ple2, DTHFS ^{*/-} in attP2	
Figure 2- figure supplement 1 right	w, 20xUAS-CsChrimson-mVenus in attP18/w; R24E12-p65ADZp attP40/+; +/DDC- ZpGAL4DBD in VK00027, ple2, DTHFS ^{+/-} in attP2	
Figure 3D	w, 20xUAS-CsChrimson-mVenus in attP18/w;;+/MB320C	
Figure 3E	CS	
Figure 3-figure supplement 1B	w, 20xUAS-CsChrimson-mVenus in attP18/w;; background attP2 (BDSC#36303)/MB320C	
Figure 3-figure supplement 1B	w, 20xUAS-CsChrimson-mVenus in attP18/w;; UAS-NOS-shRNA HMC03076 in attP2/MB320C	
Figure 3-figure supplement 1C	CS	
Figure 3- figure supplement 1D Figure 4A	w/w; UAS-7xHalo7::CAAX in attP40/+;MB320C/+ w, 13xLeXAop-CsChrimson-tdTomato attp18/w; VT045661-LexA JK22C/+; ple2,	0-100 mM L-NNA, 100
		0.1 mg/ml S-(-)- Carbidopa, or 1mg/ml I Dopa, 0.1 mg/ml S-(-)- Carbidopa for 12-16 hours
Figure 4B left	w, 20xUAS-CsChrimson-mVenus in attP18/w; R58E02-p65ADZp attP40/+; TH- ZpGAL4DBD in VK00027, ple2, DTHFS ^{+/-} in attP2/ ple2, DTHFS ^{+/-} in attP2	0 or 100 mM L-NNA for 12-16 hours
Figure 4B right	w, 20xUAS-CsChrimson-mVenus in attP18/w; R73F07-p65ADZp attP40/+; TH- ZpGAL4DBD in VK00027, ple2, DTHFS ^{+/-} in attP2/ ple2, DTHFS ^{+/-} in attP2	0 or 100 mM L-NNA for 12-16 hours
Figure 4C left	w, 20xUAS-CsChrimson-mVenus in attP18/w; R52H03-p65ADZp attP40/background control attP40; TH-ZpGAL4DBD in VK00027, ple2, DTHFS ^{+/-} in attP2/ ple2, DTHFS ^{+/-} in attP2	
Figure 4C right	w, 20xUAS-CsChrimson-mVenus in attP18/w; R52H03-p65ADZp attP40/UAS-NOS- shRNA in attP40; TH-ZpGAL4DBD in VK00027, ple2, DTHFS*/- in attP2/ ple2, DTHFS*/- in attP2	
Figure 4D and E left	w, 20xUAS-CsChrimson-mVenus in attP18/w; R72B05-p65ADZp attP40/+; TH- ZpGAL4DBD in VK00027, ple2, DTHFS ^{v/-} in attP2/ ple2, DTHFS ^{v/-} in attP2	
Figure 4D and E right	w, 20xUAS-CsChrimson-mVenus in attP18/w; R72B05-p65ADZp attP40/UAS-NOS; TH- ZpGAL4DBD in VK00027, ple2, DTHFS ^{+/-} in attP2/ ple2, DTHFS ^{+/-} in attP2	
Figure 5C left	w, 13xLeXAop-CsChrimson-tdTomato attp18/w; VT045661-LexA JK22C/background control attp40;MB-switch-GAL4, ple2, DTHFS ^{+/-} in attP2 /ple2, DTHFS ^{+/-} in attP2	0 or 1.5 mg/mL RU48 for 2 days
Figure 5C center	w, 13xLeXAop-CsChrimson-tdTomato attp18/w; VT045661-LexA JK22C/UAS- Gycbeta100B-shRNA in attp40;MB-switch-GAL4, ple2, DTHFS ^{+/-} in attP2 /ple2, DTHFS ^{+/-} in attP2	0 or 1.5 mg/mL RU486 for 2 days
Figure 5C right	w, 13xLeXAop-CsChrimson-tdTomato attp18/w; VT045661-LexA JK22C/UAS- Gycbeta100B-shRNA in attp40;MB-switch-GAL4, ple2, DTHFS ^{+/-} in attP2 /ple2, DTHFS ^{+/-} in attP2	0 or 1.5 mg/mL RU486 and 1mg/ml L-Dopa, 0.1 mg/ml S-(-)- Carbidopa for 2 days
Figure 5- figure supplement 1 left	yw;Gycbeta100B[MI08892-GFSTF.2]	* *
Figure 5- figure supplement 1 left Figure 5- figure supplement 1	yw;Gycbeta100B[MI08892-GFSTF.2] CS	

Figure 6B Wild Type	w, 13xLeXAop-CsChrimson-tdTomato attp18/w; VT045661-LexA JK22C/+; /+; +/+	
Figure 6B L-NNA	w, 13xLeXAop-CsChrimson-tdTomato attp18/w; VT045661-LexA JK22C/+; /+; +/+	100mM L-NNA for 12-16 hours
Figure 6B DA null	w, 13xLeXAop-CsChrimson-tdTomato attp18/w; VT045661-LexA JK22C/+; ple2, DTHFS ^{+/-} in attP2/TH-ZpGAL4DBD in VK00027, ple2, DTHFS ^{+/-} in attP2	
Figure 6C	w, 13xLeXAop-CsChrimson-tdTomato attp18/w; VT045661-LexA JK22C/+; ple2, DTHFS ^{+/-} in attP2/TH-ZpGAL4DBD in VK00027, ple2, DTHFS ^{+/-} in attP2	
Figure 6D	w, 20xUAS-CsChrimson-mVenus in attP18/w;; background attP2 (BDSC#36303)/MB320C	
Figure 6D	w, 20xUAS-CsChrimson-mVenus in attP18/w;; UAS-NOS-shRNA HMC03076 in attP2/MB320C	
Figure 6E left	w, 20xUAS-CsChrimson-mVenus in attP18/yw;; background attP2 (BDSC#36303)/MB320C	
Figure 6E center	w, 20xUAS-CsChrimson-mVenus in attP18/yw;; UAS-NOS-shRNA HMC03076 in attP2/MB320C	
Figure 6E right	w, 13xLeXAop-CsChrimson-tdTomato attp18/w; VT045661-LexA JK22C/+; ple2, DTHFS ^{+/-} in attP2/TH-ZpGAL4DBD in VK00027, ple2, DTHFS ^{+/-} in attP2	
Figure 6-figure supplement 1A	w, 13xLeXAop-CsChrimson-tdTomato attp18/w; VT045661-LexA JK22C/+; +/+	
Figure 6-figure supplement 1B control	w/yw;; background attP2 (BDSC#36303)/MB320C	
Figure 6- figure supplement 1B NOS-RNAi	w/yw;;UAS-NOS-shRNA HMC03076 in attP2/MB320C	
Figure 6- figure supplement 1C	w, 13xLeXAop-CsChrimson-tdTomato attp18/w; VT045661-LexA JK22C/+; +/+	0 or 100mM L-NNA for 12-16 hours
Figure 7B-E Wild Type	w, 13xLeXAop-CsChrimson-tdTomato attp18/w; VT045661-LexA JK22C/+; /+; +/+	
Figure 7B-E L-NNA	w, 13xLeXAop-CsChrimson-tdTomato attp18/w; VT045661-LexA JK22C/+; /+; +/+	100mM L-NNA for 12-16 hours
Figure 7B-E DA null	w, 13xLeXAop-CsChrimson-tdTomato attp18/w; VT045661-LexA JK22C/+; ple2, DTHFS ^{+/-} in attP2/TH-ZpGAL4DBD in VK00027, ple2, DTHFS ^{+/-} in attP2	

References

896	Abrams, T. W., Yovell, Y., Onyike, C. U., Cohen, J. E., & Jarrard, H. E. (1998). Analysis of
897	sequence-dependent interactions between transient calcium and transmitter
898	stimuli in activating adenylyl cyclase in Aplysia: possible contribution to CS
899	US sequence requirement during conditioning. <i>Learn Mem</i> , 4(6), 496-509.
900	Abu-Soud, H. M., & Stuehr, D. J. (1993). Nitric oxide synthases reveal a role for
901	calmodulin in controlling electron transfer. Proc Natl Acad Sci U S A, 90(22),
902	10769-10772.
903	Akalal, D. B., Wilson, C. F., Zong, L., Tanaka, N. K., Ito, K., & Davis, R. L. (2006). Roles
904	for Drosophila mushroom body neurons in olfactory learning and memory.
905	<i>Learn Mem, 13</i> (5), 659-668. doi:10.1101/lm.221206
906	Aso, Y., Hattori, D., Yu, Y., Johnston, R. M., Iyer, N. A., Ngo, T. T., Rubin, G. M.
907	(2014). The neuronal architecture of the mushroom body provides a logic for
908	associative learning. <i>Elife, 3</i> , e04577. doi:10.7554/eLife.04577
909	Aso, Y., Herb, A., Ogueta, M., Siwanowicz, I., Templier, T., Friedrich, A. B.,
910	Tanimoto, H. (2012). Three dopamine pathways induce aversive odor
911	memories with different stability. <i>PLoS Genet, 8</i> (7), e1002768.
912	doi:10.1371/journal.pgen.1002768
913	Aso, Y., & Rubin, G. M. (2016). Dopaminergic neurons write and update memories
914	with cell-type-specific rules. <i>Elife, 5</i> . doi:10.7554/eLife.16135
915	Aso, Y., Sitaraman, D., Ichinose, T., Kaun, K. R., Vogt, K., Belliart-Guerin, G., Rubin,
916	G. M. (2014). Mushroom body output neurons encode valence and guide
917	memory-based action selection in Drosophila. <i>Elife, 3</i> , e04580.
918	doi:10.7554/eLife.04580
919	Aso, Y., Siwanowicz, I., Bracker, L., Ito, K., Kitamoto, T., & Tanimoto, H. (2010).
920	Specific dopaminergic neurons for the formation of labile aversive memory.
921	<i>Curr Biol, 20</i> (16), 1445-1451. doi:10.1016/j.cub.2010.06.048
922	Berry, J. A., Cervantes-Sandoval, I., Nicholas, E. P., & Davis, R. L. (2012). Dopamine is
923	required for learning and forgetting in Drosophila. <i>Neuron, 74</i> (3), 530-542.
924	doi:10.1016/j.neuron.2012.04.007
925	Berry, J. A., Phan, A., & Davis, R. L. (2018). Dopamine Neurons Mediate Learning and
926	Forgetting through Bidirectional Modulation of a Memory Trace. <i>Cell Rep,</i>
927	25(3), 651-662 e655. doi:10.1016/j.celrep.2018.09.051
928	Blum, A. L., Li, W., Cressy, M., & Dubnau, J. (2009). Short- and long-term memory in
929	Drosophila require cAMP signaling in distinct neuron types. <i>Curr Biol, 19</i> (16),
930	1341-1350. doi:10.1016/j.cub.2009.07.016
931	Blum, A. L., Li, W. H., Cressy, M., & Dubnau, J. (2009). Short- and Long-Term Memory
932	in Drosophila Require cAMP Signaling in Distinct Neuron Types. <i>Current</i>
933	<i>Biology, 19</i> (16), 1341-1350. doi:Doi 10.1016/J.Cub.2009.07.016
934	Boto, T., Louis, T., Jindachomthong, K., Jalink, K., & Tomchik, S. M. (2014).
935	Dopaminergic modulation of cAMP drives nonlinear plasticity across the

0.2.6	
936	Drosophila mushroom body lobes. <i>Curr Biol, 24</i> (8), 822-831.
937	doi:10.1016/j.cub.2014.03.021
938	Bouzaiane, E., Trannoy, S., Scheunemann, L., Placais, P. Y., & Preat, T. (2015). Two
939	independent mushroom body output circuits retrieve the six discrete
940	components of Drosophila aversive memory. <i>Cell Rep, 11</i> (8), 1280-1292.
941	doi:10.1016/j.celrep.2015.04.044
942	Bredt, D. S., Hwang, P. M., & Snyder, S. H. (1990). Localization of nitric oxide
943	synthase indicating a neural role for nitric oxide. <i>Nature, 347</i> (6295), 768-
944	770. doi:10.1038/347768a0
945	Burke, C. J., Huetteroth, W., Owald, D., Perisse, E., Krashes, M. J., Das, G., Waddell,
946	S. (2012). Layered reward signalling through octopamine and dopamine in
947	Drosophila. <i>Nature, 492</i> (7429), 433-437. doi:10.1038/nature11614
948	Byrne, J. H., Baxter, D. A., Buonomano, D. V., Cleary, L. J., Eskin, A., Goldsmith, J. R.,
949	Scholz, K. P. (1991). Neural and molecular bases of nonassociative and
950	associative learning in Aplysia. <i>Ann N Y Acad Sci, 627</i> , 124-149.
951	Cassenaer, S., & Laurent, G. (2012). Conditional modulation of spike-timing-
952	dependent plasticity for olfactory learning. <i>Nature, 482</i> (7383), 47-U62.
953	doi:Doi 10.1038/Nature10776
954	Cervantes-Sandoval, I., Chakraborty, M., MacMullen, C., & Davis, R. L. (2016).
955	Scribble Scaffolds a Signalosome for Active Forgetting. <i>Neuron, 90</i> (6), 1230-
956	1242. doi:10.1016/j.neuron.2016.05.010
957	Chen, Y., Saulnier, J. L., Yellen, G., & Sabatini, B. L. (2014). A PKA activity sensor for
958	quantitative analysis of endogenous GPCR signaling via 2-photon FRET-FLIM
959	imaging. <i>Front Pharmacol, 5</i> , 56. doi:10.3389/fphar.2014.00056
960	Cichewicz, K., Garren, E. J., Adiele, C., Aso, Y., Wang, Z., Wu, M., Hirsh, J. (2016). A
961	new brain dopamine-deficient Drosophila and its pharmacological and
962	genetic rescue. <i>Genes Brain Behav</i> . doi:10.1111/gbb.12353
963	Claridge-Chang, A., Roorda, R. D., Vrontou, E., Sjulson, L., Li, H., Hirsh, J., &
964	Miesenbock, G. (2009). Writing memories with light-addressable
965	reinforcement circuitry. <i>Cell, 139</i> (2), 405-415. doi:10.1016/j.cell.2009.08.034
966	Cohn, R., Morantte, I., & Ruta, V. (2015). Coordinated and Compartmentalized
967	Neuromodulation Shapes Sensory Processing in Drosophila. <i>Cell, 163</i> (7),
968	1742-1755. doi:10.1016/j.cell.2015.11.019
969	Croset, V., Treiber, C. D., & Waddell, S. (2018). Cellular diversity in the Drosophila
970	midbrain revealed by single-cell transcriptomics. <i>Elife, 7</i> .
971	doi:10.7554/eLife.34550
972	Das, G., Klappenbach, M., Vrontou, E., Perisse, E., Clark, C. M., Burke, C. J., & Waddell,
973	S. (2014). Drosophila learn opposing components of a compound food
974	stimulus. <i>Curr Biol, 24</i> (15), 1723-1730. doi:10.1016/j.cub.2014.05.078
975	Davis, R. L., Cherry, J., Dauwalder, B., Han, P. L., & Skoulakis, E. (1995). The cyclic
976	AMP system and Drosophila learning. <i>Mol Cell Biochem, 149-150,</i> 271-278.
977	Debelle, J. S., & Heisenberg, M. (1994). Associative Odor Learning in Drosophila
978	Abolished by Chemical Ablation of Mushroom Bodies. Science, 263(5147),
979	692-695. doi:Doi 10.1126/Science.8303280

980	Dobin, A., Davis, C. A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., Gingeras, T. R.
981	(2013). STAR: ultrafast universal RNA-seq aligner. <i>Bioinformatics, 29</i> (1), 15-
982	21. doi:10.1093/bioinformatics/bts635
983	Dubnau, J., Grady, L., Kitamoto, T., & Tully, T. (2001). Disruption of
984	neurotransmission in Drosophila mushroom body blocks retrieval but not
985	acquisition of memory. <i>Nature, 411</i> (6836), 476-480. doi:10.1038/35078077
986	Eichler, K., Li, F., Litwin-Kumar, A., Park, Y., Andrade, I., Schneider-Mizell, C. M.,
987	Cardona, A. (2017). The complete connectome of a learning and memory
988	centre in an insect brain. <i>Nature, 548</i> (7666), 175-182.
989	doi:10.1038/nature23455
990	Erber, J., MASUHR, T., & MENZEL, R. (1980). Localization of short-term memory in
991	the brain of the bee, Apis mellifera. <i>Physiological Entomology</i> , 5(4).
992	doi:10.1111/j.1365-3032.1980.tb00244.x
993	Eroglu, E., Gottschalk, B., Charoensin, S., Blass, S., Bischof, H., Rost, R., Malli, R.
994	(2016). Development of novel FP-based probes for live-cell imaging of nitric
995	oxide dynamics. Nat Commun, 7, 10623. doi:10.1038/ncomms10623
996	Farris, S. M. (2011). Are mushroom bodies cerebellum-like structures? <i>Arthropod</i>
997	Struct Dev, 40(4), 368-379. doi:10.1016/j.asd.2011.02.004
998	Fred P. Davis1, *,X, Aljoscha Nern1,*, Serge Picard1,3, Michael B. Reiser1, Gerald M.
999	Rubin1, Sean R. Eddy1,4, and Gilbert L. Henry1,5,X. (2018). A genetic,
1000	genomic, and computational resource for exploring neural circuit function.
1001	bioRxiv.
1002	Galili, D. S., Dylla, K. V., Ludke, A., Friedrich, A. B., Yamagata, N., Wong, J. Y.,
1003	Tanimoto, H. (2014). Converging circuits mediate temperature and shock
1004	aversive olfactory conditioning in Drosophila. <i>Curr Biol, 24</i> (15), 1712-1722.
1005	doi:10.1016/j.cub.2014.06.062
1006	Gervasi, N., Tchenio, P., & Preat, T. (2010). PKA dynamics in a Drosophila learning
1007	center: coincidence detection by rutabaga adenylyl cyclase and spatial
1008	regulation by dunce phosphodiesterase. <i>Neuron, 65</i> (4), 516-529.
1009	doi:10.1016/j.neuron.2010.01.014
1010	Han, K. A., Millar, N. S., Grotewiel, M. S., & Davis, R. L. (1996). DAMB, a novel
1011	dopamine receptor expressed specifically in Drosophila mushroom bodies.
1012	Neuron, 16(6), 1127-1135.
1013	Heisenberg, M. (2003). Mushroom body memoir: From maps to models. <i>Nature</i>
1014	<i>Reviews Neuroscience,</i> 4(4), 266-275. doi:Doi 10.1038/Nrn1074
1015	Herry, C., & Johansen, J. P. (2014). Encoding of fear learning and memory in
1016	distributed neuronal circuits. <i>Nat Neurosci, 17</i> (12), 1644-1654.
1017	doi:10.1038/nn.3869
1018	Hige, T., Aso, Y., Modi, M. N., Rubin, G. M., & Turner, G. C. (2015). Heterosynaptic
1019	Plasticity Underlies Aversive Olfactory Learning in Drosophila. <i>Neuron, 88</i> (5),
1020	985-998. doi:10.1016/j.neuron.2015.11.003
1021	Huetteroth, W., Perisse, E., Lin, S., Klappenbach, M., Burke, C., & Waddell, S. (2015).
1022	Sweet taste and nutrient value subdivide rewarding dopaminergic neurons
1023	in Drosophila. <i>Curr Biol, 25</i> (6), 751-758. doi:10.1016/j.cub.2015.01.036

1024	Ichinose, T., Aso, Y., Yamagata, N., Abe, A., Rubin, G. M., & Tanimoto, H. (2015).					
1025	Reward signal in a recurrent circuit drives appetitive long-term memory					
1026	formation. <i>Elife, 4</i> . doi:10.7554/eLife.10719					
1027	Isabel, G., Pascual, A., & Preat, T. (2004). Exclusive consolidated memory phases in					
1028	Drosophila. <i>Science, 304</i> (5673), 1024-1027. doi:10.1126/science.1094932					
1029	Kanao, T., Sawada, T., Davies, S. A., Ichinose, H., Hasegawa, K., Takahashi, R., Imai,					
1030	Y. (2012). The nitric oxide-cyclic GMP pathway regulates FoxO and alters					
1031	dopaminergic neuron survival in Drosophila. <i>PLoS One, 7</i> (2), e30958.					
1032	doi:10.1371/journal.pone.0030958					
1033	Keene, A. C., & Waddell, S. (2007). Drosophila olfactory memory: single genes to					
1034	complex neural circuits. <i>Nature Reviews Neuroscience, 8</i> (5), 341-354. doi:Doi					
1035	10.1038/Nrn2098					
1036	Kim, Y. C., Lee, H. G., & Han, K. A. (2007). D1 dopamine receptor dDA1 is required in					
1037	the mushroom body neurons for aversive and appetitive learning in					
1038	Drosophila. <i>J Neurosci, 27</i> (29), 7640-7647. doi:10.1523/JNEUROSCI.1167-					
1039	07.2007					
1040	Kirkhart, C., & Scott, K. (2015). Gustatory learning and processing in the Drosophila					
1041	mushroom bodies. <i>J Neurosci, 35</i> (15), 5950-5958.					
1042	doi:10.1523/JNEUROSCI.3930-14.2015					
1043	Knapek, S., Sigrist, S., & Tanimoto, H. (2011). Bruchpilot, a synaptic active zone					
1044	protein for anesthesia-resistant memory. <i>J Neurosci, 31</i> (9), 3453-3458.					
1045	doi:10.1523/JNEUROSCI.2585-10.2011					
1046	Kosakai, K., Tsujiuchi, Y., & Yoshino, M. (2015). Nitric oxide augments single Ca(2+)					
1047	channel currents via cGMP-dependent protein kinase in Kenyon cells isolated					
1048	from the mushroom body of the cricket brain. <i>J Insect Physiol, 78</i> , 26-32.					
1049	doi:10.1016/j.jinsphys.2015.04.009					
1050	Krashes, M. J., DasGupta, S., Vreede, A., White, B., Armstrong, J. D., & Waddell, S.					
1051	(2009). A Neural Circuit Mechanism Integrating Motivational State with					
1052	Memory Expression in Drosophila. <i>Cell, 139</i> (2), 416-427. doi:Doi					
1053	10.1016/J.Cell.2009.08.035					
1054	Kruttner, S., Traunmuller, L., Dag, U., Jandrasits, K., Stepien, B., Iyer, N., Keleman,					
1055 1056	K. (2015). Synaptic Orb2A Bridges Memory Acquisition and Late Memory					
1050	Consolidation in Drosophila. <i>Cell Rep, 11</i> (12), 1953-1965. doi:10.1016/j.celrep.2015.05.037					
1057	Kuntz, S., Poeck, B., & Strauss, R. (2017). Visual Working Memory Requires					
1058	Permissive and Instructive NO/cGMP Signaling at Presynapses in the					
1060	Drosophila Central Brain. <i>Curr Biol, 27</i> (5), 613-623.					
1061	doi:10.1016/j.cub.2016.12.056					
1062	Lev-Ram, V., Wong, S. T., Storm, D. R., & Tsien, R. Y. (2002). A new form of cerebellar					
1063	long-term potentiation is postsynaptic and depends on nitric oxide but not					
1064	cAMP. Proc Natl Acad Sci U S A, 99(12), 8389-8393.					
1065	doi:10.1073/pnas.122206399					
1066	Li, B., & Dewey, C. N. (2011). RSEM: accurate transcript quantification from RNA-Seq					
1067	data with or without a reference genome. <i>BMC Bioinformatics</i> , <i>12</i> , 323.					
1068	doi:10.1186/1471-2105-12-323					

1069	Li, Y., & van den Pol, A. N. (2006). Differential target-dependent actions of						
1070	coexpressed inhibitory dynorphin and excitatory hypocretin/orexin						
1071	neuropeptides. <i>J Neurosci, 26</i> (50), 13037-13047.						
1072	doi:10.1523/JNEUROSCI.3380-06.2006						
1073	Lin, S., Owald, D., Chandra, V., Talbot, C., Huetteroth, W., & Waddell, S. (2014). Neural						
1074	correlates of water reward in thirsty Drosophila. <i>Nat Neurosci, 17</i> (11), 1536-						
1075	1542. doi:10.1038/nn.3827						
1076	Liu, C., Placais, P. Y., Yamagata, N., Pfeiffer, B. D., Aso, Y., Friedrich, A. B., Tanimoto,						
1077	H. (2012). A subset of dopamine neurons signals reward for odour memory						
1078	in Drosophila. <i>Nature, 488</i> (7412), 512-516. doi:10.1038/nature11304						
1079	Long, X., Colonell, J., Wong, A. M., Singer, R. H., & Lionnet, T. (2017). Quantitative						
1080	mRNA imaging throughout the entire Drosophila brain. <i>Nature Methods,</i>						
1081	<i>14</i> (7), 703-706. doi:10.1038/nmeth.4309						
1082	Love, M. I., Huber, W., & Anders, S. (2014). Moderated estimation of fold change and						
1083	dispersion for RNA-seq data with DESeq2. <i>Genome Biol, 15</i> (12), 550.						
1084	doi:10.1186/s13059-014-0550-8						
1085	Maher, B. J., & Westbrook, G. L. (2008). Co-transmission of dopamine and GABA in						
1086	periglomerular cells. J Neurophysiol, 99(3), 1559-1564.						
1087	doi:10.1152/jn.00636.2007						
1088	Mao, Z., & Davis, R. L. (2009). Eight different types of dopaminergic neurons						
1089	innervate the Drosophila mushroom body neuropil: anatomical and						
1090	physiological heterogeneity. <i>Front Neural Circuits, 3,</i> 5.						
1091	doi:10.3389/neuro.04.005.2009						
1092	Mao, Z., Roman, G., Zong, L., & Davis, R. L. (2004). Pharmacogenetic rescue in time						
1093	and space of the rutabaga memory impairment by using Gene-Switch. <i>Proc</i>						
1094 1095	Natl Acad Sci U S A, 101(1), 198-203. doi:10.1073/pnas.0306128101						
1095	Marr, D. (1969). A theory of cerebellar cortex. <i>J Physiol, 202</i> (2), 437-470. Martin, M. (2011). Cutadapt Removes Adapter Sequences From High-Throughput						
1090	Sequencing Reads. <i>EMBnet.journal, Vol.17, No,1</i> .						
1097	doi:https://doi.org/10.14806/ej.17.1.200						
1098	McGuire, S. E., Deshazer, M., & Davis, R. L. (2005). Thirty years of olfactory learning						
1100	and memory research in Drosophila melanogaster. <i>Prog Neurobiol</i> , 76(5),						
1100	328-347. doi:Doi 10.1016/J.Pneurobio.2005.09.003						
1102	McGuire, S. E., Le, P. T., & Davis, R. L. (2001). The role of Drosophila mushroom body						
1103	signaling in olfactory memory. <i>Science</i> , <i>293</i> (5533), 1330-1333.						
1104	doi:10.1126/science.1062622						
1105	McGuire, S. E., Le, P. T., Osborn, A. J., Matsumoto, K., & Davis, R. L. (2003).						
1106	Spatiotemporal rescue of memory dysfunction in Drosophila. Science,						
1107	302(5651), 1765-1768. doi:10.1126/science.1089035						
1108	Medina, J. F., Repa, J. C., Mauk, M. D., & LeDoux, J. E. (2002). Parallels between						
1109	cerebellum and amygdala-dependent conditioning. Nature Reviews						
1110	Neuroscience, 3(2), 122-131. doi:Doi 10.1038/Nrn728						
1111	Meissner, G. W., Nern, A., Singer, R. H., Wong, A. M., Malkesman, O., & Long, X. (2019).						
1112	Mapping Neurotransmitter Identity in the Whole-Mount Drosophila Brain						
1113	Using Multiplex High-Throughput Fluorescence in Situ Hybridization.						
1114	<i>Genetics</i> , 211(2), 473-482. doi:10.1534/genetics.118.301749						

1115	Morton, D. B., Langlais, K. K., Stewart, J. A., & Vermehren, A. (2005). Comparison of						
1116	the properties of the five soluble guanylyl cyclase subunits in Drosophila						
1117	melanogaster. J Insect Sci, 5, 12.						
1118	Ni, J. Q., Zhou, R., Czech, B., Liu, L. P., Holderbaum, L., Yang-Zhou, D., Perrimon, N.						
1119	(2011). A genome-scale shRNA resource for transgenic RNAi in Drosophila.						
1120	Nature Methods, 8(5), 405-407. doi:10.1038/nmeth.1592						
1121	Niens, J., Reh, F., Coban, B., Cichewicz, K., Eckardt, J., Liu, Y. T., Riemensperger, T.						
1122	D. (2017). Dopamine Modulates Serotonin Innervation in the Drosophila						
1123	Brain. Front Syst Neurosci, 11, 76. doi:10.3389/fnsys.2017.00076						
1124	Niewalda, T., Michels, B., Jungnickel, R., Diegelmann, S., Kleber, J., Kahne, T., &						
1125	Gerber, B. (2015). Synapsin Determines Memory Strength after Punishment-						
1126	and Relief-Learning. <i>Journal of Neuroscience, 35</i> (19), 7487-7502.						
1127	doi:10.1523/Jneurosci.4454-14.2015						
1128	Nusbaum, M. P., Blitz, D. M., & Marder, E. (2017). Functional consequences of						
1129	neuropeptide and small-molecule co-transmission. <i>Nat Rev Neurosci, 18</i> (7),						
1130	389-403. doi:10.1038/nrn.2017.56						
1131	Okada, R., Rybak, J., Manz, G., & Menzel, R. (2007). Learning-related plasticity in PE1						
1132	and other mushroom body-extrinsic neurons in the honeybee brain. J						
1133	<i>Neurosci, 27</i> (43), 11736-11747. doi:10.1523/JNEUROSCI.2216-07.2007						
1134	Owald, D., Felsenberg, J., Talbot, C. B., Das, G., Perisse, E., Huetteroth, W., & Waddell,						
1135	S. (2015). Activity of defined mushroom body output neurons underlies						
1136	learned olfactory behavior in Drosophila. <i>Neuron, 86</i> (2), 417-427.						
1137	doi:10.1016/j.neuron.2015.03.025						
1138	Pai, T. P., Chen, C. C., Lin, H. H., Chin, A. L., Lai, J. S., Lee, P. T., Chiang, A. S. (2013).						
1139	Drosophila ORB protein in two mushroom body output neurons is necessary						
1140	for long-term memory formation. <i>Proc Natl Acad Sci U S A, 110</i> (19), 7898-						
1141	7903. doi:10.1073/pnas.1216336110						
1142 1143	Patriarchi, T., Cho, J. R., Merten, K., Howe, M. W., Marley, A., Xiong, W. H., Tian, L.						
1145	(2018). Ultrafast neuronal imaging of dopamine dynamics with designed genetically encoded sensors. <i>Science, 360</i> (6396).						
1144	doi:10.1126/science.aat4422						
1146	Pavot, P., Carbognin, E., & Martin, J. R. (2015). PKA and cAMP/CNG Channels						
1147	Independently Regulate the Cholinergic Ca(2+)-Response of Drosophila						
1148	Mushroom Body Neurons(1,2,3). <i>eNeuro</i> , 2(2). doi:10.1523/ENEURO.0054-						
1149	14.2015						
1150	Pettersson, J. (1970). Insect Systematics & Evolution, 1 (1), 63 – 73.						
1151	doi:10.1163/187631270X00357						
1152	Placais, P. Y., Trannoy, S., Friedrich, A. B., Tanimoto, H., & Preat, T. (2013). Two pairs						
1153	of mushroom body efferent neurons are required for appetitive long-term						
1154	memory retrieval in Drosophila. <i>Cell Rep, 5</i> (3), 769-780.						
1155	doi:10.1016/j.celrep.2013.09.032						
1156	Poulin, J. F., Zou, J., Drouin-Ouellet, J., Kim, K. Y., Cicchetti, F., & Awatramani, R. B.						
1157	(2014). Defining midbrain dopaminergic neuron diversity by single-cell gene						
1158	expression profiling. <i>Cell Rep,</i> 9(3), 930-943.						
1159	doi:10.1016/j.celrep.2014.10.008						

1160	Qin, H., Cressy, M., Li, W., Coravos, J. S., Izzi, S. A., & Dubnau, J. (2012). Gamma
1161	neurons mediate dopaminergic input during aversive olfactory memory
1162	formation in Drosophila. <i>Curr Biol, 22</i> (7), 608-614.
1163	doi:10.1016/j.cub.2012.02.014
1164	Quinn, W. G., Harris, W. A., & Benzer, S. (1974). Conditioned behavior in Drosophila
1165	melanogaster. Proc Natl Acad Sci U S A, 71(3), 708-712.
1166	Rabinovich, D., Yaniv, S. P., Alyagor, I., & Schuldiner, O. (2016). Nitric Oxide as a
1167	Switching Mechanism between Axon Degeneration and Regrowth during
1168	Developmental Remodeling. <i>Cell, 164</i> (1-2), 170-182.
1169	doi:10.1016/j.cell.2015.11.047
1170	Regulski, M., & Tully, T. (1995). Molecular and biochemical characterization of
1171	dNOS: a Drosophila Ca2+/calmodulin-dependent nitric oxide synthase. <i>Proc</i>
1172	Natl Acad Sci U S A, 92(20), 9072-9076.
1173	Riemensperger, T., Isabel, G., Coulom, H., Neuser, K., Seugnet, L., Kume, K.,
1174	Birman, S. (2011). Behavioral consequences of dopamine deficiency in the
1175	Drosophila central nervous system. Proc Natl Acad Sci U S A, 108(2), 834-839.
1176	doi:10.1073/pnas.1010930108
1177	Riemensperger, T., Voller, T., Stock, P., Buchner, E., & Fiala, A. (2005). Punishment
1178	prediction by dopaminergic neurons in Drosophila. <i>Curr Biol, 15</i> (21), 1953-
1179	1960. doi:10.1016/j.cub.2005.09.042
1180	Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T.,
1181	Cardona, A. (2012). Fiji: an open-source platform for biological-image
1182	analysis. <i>Nature Methods</i> , 9(7), 676-682. doi:10.1038/nmeth.2019
1183	Schroll, C., Riemensperger, T., Bucher, D., Ehmer, J., Voller, T., Erbguth, K., Fiala, A.
1184	(2006). Light-induced activation of distinct modulatory neurons triggers
1185	appetitive or aversive learning in Drosophila larvae. <i>Curr Biol, 16</i> (17), 1741-
1186	1747. doi:10.1016/j.cub.2006.07.023
1187	Schwaerzel, M., Monastirioti, M., Scholz, H., Friggi-Grelin, F., Birman, S., &
1188	Heisenberg, M. (2003). Dopamine and octopamine differentiate between
1189	aversive and appetitive olfactory memories in Drosophila. Journal of
1190	Neuroscience, 23(33), 10495-10502.
1191	Sejourne, J., Placais, P. Y., Aso, Y., Siwanowicz, I., Trannoy, S., Thoma, V., Preat, T.
1192	(2011). Mushroom body efferent neurons responsible for aversive olfactory
1193	memory retrieval in Drosophila. <i>Nat Neurosci, 14</i> (7), 903-910.
1194	doi:10.1038/nn.2846
1195	Shah, S., & Hyde, D. R. (1995). Two Drosophila genes that encode the alph and beta
1196	subunits of the brain soluble guanylyl cyclase. J Biol Chem, 270(25), 15368-
1197	15376.
1198	Shibuki, K., & Okada, D. (1991). Endogenous nitric oxide release required for long-
1199	term synaptic depression in the cerebellum. <i>Nature, 349</i> (6307), 326-328.
1200	doi:10.1038/349326a0
1201	Shuai, Y., Lu, B., Hu, Y., Wang, L., Sun, K., & Zhong, Y. (2010). Forgetting is regulated
1202	through Rac activity in Drosophila. <i>Cell, 140</i> (4), 579-589.
1203	doi:10.1016/j.cell.2009.12.044

1204	Skoulakis, E. M., Kalderon, D., & Davis, R. L. (1993). Preferential expression in						
1205	mushroom bodies of the catalytic subunit of protein kinase A and its role in						
1206	learning and memory. <i>Neuron, 11</i> (2), 197-208.						
1207	Stasiv, Y., Regulski, M., Kuzin, B., Tully, T., & Enikolopov, G. (2001). The Drosophila						
1208	nitric-oxide synthase gene (dNOS) encodes a family of proteins that can						
1209	modulate NOS activity by acting as dominant negative regulators. J Biol Chem,						
1210	276(45), 42241-42251. doi:10.1074/jbc.M105066200						
1211	Stuber, G. D., Hnasko, T. S., Britt, J. P., Edwards, R. H., & Bonci, A. (2010).						
1212	Dopaminergic terminals in the nucleus accumbens but not the dorsal						
1213	striatum corelease glutamate. <i>J Neurosci, 30</i> (24), 8229-8233.						
1214	doi:10.1523/JNEUROSCI.1754-10.2010						
1215	Sulzer, D., Joyce, M. P., Lin, L., Geldwert, D., Haber, S. N., Hattori, T., & Rayport, S.						
1216	(1998). Dopamine neurons make glutamatergic synapses in vitro. <i>J Neurosci</i> ,						
1217	<i>18</i> (12), 4588-4602.						
1218	Sun, F., Zeng, J., Jing, M., Zhou, J., Feng, J., Owen, S. F., Li, Y. (2018). A Genetically						
1219	Encoded Fluorescent Sensor Enables Rapid and Specific Detection of						
1220	Dopamine in Flies, Fish, and Mice. <i>Cell</i> , 174(2), 481-496 e419.						
1221	doi:10.1016/j.cell.2018.06.042						
1222	Takemura, S. Y., Aso, Y., Hige, T., Wong, A., Lu, Z., Xu, C. S., Scheffer, L. K. (2017). A						
1223	connectome of a learning and memory center in the adult Drosophila brain.						
1224	<i>Elife, 6</i> . doi:10.7554/eLife.26975						
1225	Tanaka, N. K., Tanimoto, H., & Ito, K. (2008). Neuronal assemblies of the Drosophila						
1226	mushroom body. <i>J Comp Neurol, 508</i> (5), 711-755. doi:10.1002/cne.21692						
1227	Tang, S., & Yasuda, R. (2017). Imaging ERK and PKA Activation in Single Dendritic						
1228	Spines during Structural Plasticity. <i>Neuron</i> , 93(6), 1315-1324 e1313.						
1229	doi:10.1016/j.neuron.2017.02.032						
1230	Tecuapetla, F., Patel, J. C., Xenias, H., English, D., Tadros, I., Shah, F., Koos, T.						
1231	(2010). Glutamatergic signaling by mesolimbic dopamine neurons in the						
1232	nucleus accumbens. J Neurosci, 30(20), 7105-7110.						
1233	doi:10.1523/JNEUROSCI.0265-10.2010						
1234	Tempel, B. L., Bonini, N., Dawson, D. R., & Quinn, W. G. (1983). Reward learning in						
1235	normal and mutant Drosophila. Proc Natl Acad Sci USA, 80(5), 1482-1486.						
1236	Thurmond, J., Goodman, J. L., Strelets, V. B., Attrill, H., Gramates, L. S., Marygold, S. J., .						
1237	FlyBase, C. (2019). FlyBase 2.0: the next generation. <i>Nucleic Acids Res,</i>						
1238	47(D1), D759-D765. doi:10.1093/nar/gky1003						
1239	Tomchik, S. M. (2013). Dopaminergic neurons encode a distributed, asymmetric						
1240	representation of temperature in Drosophila. J Neurosci, 33(5), 2166-2176a.						
1241	doi:10.1523/JNEUROSCI.3933-12.2013						
1242	Tomchik, S. M., & Davis, R. L. (2009). Dynamics of learning-related cAMP signaling						
1243	and stimulus integration in the Drosophila olfactory pathway. <i>Neuron, 64</i> (4),						
1244	510-521. doi:10.1016/j.neuron.2009.09.029						
1245	Trannoy, S., Redt-Clouet, C., Dura, J. M., & Preat, T. (2011). Parallel processing of						
1246	appetitive short- and long-term memories in Drosophila. <i>Curr Biol, 21</i> (19),						
1247	1647-1653. doi:10.1016/j.cub.2011.08.032						

1248	Tritsch, N. X., Ding, J. B., & Sabatini, B. L. (2012). Dopaminergic neurons inhibit						
1249	striatal output through non-canonical release of GABA. <i>Nature, 490</i> (7419),						
1250	262-266. doi:10.1038/nature11466						
1251	Tully, T., & Quinn, W. G. (1985). Classical-Conditioning and Retention in Normal and						
1252	Mutant Drosophila-Melanogaster. Journal of Comparative Physiology a-						
1253	Sensory Neural and Behavioral Physiology, 157(2), 263-277. doi:Doi						
1254	10.1007/Bf01350033						
1255	Vanover, K. E., Davis, R. E., Zhou, Y., Ye, W., Brasic, J. R., Gapasin, L., Wong, D. F.						
1256	(2018). Dopamine D2 receptor occupancy of lumateperone (ITI-007): a						
1257	Positron Emission Tomography Study in patients with schizophrenia.						
1258	Neuropsychopharmacology. doi:10.1038/s41386-018-0251-1						
1259	Venken, K. J., Schulze, K. L., Haelterman, N. A., Pan, H., He, Y., Evans-Holm, M.,						
1260	Bellen, H. J. (2011). MiMIC: a highly versatile transposon insertion resource						
1261	for engineering Drosophila melanogaster genes. <i>Nature Methods, 8</i> (9), 737-						
1262	743.						
1263	Vet, L. E. M., Vanlenteren, J. C., Heymans, M., & Meelis, E. (1983). An Air-Flow						
1264	Olfactometer for Measuring Olfactory Responses of Hymenopterous						
1265	Parasitoids and Other Small Insects. <i>Physiological Entomology, 8</i> (1), 97-106.						
1266	doi:Doi 10.1111/J.1365-3032.1983.Tb00338.X						
1267	Walkinshaw, E., Gai, Y., Farkas, C., Richter, D., Nicholas, E., Keleman, K., & Davis, R. L.						
1268	(2015). Identification of genes that promote or inhibit olfactory memory						
1269	formation in Drosophila. <i>Genetics, 199</i> (4), 1173-1182.						
1270	doi:10.1534/genetics.114.173575						
1271	White, N. M., & McDonald, R. J. (2002). Multiple parallel memory systems in the						
1272	brain of the rat. <i>Neurobiol Learn Mem, 77</i> (2), 125-184.						
1273	doi:10.1006/nlme.2001.4008						
1274	Wu, J. K., Tai, C. Y., Feng, K. L., Chen, S. L., Chen, C. C., & Chiang, A. S. (2017). Long-						
1275	term memory requires sequential protein synthesis in three subsets of						
1276	mushroom body output neurons in Drosophila. <i>Sci Rep, 7</i> (1), 7112.						
1277	doi:10.1038/s41598-017-07600-2						
1278	Yakubovich, N., Silva, E. A., & O'Farrell, P. H. (2010). Nitric oxide synthase is not						
1279	essential for Drosophila development. <i>Curr Biol, 20</i> (4), R141-142.						
1280	doi:10.1016/j.cub.2009.12.011						
1281	Yamagata, N., Ichinose, T., Aso, Y., Placais, P. Y., Friedrich, A. B., Sima, R. J.,						
1282	Tanimoto, H. (2015). Distinct dopamine neurons mediate reward signals for						
1283	short- and long-term memories. <i>Proc Natl Acad Sci U S A, 112</i> (2), 578-583.						
1284	doi:10.1073/pnas.1421930112						
1285	Zars, T., Fischer, M., Schulz, R., & Heisenberg, M. (2000). Localization of a short-term						
1286	memory in Drosophila. <i>Science, 288</i> (5466), 672-675.						

1289 Figures legends

1290 Figure 1. Dopaminergic neurons can induce memories without dopamine, but with

1291 opposite valence

- 1292 (A) Conceptual diagram of the circuit organization in the MB lobes. Sparse activity in the
- 1293 parallel axonal fibers of the KCs represent odor stimuli. DAN inputs induce plasticity at KC
- 1294 to MBON synapses (represented by circles), when DAN and KC activity are coincident (red
- 1295 circles). The MB compartments (indicated by the colored rectangles) differ in their learning
- and memory decay rates. The actual MB contains 15 compartments (Tanaka et al., 2008).
- 1297 (B) Top: Design of the optogenetic olfactory arena and a diagram illustrating odor paths in
- 1298 the arena. (C) Schematic representation of the innervation patterns of the PPL1 (blue;

1299 R52H03-p65ADZp; TH-ZpGAL4DBD) and PAM cluster (orange; R58E02-p65ADZp; DDC-

1300 ZpGAL4DBD) dopaminergic neurons used to train flies. A diagram of the training protocol

1301 is also shown. Flies were trained and tested in the olfactory area. A 1-min odor exposure

1302 was paired with thirty 1-s pulses of red light (627 nm peak and 34.9 μ W/mm²), followed by

1303 1-min without odor or red light, and then presentation of a second odor for 1-min without

red light. In one group of flies, odors A and B were 3-octanol and 4-methylcyclohexanol,

1305 respectively, while in a second group of flies, the odors were reversed. Memory was tested

1306 immediately after three repetition of training bouts by giving flies a binary choice between

1307 the two odors in the olfactory area.

1308 (D-G) Odor memories induced by the collective optogenetic activation of PPL1-γ1pedc,

1309 PPL1- $\gamma 2\alpha' 1$, PPL1- $\alpha' 2\alpha 2$ and PPL1- $\alpha 3$ DANs (upper panels; blue lines) or activation of

1310 PAM cluster DANs (lower panels; orange lines) in wild type (D), TH mutant (E), TH

1311 mutant with feeding of 1mg/ml L-DOPA and 0.1mg/ml carbidopa (F), or TH mutant with

1312 cell-type specific expression of a wild-type TH cDNA (G; see the methods for drug

- 1313 treatment and supplemental information for genotypes). Time courses of the performance
- 1314 index (PI) during the test period are shown as the average of reciprocal experiments.
- 1315 The PI is defined as [(number of flies in the odor A quadrants) (number of flies in
- 1316 odor B quadrants)]/(total number of flies). Thick line and shading represent mean ±
- 1317 SEM. N= 12-16. Two split-GAL4 drivers R52H03-p65ADZp in attP40; TH-ZpGAL4DBD
- in VK00027 and R58E02-p65ADZp in attP40; DDC-ZpGAL4DBD in VK00027 were used
- 1319 for driving 20xUAS-CsChrimon-mVenus in PPL1 or PAM DANs, respectively.

1320 Figure 1-figure supplement 1 Cell type specific rescue of TH

- 1321 TH immunoreactivity (from left to right): PAM DANs in wild type; PAM DANs in TH
- 1322 mutant; PAM DANs in TH mutant with cell-type specific rescue of TH using UAS-TH;
- 1323 PPL1 DANs in TH mutant; and or PPL1 DANs in TH mutant with cell-type specific rescue
- 1324 of TH using UAS-TH. In the TH mutant background, TH immunoreacivity in the brain was
- 1325 completely abolished, except for a few cells dorsal medial surface of the brain and near the
- 1326 ventral lateral protocerebram (arrow heads). With UAS-TH, TH immunoreactivity was
- 1327 restored in PAM or PPL1 DANs (arrows). The expression pattern, visualized using UAS-
- 1328 CsChrimson-mVenus, of the PAM and PPL1 drivers used is shown in lower panels.
- 1329

1330 Figure 2. Cotransmitter effects differ among DAN cell types

- 1331 The PI of olfactory memories measured immediately after 3x 1-min training in TH
- 1332 mutant/TH+ heterozygotes (+) or TH mutant/TH mutant (-) background. Odor
- 1333 presentation was paired with either activation of bitter taste neurons (Gr66a-GAL4) or

1334	.1 . 1 1					1 1.	1.
1 4 4/1	the indicated	CUINCAT AT LIANC	' in which o	ntogonfic acti	wation was m	sed as diagram	ad in
1224	the multated	SUBSEL OF DAINS		Didgennie ach	vation was u	seu as uiaeí ann	cu III

- 1335 Figure 1C. A split-GAL4 driver without enhancer (empty) was used as a control. The
- 1336 bottom and top of each box represents the first and third quartile, and the horizontal
- 1337 line dividing the box is the median; the PI was calculated by averaging the PIs from the
- 1338 final 30 s of each test period (see legend to Figure 1). The whiskers represent the
- 1339 minimum and maximum. N= 8-16. Asterisk indicates significance from the empty-
- 1340 GAL4 control. Comparison with chance level (i.e. PI=0) resulted in identical statistical
- 1341 significance: *, p < 0.05; **, p < 0.01; ***, p < 0.001; n.s., not significant. See Figure S2
- 1342 and <u>www.janelia.org/split-gal4</u> for expression patterns of split-GAL4 drivers.

1343 Figure 2-figure supplement 1 Expression patterns of driver lines

- 1344 Expression patterns of CsChrimson-mVenus driven by denoted split-GAL4 drivers made in
- 1345 this study. All other lines used were reported previously. See supplemental table 1 for the
- 1346 list of driver lines and Aso et al. 20114a and www.janelia.org/split-gal4 for primary image
- 1347 data of other split-GAL4 lines.

1348

1349 Figure 3 Identification of NOS1 in PPL1-γ1pedc and PAM- γ5 by RNA-Seq

1350 (A) The RNA-Seq data of two cell types that showed the valence-inversion phenotype

(i.e. PPL1- γ 1pedc and PAM- γ 5) were pooled and compared against the pooled data of all

- 1352 other cell types examined (DANs, MBONs, KCs). The -log₁₀ of p-values for comparing
- 1353 number of counted transcripts between the pooled data of PPL1- γ 1pedc and PAM- γ 5
- relative to that of all other cell types were plotted against the log₂ of fold changes

1355	observed in the expression levels of transcripts. Different splice isoforms of genes are				
1356	plotted separately (dots). Green dots represent the 2,981 transcripts expressed at levels				
1357	above 10 transcripts per million (TPM) in both PPL1- γ 1pedc and PAM- γ 5. Gray dots				
1358	represent the 31,539 transcripts with expression levels below 10 TPM in one or both of				
1359	these two DANs. Dots on +20 or -20 x-axis represent splice isoforms that were dected				
1360	only in the PPL1- γ 1pedc and PAM- γ 5 or other cell types. Magenta dots show the three				
1361	splice isoforms of NOS.				
1362	(B) Mean TPM of NOS splicing isoforms. The magenta dashed line highlights PPL1-				
1363	γ 1pedc and PAM- γ 5, the two cell types that showed the valence-inversion phenotype.				
1364	(C) Map of the NOS locus. Exons and protein coding sequences are dipicted as boxes and				
1365	gray boxes, respectively. Only the full length isoform NOS-RA (dNOS1) produces a				
1366	functional NOS protein (Stasiv et al., 2001). The antibody we used was raised against				
1367	exon16 (Kuntz et al., 2017; Yakubovich et al., 2010). Arrows indicate the first four exons				
1368	of NOS1 and NOS4 where 40 FISH probes were designed to recognize these, but not				
1369	NOS-RK transcripts. See Methods for details of the position and sequence of the probes.				
1370	(D) NOS immunoreactivity was observed in the γ 1pedc compartment of the MB.				
1371	Immunoreactivity was markedly reduced by expressing NOS-RNAi in PPL1-y1pedc.				
1372	(E) Distribution of NOS-immunoreactivity inside the MB is displayed. Voxels above				
1373	mean +2SD of the entire brain are shown in 12 bit scale in magenta. Insert shows a				
1374	quantification of NOS-immunoreactivity in each MB compartment. Signal in $\gamma 1$ was				
1375	significantly higher than 12 compartments indicated by the bracket (Kruskal-Wallis				

- 1376 with Dann's test for selected pairs). Signal in γ 1 was significantly higher than 8
- 1377 compartments indicated by the bracket; *, p < 0.05; **, p < 0.01; n=12
- 1378

1379 Figure 3-figure supplement 1 Controls for RNA-Seq reproducibility, anti-NOS

- 1380 antibody specifity and FISH probes.
- 1381 (A) Relationship between cDNA yields, number of sorted cells, mapped reads, number
- 1382 of detected genes with more than one mapped read. Data for each biological replicate
- are shown. Original data are presented in Supplementary File 1.
- 1384 (B) Quantification of NOS immunoreactivity (a.u.; arbitrary units) in the $\gamma 1$ or $\alpha 2$
- 1385 compartment with or without NOS-RNAi. The whiskers represent the minimum and
- 1386 maximum. N= 12. Asterisk indicates significance from 0: *, p < 0.05; n.s., not significant.

1387 Horizontal dotted line indicates mean NOS signals in the brain.

- 1388 (C) Outside of the MB, only a couple of additional DANs that are labeled by the NOS
- 1389 FISH probes. Colabelling by FISH probes against TH (green) and first 4 exons of NOS1
- 1390 transcripts (magenta) is shown. Diagram and projection of anterior or posterior brains
- 1391 are shown. Circles in diagram represent soma of DANs detected by TH probes; the
- 1392 different clusters of dopaminergic cell bodies (PAM, PAL, T1, PPM1, PPM2, PPM3,
- 1393 PPL1, PPL2c, PPL2ab and VUM) are labeled. Circles filled with magenta represent
- 1394 DANs overlapping with NOS (arrows). In addition to one cell in PPL1 (presumably
- 1395 PPL1- γ 1pedc) and about a dozen of PAM cluster cells, we observed that one cell in the
- 1396 PPL2ab cluster and a small TH-positive cell outside, but near, the PPL2ab cluster
- 1397 (arrows) were labeled with NOS-FISH probes.
- 1398 (D) NOS-FISH signal was observed in soma of PPL1- γ 1pedc but not in PPL1- α '2 α 2.

1399

1400 Figure 3-figure supplement 2 RNA-seq data for genes related to

1401 neurotransmitters

- 1402 Mean TPM values for each gene isoform are listed with the corresponding gene ID. See
- 1403 Supplementary File 1 for the full data set.

1404

1405 Figure 4 NOS in dopaminergic neurons contributes to memory formation.

1406 (A) Increasing the dose of L-NNA reduced the positive-valence memory induced by

1407 activation of PPL1-γ1pedc in a TH mutant background. The ability to form an negative-

1408 valence memory was restored by feeding of L-DOPA plus cardidopa and this memory

- 1409 formation was not affected by L-NNA. N=8-12.
- 1410 (B) Feeding of L-NNA in a TH mutant background reduced the negative-valence
- 1411 memory induced by activation of the combination of PAM- γ 5 and PAM- β '2a, but not of

1412 PPL1- $\gamma 2\alpha' 1$. N= 12-16

1413 (C) Activation of PPL1 DANs (PPL1- γ 1pedc, PPL1- γ 2 α '1, PPL1- α '2 α 2 and PPL1- α 3)

1414 induced significant positive-valence memory in TH mutant background. The valence of

1415 the induced memory was negative when NOS-RNAi was expressed in the same DANs.

1416 We postulate that the negative-valence memory observed when NOS-RNAi is expressed

1417 results from an as yet unidentified cotransmitter released by PPL1- $\gamma 2\alpha' 1$ (see also panel B

1418 and Figure 2). N= 8

1419 (D) NOS immunoreactivity in the α 3 compartment in wild type (left) and after ectopic

1420 expression of NOS (right).

1421	(E) Activation of PPL1- α 3 with ectopic expression of NOS induced significant positive-			
1422	valence memory after 3x 1-min training protocol in TH mutant background (Figure 1C).			
1423	Note that activation of PPL1- α 3 can induce negative-valence memory in wild-type			
1424	background, but only after 10x spaced training (Aso & Rubin, 2016). N= 12			
1425	In A-C and E, memories assessed immediately after 3x 1-min training are shown. The			
1426	bottom and top of each box represents the first and third quartile, and the horizontal			
1427	line dividing the box is the median. The whiskers represent the minimum and			
1428	maximum. N= 8-16. Asterisk indicates significance of designated pair in A and B, or			
1429	from 0 in C and D: *, p < 0.05; ***, p < 0.001; n.s., not significant.			

- 1431 Figure 5 Soluble guanylate cyclase in the Kenyon cells is required to form NO-
- 1432 dependent memory
- 1433 (A) Diagram of soluble or receptor guanylyl cyclases in Drosophila.
- 1434 (B) RNA-seq data indicate coexpression of Gycα99B and Gycβ100B in KCs, MBONs and
- 1435 DANs. For comparison, other guanylate cyclase are also shown. Note that RNA-Seq
- 1436 detected transcripts of neuropeptide gene Nplp1 in both PPL1-γ1pedc and PAM-γ5 (Figure
- 1437 S4), but expression of its receptor Gyc76C was barely detectable compared to
- 1438 Gyc α 99B and Gyc β 100B.
- 1439 (C) Induction of Gycβ100B-shRNA in Kenyon cells by activating MB247-switch driver
- 1440 (Mao, Roman, Zong, & Davis, 2004) with RU-486 feeding reduced the positive-valence

1441	memory induced by	y PPL1-γ	1pedc. We also observed a	a partial effect in the flies without
------	-------------------	----------	---------------------------	---------------------------------------

- 1442 RU-486, presumably due to leaky expression. Negative-valence memory with
- 1443 additional feeding of L-DOPA and cardidopa was not affected by Gycβ100B-shRNA
- induction in KCs. Memories immediately after 3x 1-min training are shown. The
- 1445 bottom and top of each box represents the first and third quartile, and the horizontal
- 1446 line dividing the box is the median. The whiskers represent the minimum and
- 1447 maximum. N= 12-16. Asterisk indicates significance of designated pair: *, p < 0.05; **,p
- 1448 < 0.01; n.s., not significant.
- 1449

1450 Figure 5-figure supplement 1

1451 **Expression of Gycbeta100B in the mushroom body lobes**

- 1452 Distribution of Gycbeta100B-EGFP in flies carrying the Gycbeta100B[MI08892-
- 1453 GFSTF.2] in the mushroom body lobes is shown with anterior to posterior confocal
- 1454 sections. Right panels show images of wild-type fly, which did not contain the
- 1455 Gycbeta100B-EGFP insertion, prepared with the identical immunolabelling procedure.
- 1456

1457 **Figure 6 NO-dependent effect develops slowly, requires longer training than**

1458 dopamine-dependent memory, and shortens memory retention

- 1459 (A) Schematic diagram of training protocols.
- 1460 (B) Learning rate by activation of PPL1-γ1pedc in wild type (left; blue), wild type with L-
- 1461 NNA feeding (center; purple) or TH mutant background (right; blue). Memory scores were
- 1462 not significantly affected by L-NNA feeding in any of the training protocols in wild type

1463 flies. A single 10-s training was insufficient to induce any detectable memory in TH mutant

1464 background, but induced significant negative-valence memory in wildtype background.

1465 (C) Time course of NO-dependent, positive-valence memory induced by PPL1-γ1pedc in a

1466 TH mutant background after 1x 1-min training. Data point and error bars indicate mean and

1467 SEM. N=8-10. Note that the plot is split in the time axis to better display the kinetics.

1468 (D) After 1x 1-min training, a cell type specific knock down of NOS in PPL1-γ1pedc

1469 prolonged the retention of negative-valence memory induced by PPL1-γ1pedc in wild-type

background measured at 3 and 6 hours. Note that expression of NOS-RNAi did not affect

1471 the score of immediate memory. N=12.

1472 (E) Effect of repetitive trainings on 1-day memory. Repetitive training with activation of

1473 PPL1-γ1pedc did not induced significant 1-day memory in wild-type background

1474 irrespective of training protocols (blue; left). Flies expressing NOS-shRNA showed

1475 significant 1-day memory after 10x spaced training (purple; center). In a TH mutant

1476 background (right), appetitve memory was induced by 3X and 10X repetitive training. For

1477 activation of PPL1-γ1pedc, VT045661-LexA was used as the driver for experiments in B,

1478 C and TH mutant background data in E, and MB320C split-GAL4 for wild-type and NOS-

1479 RNAi data in D. We made consistent observations with both global L-NNA inhibition of

1480 NOS and cell-type-specific NOS-RNAi (see Figure S6). The bottom and top of each box

1481 represents the first and third quartile, and the horizontal line dividing the box is the

1482 median. The whiskers represent the minimum and maximum. N= 12-16. Asterisk

1483 indicates significance between control and NOS-RNAi in D, between designated pair in

1484 E, or from 0 in all others: *, p < 0.05; **,p < 0.01; ***,p < 0.001; n.s., not significant.

1485 Figure 6-figure supplement 1

- 1486 (A) L-NNA feeding prolonged retention of memory induced by 1x 1-min training with
- 1487 PPL1-γ1pedc activation at 3 and 6 hour time points. VT045661-LexA was used as a
- 1488 driver to express CsChrimson-mVenus. Data point and error bars indicate mean and
- 1489 SEM. *, p < 0.05; **,p < 0.01
- (B) Knockdown of NOS in PPL1- γ 1pedc prolonged memory retention after 1x 1-min
- 1491 training with 60V electric shock. N=12.
- 1492 **(C)** Inhibition of NOS by L-NNA prolonged the retention of memory that was induced by
- 1493 10x spaced training with activation of PPL1-γ1pedc using the VT045661-LexA driver.
- 1494 N=12. The bottom and top of each box represents the first and third quartile, and the
- 1495 horizontal line dividing the box is the median. The whiskers represent the minimum and

1496 maximum. *, p < 0.05

1497 Figure 7 Nitric oxide enhances fast update of memory

- 1498 (A) Experimental design to measure dynamics of memory when flies encounter new
- 1499 experiences after establishing an initial odor memory that was induced by the 3x 1-min
- 1500 spaced training that paired odor presentation with optogenetic PPL1-γ1ped activation .
- 1501 (B) In reversal learning, the control odor in the first three trainings was now paired with
- 1502 activation of PPL1-γ1ped. In all three cases, the first reversal learning was sufficient to
- 1503 modify the odor preference. However, only in wild-type flies was this change large
- 1504 enough that the flies prefered the new odor. In L-NNA fed or TH mutant (dopamine

- deficient) flies changing the odor preference required multiple training sessions with thenew odor.
- 1507 (C) Three exposures to each of the two odors did not significantly change the odor
- 1508 preference in any of the three sets of flies.
- 1509 (D) One activation of PPL1- γ 1ped without odor quickly reduced conditioned response in
- 1510 wild type. L-NNA fed flies or dopamine deficient flies required three or five times,
- 1511 respectively, more repetitions of PPL1- γ 1ped activation to significantly reduce the
- 1512 conditioned response.
- 1513 (E) Changes in PI induced by 3x training (as measured in Test 2) resulting from the first
- 1514 reversal training (left) or from DAN activation without odor presentation (right) (as
- 1515 measured in Test3). The observed changes were significantly larger in wild-type flies
- 1516 compared to L-NNA fed flies.

1517 Figure 8 Modeling dopamine and NO mediated plasticity

- 1518 (A) Summary of plasticity model for independent DA and NO pathways. Synaptic weight
- 1519 w_i from KC_i to an MBON is increased or decreased depending on the pairing protocol. A and
- 1520 B determine the magnitude of the depression or potentiation induced by pairing, and τ
- 1521 determines the timescale over which weight changes occur.
- 1522 (B) Illustration of the effects of the model in (A), for only DA (left) or only NO (right)
- 1523 dependent plasticity. In each plot, KC and DANs are first co-activated, followed by a later
- 1524 DA activation without KC activation.

- 1525 (C) Model performance index (PI) for different pairing protocols. In (C)-(F), crosses
- 1526 represent the means of data from Figure 7.
- 1527 (D) Modeling effects of combined DA and NO dependent plasticity. Gray curve: synaptic
- 1528 weights w(t) are modeled as an additive function of DA and NO dependent effects D(t) and
- 1529 N(t), $w(t) \propto N(t) D(t)$. Blue curve: a multiplicative interaction with $w(t) \propto (1 + N(t)) (1 1)$
- 1530 *D(t)*).
- 1531 (E) Modeling 24-hour memory decay following 1x1-min odor pairing. We assume a low
- 1532 level of spontaneous DAN activity and choose B_{DA} and B_{NO} to fit the data. Blue curve:
- 1533 control. Purple curve: only DA dependent plasticity (compared to data from NOS-RNAi
- 1534 experiment).
- 1535 (F) Modeling effects of DAN activation and reversal learning. B_{DA} and B_{NO} are chosen to fit
- 1536 the effects of DAN activation (top). The model qualitatively reproduces the effects of
- 1537 reversal learning (bottom) with no free parameters.
- 1538

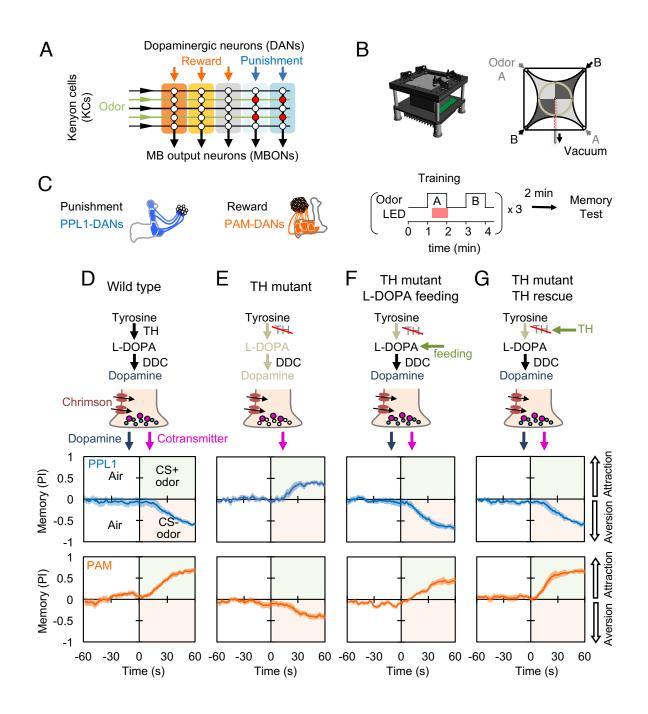


Figure 1

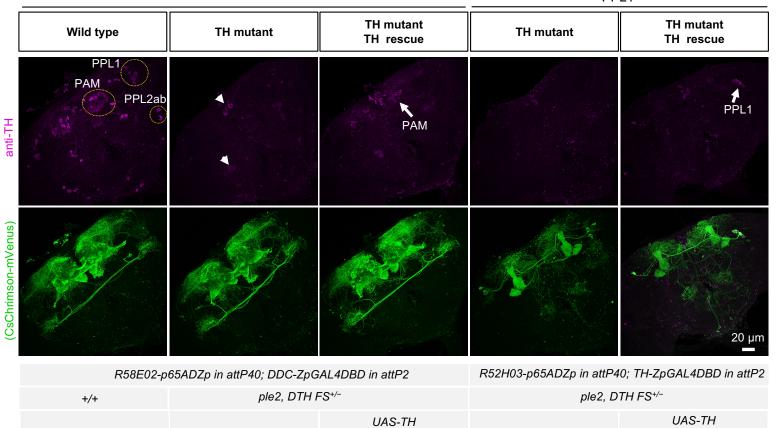


Figure 1 - figure supplement 1

membrane

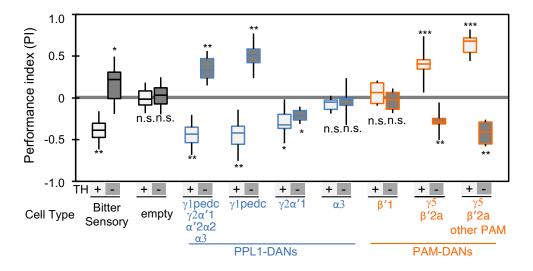


Figure 2



Figure2 - figure supplement 1

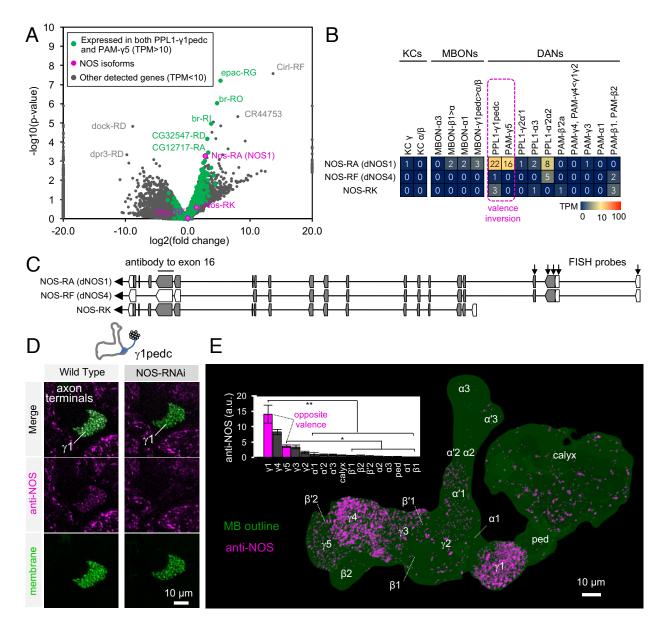


Figure 3

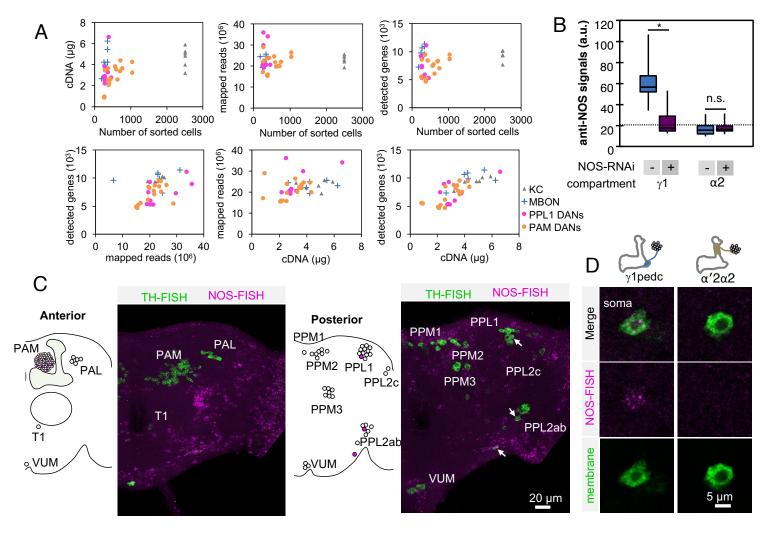


Figure 3- figure supplement 1

cert	lified by peer	review) is th	e autho	or/runder, w	ho ha	aCC-BY 4.0 Interna	icense ational l	to display the license.	e preprint in	perpet	uity. It isəm	Peedc available under abe
						32		<u>,</u> a	current_symbo		MBON-α3 MBON-β1>α MBON-α1 MBON-γ1ped	PPL1-y1pedc PAM-y5 PPL1-y2a1 PPL1-a3 PPL1-a3 PPL1-a22 PAM-4222 PAM-4222 PAM-42 PAM-41 PAM-41 PAM-61 PAM-61
		lodn			р	PPL1-y2a'1 PPL1-a3 PPL1-a2a2 PAM-45'2a PAM-45'2 PAM-41 PAM-81. PAM-82 PAM-81. PAM-82		transcript_id	L, S,		MBON-α3 MBON-β1 MBON-α1 MBON-α1	PPL1-y1pec PAM-y5 PPL1-v2a'1 PPL1-a'2a2 PPL1-a'2a2 PAM-y4-y1, PAM-y3 PAM-y3 PAM-y1 PAM-g1, PA
	bt	syr		a3 a1> a3	1pe	2α'1 2α 13 2a 1. P. 1. P.		anso	Imer	KC γ KC α/β		PPL1-γ1 PPL1-γ2 PPL1-α3 PPL1-α3 PPL1-α3 PPL1-α3 PPL1-α3 PPM-β1-α3 PAM-γ3 PAM-β1.
	transcript_id	current_symbol	γ α/β	MBON-α3 MBON-β1>c MBON- β1>c MBON- α1 γ1pedc>α/β	-1- 	PPL1-V2a'1 PPL1-d2 PPL1-d2 PAL4-d2 PAM-44 PAM-d1 PAM-d1 PAM-g1 PAM-g1 PAM-g1		달 FBtr0085048	ਹ amon	187 118	E ≥ ≥ ≥ ≥ 60 80 36 27	
	trar	curi	ХX ОО	MBON-α3 MBON-β1>α MBON- α1 γ1pedc>α/β	PPL1-γ1pedc PAM-γ5			FBtr0072203	Phm	11 10	33 58 10 6	17 27 28 22 88 51 33 22 2 7
	FBtr0113347	prt	199 91	0 0 0 1 3 27 0 24	1 0	4 9 1 6 0 0 0 0 3 19 64 310 1 5 41 7		FBtr0072202	Phm	57 62	2 0 0 9	9 51 10 63 8 34 5 67 38 47
	FBtr0081327 FBtr0089367	sNPF ChAT	1432 468 32 15	65 6 0 9	104 11	3 19 64 310 1 5 41 7 2 2 20 3 0 2 6 4	D	FBtr0070086 FBtr0290017	svr svr	4 8 49 45	1 16 4 3 11 10 3 4	2 1 1 2 0 1 4 3 3 15 28 3 2 7 26 11 9 8 6
	FBtr0089368	ChAT	5 13	13 0 0 4	3 1	0 0 1 15 0 0 0 0	sin	FBtr0290016	svr	23 1	1 20 0 0	3 1 2 1 8 4 3 0 16 2
	FBtr0083671 FBtr0331202	VAChT VGlut	302 209 0 0	136 52 2 28	49 39 22 0	17 41 107 86 1 13 22 36	Sec	FBtr0070081 FBtr0070084	svr	1 4 2 7	1 0 0 0	
	FBtr0307078	VGlut	0 0	0 1187 105 9	22 0	14 6 25 0 0 4 5 44	õ	FBtr0070085	svr svr	25 39	2 57 0 3	1 0 15 7 0 0 4 0 24 0
	FBtr0077769	VGlut	0 0	0 22 2 0	4 2	1 20 22 7 0 0 0 8	Neuropeptide Processing	FBtr0340146	svr	13 39	0 0 0 3	1 38 6 0 7 0 0 3 0 20
	FBtr0073275 FBtr0073276	Gad1 Gad1	0 0	0 1 0 0 0 126 23 128	48 0	0 0 19 0 0 0 3 63	ptic	FBtr0344737 FBtr0070087	svr svr	228 72 13 1	40 131 48 18 0 2 0 1	176 162 281 273 268 156 112 207 251 253 1 0 3 0 8 3 1 3 1 4
	FBtr0073277	Gad1	0 0	0 5 0 8	5 0	0 0 6 0 0 0 16 14	be	FBtr0344738	svr	11 11	4 0 0 1	1 2 3 4 6 3 5 0 1 1
	FBtr0332980 FBtr0087577	Gad1 VGAT	1 0 61 42	3 37 5 0 67 81 31 27	3 16 14 15	42 1 54 2 0 10 0 9 14 24 37 70 30 45 44 19	nrc	FBtr0344739 FBtr0339422	svr Pal1	0 5	0 0 0 0	0 8 2 2 1 7 13 1 0 2 3 1 0 0 0 2 6 1 0 11
S	FBtr0076956	ple	0 1	1 3 2 5	2653 1008	2050 3311 3715 4009 1163 1633 1853 2713	Ne	FBtr0088385	Pal1	1 1	0 0 2 0	2 0 1 12 0 0 0 17 0 1
itte	FBtr0345585	ple	0 0	0 0 0 0 0 0 0 0	374 145			FBtr0339423	Pal1	6 3	7 12 0 2	0 1 0 2 3 1 8 0 3 3
sm	FBtr0076957 FBtr0290291	ple Ddc	0 0 73 42	50 48 28 16	0 0	0 0 0 0 0 0 0 0 0 157 281 166 304 375 303 222 320		FBtr0301509 FBtr0089500	Pal2 Pal2	234 175 42 42	0 98 69 36 28 148 0 25	204 282 341 259 264 127 85 328 141 214 81 80 89 167 44 129 117 90 111 63
Neurotransmitters	FBtr0081167	Ddc	1 0	0 0 0 2	76 19	31 90 49 30 19 26 17 30		FBtr0346652	Pal2	36 6	5 49 29 18	58 58 94 186 265 164 53 79 61 17
Ito	FBtr0081166 FBtr0091491	Ddc Vmat	0 0 2	0 0 0 5	37 10 1802 2609	63 104 111 0 1 4 0 22		FBtr0073213	Akh	2 0	7 11 0 1	1 0 0 1 0 0 3 14 0
ler	FBtr0091493	Vmat	1 3	5 99 4 20	2398 3964	3655 8875 6558 7714 4350 3422 5385 4499		FBtr0074802 FBtr0084744	amn AstA	34 41 1 0	10 35 20 4 0 1 0 0	17 189 20 88 44 188 49 40 35 36 1 0 0 0 0 0 0 0 0 0 0
~	FBtr0310062	Vmat	0 0	0 0 0 0	1 26	0 4 18 48 11 3 23 14		FBtr0346367	AstA	1 0	0 73 0 1	6 0 0 0 0 0 0 0 0
	FBtr0091492 FBtr0087125	Vmat DAT	0 0	1 1 1 1	285 756	30 46 47 73 107 50 56 65 626 846 512 675 683 670 656 820		FBtr0301761 FBtr0080234	AstC AstC	0 0	0 0 0 1	1 0 0 0 0 0 1 8 0 0
	FBtr0330002	DAT	1 1	1 1 1 1	285 756	626 846 512 675 683 670 656 820		FBtr0084131	Burs	2 1	3 0 0 1	0 0 0 0 0 0 1 0 3 0
	FBtr0072638 FBtr0343316	Trh SerT	0 0	0 0 0 1	1 0	6 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0		FBtr0085514	Capa	0 0	0 17 0 0	0 0 0 8 0 0 0 0
	FBtr0072362	SerT	0 2	0 0 2 2	0 0	27 0 0 0 0 0 0 0		FBtr0084333 FBtr0335007	CCAP CCAP	0 0 0 0	0 0 0 0	0 0 0 0 0 0 0 0 0 0
	FBtr0089999	Tbh	0 0 2 1	9 0 2 2 61 12 13 2	0 22 5 83	0 0 0 0 0 0 30 0 0 5 15 18 4 1 41 147		FBtr0113232	CCHa1	0 0	0 5 0 0	1 0 0 2 0 0 0 0
	FBtr0340409 FBtr0086143	Tbh Tdc1	0 2	2 0 0 0	0 0	0 3 0 5 0 0 0 0		FBtr0303262 FBtr0303263	CCHa2 CCHa2	0 0 2 0	0 0 0 0	0 0 0 0 0 0 0 0 0 0 0
	FBtr0086142	Tdc2	1 1	0 5 0 1	1 12	0 6 0 1 0 1 0 0		FBtr0082762	CCHa2	0 0	0 0 0 0	0 0 0 6 0 0 0 0
	FBtr0332314	Inx2	0 1	0 3 0 0	4 0	1 3 0 0 0 0 2 0		FBtr0300713	CNMa CNMa	0 0	0 0 0 0	0 0 0 0 0 0 0 0 0 0
	FBtr0071005 FBtr0071006	Inx2 Inx2	1 3 0 1	2 20 3 24 3 14 5 12	14 2 9 3	0 20 17 0 3 15 1 0 1 0 21 6 1 6 2 3		FBtr0303155 FBtr0332672	CNMa CNMa	1 0	0 0 10 0	0 0 0 0 0 0 0 0 0 0 0
	FBtr0301860	Inx2	0 0	0 0 4 6	3 0	3 0 0 15 2 0 0 4 0 2 10 105 1 1 9 9 19 19 20 16 0 0 0 1 2 0 0 0 0 0		FBtr0082927	Crz	0 0	0 1 0 1	1 0 0 0 0 0 0 1 1 0
	FBtr0330306	Inx3	2 7 0 0	10 10 3 14	10 106			FBtr0079699 FBtr0079700	Dh31 Dh31	0 0 2	0 0 0 3	0 9 1 0 5 0 0 0 0 0 5 0 0 2 29 0 0 8 0 3
	FBtr0345207 FBtr0085350	Inx3 Inx3	1 1	0 0 0 0	0 0	0 0 0 0 0 0 0 0 1		FBtr0344343	Dh44	0 0	6 2 0 4	356 2 4 2 17 4 7 0 1 25
	FBtr0074698	lnx5	0 0	0 0 0 0	0 0	0 3 0 0 0 0 0 0		FBtr0082080 FBtr0078989	Dh44	0 0 0 0	0 0 0 0	2 0 0 0 0 9 35 0 0 0
ns	FBtr0077339 FBtr0071035	Inx6 Inx7	0 0 7	0 0 0 0 4 0 0 0	0 2	0 0 0 0 0 0 0 0 3 1 0 0 2 0 0 1		FBtr0334930	Dsk Eh	0 0	0 0 0 0	0 0 0 0 12 0 0 0 0 0
nctions	FBtr0309873	ogre	0 0	0 2 0 5	7 0	0 4 2 0 0 2 1 0		FBtr0083444	Eh	0 0	0 0 0 0	0 0 0 0 0 0 0 0 0
	FBtr0071036 FBtr0309875	ogre	0 0 0 0	0 0 0 19 0 45 21 16	20 0 17 0	0 0 9 2 0 18 14 2 0 3 32 0 0 17 0 0		FBtr0072426 FBtr0088383	ETH FMRFa	0 0 3 14	0 0 0 1	0 0 0 0 0 0 0 0 0 6 0 6 0 0 0 0 2 0 1 0
nL q	FBtr0334881	ogre ogre	0 0	0 0 0 0	0 0	0 0 0 0 0 0 0 0	es	FBtr0082639	Hug	0 3	8 0 0 1	2 1 0 1 9 9 0 6 3 1
Gap	FBtr0071037	ogre	0 0	0 0 0 0	0 0	0 0 0 0 0 0 0 0	Veuropeptides	FBtr0300186 FBtr0343483	ITP ITP	0 0	0 0 0 1	0 0 0 3 0 0 0 0 0 0
	FBtr0309874 FBtr0342859	ogre shakB	0 0 39 33	0 0 0 0 18 23 7 6	0 0 32 53	0 0 0 0 0 0 0 0 0 22 59 49 50 7 9 12 15	beb	FBtr0290218	ITP	0 15	0 0 0 0	0 0 0 0 0 0 1 0 0 0
	FBtr0114645	shakB	1 1	1 0 0 0	4 2	13 0 0 3 0 0 0 17	or	FBtr0300187 FBtr0290219	ITP	0 1	0 0 0 1	1 0 0 0 0 0 3 1 5 1
	FBtr0112569 FBtr0309370	shakB shakB	0 0 3 2	0 0 0 0 2 1 2 1	0 0	0 0 0 0 0 0 0 0 0 10 24 14 1 0 0 13 23	Nei	FBtr0075722	ITP Lk	3 3	0 0 0 0	0 0 0 1 0 0 0 0 7
	FBtr0112570	shakB	20 18	15 8 13 2	13 49	16 8 29 18 3 2 15 7		FBtr0075241	Mip	0 0	0 0 0 0	1 0 0 0 3 1 0 0 0
	FBtr0112571 FBtr0112572	shakB shakB	0 0 3 1	1 0 0 0 4 2 0 0	0 6	1 0 1 2 0 0 0 0 1 20 4 0 1 0 0 0		FBtr0346341 FBtr0084607	Ms Ms	0 0	0 0 0 3	1 0 0 12 0 0 0 0 0 0
	FBtr0309369	shakB	25 29	0 10 17 6	1 60	39 47 33 15 0 5 5 14		FBtr0334600	Ms	0 0	0 2 0 0	2 0 0 0 28 0 1 0 0 0
	FBtr0330185	zpg	0 0	0 0 0 0	0 0 0 0	0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0		FBtr0083328 FBtr0331685	NPF NPF	0 0	0 0 0 0	0 0 0 0 0 0 0 0 0 0 0
	FBtr0076983	zpg	0 0	0 2 0 0	0 0			FBtr0331686	NPF	0 0	0 0 0 0	0 0 0 0 0 0 0 0 0
								FBtr0110861 FBtr0290092	Nplp1 Nplp1	0 0 2 5	0 2 0 1	0 0 0 0 0 1 0 1 0 2 46 3 15 11 14 18 2 7 13 71
								FBtr0072443	Nplp1	2 34	9 36 59 8	9 66 19 0 38 20 5 10 17 6
								FBtr0346389 FBtr0346863	Nplp2	0 0 0 0	0 0 0 0	0 0 0 0 0 0 0 0 0 0
								FBtr0075839	Nplp2 Nplp2	0 0	0 0 0 1	1 0 0 2 0 0 0 0 0 0
								FBtr0075369	Nplp3	0 0	0 0 0 2	5 17 0 0 0 0 0 0 0 0
								FBtr0334759 FBtr0077817	Nplp4 Nplp4	0 0 0 0	0 0 0 0	0 0 0 0 0 0 0 0 0 0 0
								FBtr0331981	Orcokinin	0 0	0 0 0 0	0 0 0 0 0 0 0 0 0
								FBtr0345932 FBtr0072209	Orcokinin Orcokinin	0 8	1 4 0 0	0 0 0 0 0 0 5 0 0 3
								FBtr0072209	Pburs	0 0	0 0 0 0	0 0 0 5 0 0 0 0 0 0
								FBtr0085024	Pdf	1 0	0 1 0 5	1 0 0 0 2 0 24 0 0
								FBtr0343420 FBtr0079562	Proc Proc	4 0 3 0	2 26 13 17 0 6 2 4	4 0 2 10 4 1 8 2 1 2 1 0 0 0 1 0 <u>1 0 0 0</u>
								FBtr0333746	Ptth	0 0	0 0 1 1	0 6 0 0 0 0 0 0 16 0
								FBtr0346726 FBtr0346650	Ptth Ptth	0 0 0 0	0 0 0 0	0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
					0	100 1000		FBtr0310523	RYa	0 0	0 0 0 0	1 0 0 1 0 0 0 0
					U	100 1000 TPM		FBtr0305055	SIFa	0 0	0 0 0 3	2 1 0 0 0 0 1 0 0
Figu	re 3- fia	ure su	pple	ment 2	FBtr0335435 FBtr0082488	Tk Tk	0 0 0 0	1 0 0 4 0 5 0 14	6 0 0 1 0 1 1 0 0 21 0 1 23 44 4 0 5 4 16			
- 3 5	igure 3- figure supplement 2											

FBI007530 AAR FBI007530 AAR FEB007530 AAR FBI007530 AAR FBI007530 AAR FEB007530 AAR FBI007530 AAR FBI007530 FBI007530 FBI007530 FEB007530 AAR Ask-R1 FBI007530 FBI007530 FBI007530 FBI007530 FBI007530 FBI007530 FBI007530 FBI007537							1 4.0 11	cination	al license.				
FBI0075300 AMR FBI0075300 AMR FBI0075300 AMR FBI0075300 FBI0075771 FBI0075300 AMR FBI0075771 Poo-R FBI0075770 CapaR FBI0075771 Poo-R FBI0075770 CapaR FBI0075771 Poo-R FBI0075770 CapaR FBI0075771 Park FBI0075777 CapaR FBI0075771 Park FBI0075777 CapaR FBI0075771 Park FBI0075777 CapaR FBI0075771 Park FBI0075777 CapaR FBI0075771 Park FB	gene_id	current_symbol	KC γ KC α/β	MBON-α3 MBON-β1>α MBON-α1 MBON-γ1pedc>α/β	PPL1-γ1pedc PAM-γ5	PPL1-γ2α1 PPL1-α3 PPL1-α2α2 PAM-β2a PAM-γ4<γ1γ2	РАМ-v3 РАМ-α1 РАМ-β1. РАМ-β2		gene_id	current_symbol	KC γ KC α/β	MBON-α3 MBON-β1>α MBON-α1 MBON-γ1pedc>α/β	PPL1-y1pedc PAM-y5 PPL1-y2a1 PPL1-a3 PPL1-a2a PPL1-a2a PAM-β2a PAM-44 PAM-41 PAM-41 PAM-41
FBtr0072887 MsR1 3 6 1 2 6 1 4 1 6 2 7 FBtr03303187 MsR1 3 6 1 6 1 6 6 7 FBtr0330358 MsR2 6 6 1 6 6 7 6 7 FBtr0330359 MsR2 6 6 1 6 6 6 6 6 6 6 6 7 FBtr0330359 MsR2 6 6 1 6 </td <td>FBtr0079308 FBtr0079309 FBtr0079309 FBtr0079309 FBtr0070575 FBtr033798 FBtr0085316 FBtr0336790 FBtr033458 FBtr033458 FBtr0304043 FBtr0304043 FBtr0304043 FBtr0304043 FBtr0304043 FBtr0304043 FBtr0302487 FBtr0302487 FBtr0304792 FBtr0304792 FBtr0302488 FBtr072264 FBtr0330230 FBtr0302488 FBtr0072288 FBtr0330230 FBtr0330230 FBtr0330230 FBtr0330736 FBtr0330735 FBtr0330736 FBtr0330735 FBtr0330736 FBtr0330736</td> <td>AkhR AkhR AkhR AkhR AkhR AkhR AstA-R1 AstA-R1 AstA-R2 AstA-R2 AstC-R2 AstC-R2 AstC-R2 CapaR CCAP-R CCHa1-R CCHa2-R CCHa2-R CCHa2-R CCHa2-R CCHa2-R CCHa2-R CCHa2-R CCHa2-R CCHa2-R CCHa2-R CCHa2-R CCHa2-R CCHa2-R CCHa2-R CCHa2-R CCHa2-R CCHa2-R CCHa2-R CCH3 CG10738 CG10738 CG10738 CG10738 CG10738 CG10738 CG10738 CG10738 CG13579 CG13579 CG13579 CG13579 CG13579 CG33639 CG3639 CG3639 CG3639 CG3639 CG3639 CG3639 CG3639 CG3639 CG3639 CG3639 CG3639 CG3639 CG3639 CG3639 CG3639 CG3639 CG3639 CG369 CG369 CG369 CG37 CG37 CG37 CG37 CG37 CG37 CG37 CG</td> <td>0 0 1 0 0 0 0 0 1 0 2</td> <td>NNN</td> <td>0 0 0 0 0 0 4 0 0 0 0 0 1 0 0 2 2 0 0 0 0 1 0 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 3 1 1 4 2 1 1 0 2 2 0 1 2 1 1 3 1 1 4 2 1 1 0 0 2 0 0 3 1 0 4 2 1 1 0 0 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 </td> <td>NN</td> <td>NN</td> <td>Receptors Glycine Histamine Neuropeptide</td> <td>FBtr0100131 FBtr0305681 FBtr0082773 FBtr0082774 FBtr0082774 FBtr0082774 FBtr0070713 FBtr0100552 FBtr0100552 FBtr0345220 FBtr0345220 FBtr00345220 FBtr00345220 FBtr00345220 FBtr00345220 FBtr00345268 FBtr0345268 FBtr0345268 FBtr0345268 FBtr0345268 FBtr0345268 FBtr0345268 FBtr0345268 FBtr0345268 FBtr031266 FBtr0330221 FBtr0330222 FBtr0330221 FBtr0330221 FBtr0330221 FBtr0330221 FBtr0330221 FBtr0330221 FBtr0330221 FBtr0331924 FBtr003221 FBtr003221 FBtr0032470 FBtr0032470 FBtr0032470 FBtr0032470 FBtr0033477 FBtr0</td> <td>PK1-R PK1-R PK2-R1 PK2-R2 PK2-R2 Proc-R Proc-R Proc-R Proc-R R Yroc-R R Yroc-R R Ya-R SIFaR SIFaR SIFaR SIFaR SIFaR SIFaR SIFaR SIFaR SIFaR SIFaR SIFaR SIFaR SIFaR SIFaR SIFaR SIFaR SIFaR SIFA</td> <td>000000000000000000000000181011001100101000</td> <td>NNNN00000000000001010101010101010010010100010000000000010001000100</td> <td>N N<!--</td--></td>	FBtr0079308 FBtr0079309 FBtr0079309 FBtr0079309 FBtr0070575 FBtr033798 FBtr0085316 FBtr0336790 FBtr033458 FBtr033458 FBtr0304043 FBtr0304043 FBtr0304043 FBtr0304043 FBtr0304043 FBtr0304043 FBtr0302487 FBtr0302487 FBtr0304792 FBtr0304792 FBtr0302488 FBtr072264 FBtr0330230 FBtr0302488 FBtr0072288 FBtr0330230 FBtr0330230 FBtr0330230 FBtr0330736 FBtr0330735 FBtr0330736 FBtr0330735 FBtr0330736 FBtr0330736	AkhR AkhR AkhR AkhR AkhR AkhR AstA-R1 AstA-R1 AstA-R2 AstA-R2 AstC-R2 AstC-R2 AstC-R2 CapaR CCAP-R CCHa1-R CCHa2-R CCHa2-R CCHa2-R CCHa2-R CCHa2-R CCHa2-R CCHa2-R CCHa2-R CCHa2-R CCHa2-R CCHa2-R CCHa2-R CCHa2-R CCHa2-R CCHa2-R CCHa2-R CCHa2-R CCHa2-R CCH3 CG10738 CG10738 CG10738 CG10738 CG10738 CG10738 CG10738 CG10738 CG13579 CG13579 CG13579 CG13579 CG13579 CG33639 CG3639 CG3639 CG3639 CG3639 CG3639 CG3639 CG3639 CG3639 CG3639 CG3639 CG3639 CG3639 CG3639 CG3639 CG3639 CG3639 CG3639 CG369 CG369 CG369 CG37 CG37 CG37 CG37 CG37 CG37 CG37 CG	0 0 1 0 0 0 0 0 1 0 2	NNN	0 0 0 0 0 0 4 0 0 0 0 0 1 0 0 2 2 0 0 0 0 1 0 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 3 1 1 4 2 1 1 0 2 2 0 1 2 1 1 3 1 1 4 2 1 1 0 0 2 0 0 3 1 0 4 2 1 1 0 0 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0	NN	NN	Receptors Glycine Histamine Neuropeptide	FBtr0100131 FBtr0305681 FBtr0082773 FBtr0082774 FBtr0082774 FBtr0082774 FBtr0070713 FBtr0100552 FBtr0100552 FBtr0345220 FBtr0345220 FBtr00345220 FBtr00345220 FBtr00345220 FBtr00345220 FBtr00345268 FBtr0345268 FBtr0345268 FBtr0345268 FBtr0345268 FBtr0345268 FBtr0345268 FBtr0345268 FBtr0345268 FBtr031266 FBtr0330221 FBtr0330222 FBtr0330221 FBtr0330221 FBtr0330221 FBtr0330221 FBtr0330221 FBtr0330221 FBtr0330221 FBtr0331924 FBtr003221 FBtr003221 FBtr0032470 FBtr0032470 FBtr0032470 FBtr0032470 FBtr0033477 FBtr0	PK1-R PK1-R PK2-R1 PK2-R2 PK2-R2 Proc-R Proc-R Proc-R Proc-R R Yroc-R R Yroc-R R Ya-R SIFaR SIFaR SIFaR SIFaR SIFaR SIFaR SIFaR SIFaR SIFaR SIFaR SIFaR SIFaR SIFaR SIFaR SIFaR SIFaR SIFaR SIFA	000000000000000000000000181011001100101000	NNNN00000000000001010101010101010010010100010000000000010001000100	N N </td
		FBtr0079308 FBtr0079309 FBtr0079309 FBtr0079309 FBtr0032311 FBtr0070575 FBtr033231 FBtr0085316 FBtr00389387 FBtr033078 FBtr0330468 FBtr0332867 FBtr0346968 FBtr0332867 FBtr0346968 FBtr0332867 FBtr0346968 FBtr0304043 FBtr0085975 FBtr0302488 FBtr0302488 FBtr0302487 FBtr0302488 FBtr0302487 FBtr0302488 FBtr0302487 FBtr0302488 FBtr0302487 FBtr0302488 FBtr0302487 FBtr0302488 FBtr0302471 FBtr0302488 FBtr0302472 FBtr0330602 FBtr0330603 FBtr072264 FBtr032278 FBtr032278 FBtr007248 FBtr032278 FBtr032379 FBtr0088535 FBtr007290 FBtr032379 FBtr0088535 FBtr007290 FBtr032379 FBtr0032379 FBtr0032475 FBtr03275 FBtr0330736 FBtr03275 FBtr0330735 FBtr0340529 FBtr0330736 FBtr034265 FBtr0340503 FBtr034050 FBtr0330360 FBtr037753 FBtr0343659 FBtr0330360 FBtr0330360 FBtr0330360 FBtr0330360 FBtr0330360 FBtr0308316 FBtr0308316 FBtr0308316	FBtr0079308 AkhR FBtr0079309 AkhR FBtr0079310 AkhR FBtr0079310 AkhR FBtr0079310 AkhR FBtr0332331 AkhR FBtr0332331 AstA-R1 FBtr0333798 AstA-R1 FBtr0308641 AstA-R2 FBtr030867 AstC-R2 FBtr0332867 AstC-R2 FBtr0332867 AstC-R2 FBtr033468 CapaR FBtr033458 CapaR FBtr0304043 CCHa1-R FBtr0304043 CCHa2-R FBtr0302487 CG10738 FBtr0302487 CG10738 FBtr0302487 CG10738 FBtr0302488 CG10738 FBtr0302487 CG10738 FBtr0330602 CG13229 FBtr03304792 CG10738 FBtr0332030 CG13229 FBtr0332030 CG13259 FBtr0332030 CG13259 FBtr0332379 CG33639 FBtr0332379 CG33639 FBt	FBtr0079308 AkhR 0 0 FBtr0079309 AkhR 0 0 FBtr0079310 AkhR 0 0 FBtr0070575 AstA-R1 0 0 FBtr0333798 AstA-R1 0 0 FBtr0333798 AstA-R2 0 0 FBtr0336790 AstA-R2 0 0 FBtr0336790 AstC-R2 0 0 FBtr0330088 AstC-R2 0 0 FBtr033458 CapaR 0 0 FBtr033458 CapaR 0 0 FBtr033458 CapaR 0 0 FBtr033458 CapaR 0 0 FBtr0304043 CCHa2-R 0 0 FBtr0302487 CG10738 1 1 FBtr0302487 CG10738 1 4 FBtr0330602 CG13229 0 0 FBtr0330230 CG13579 0 0 FBtr0332378 CG33639	FBtr0079308 AkhR 0	FBtr0079308 AkhR 0	FBr0079306 AkhR a	FBru079306 AkhR L <thl< th=""> L L <thl< th=""> <th< td=""><td>FBH:079308 AkhR F <</td><td>FBr0073006 AkhR Image: State of the state of the</td><td>Febrologrado AkhR Akh Akh Akh Akh Akh Akh Akh Akh Akh Akh</td><td>Febrological Anne Anne Anne Febrological Anne Fe</td><td>FB0079300 AHR FB0079307 AHR FB0079308 CH4-170 FB0079308 CH4-170 FB0079308 CH4-170 FB0079308 CH4-170 FB0079308 CH4-170 FB0079408 CH2-2 FB0079408 CH2-2 FB0079407 AHR FB0079407 AHR FB0079407 AHR FB0079407 AHR FB0079408 CH2-2 FB0079408 CH2-2 FB007940 CH2-2 FB007</td></th<></thl<></thl<>	FBH:079308 AkhR F <	FBr0073006 AkhR Image: State of the	Febrologrado AkhR Akh	Febrological Anne Anne Anne Febrological Anne Fe	FB0079300 AHR FB0079307 AHR FB0079308 CH4-170 FB0079308 CH4-170 FB0079308 CH4-170 FB0079308 CH4-170 FB0079308 CH4-170 FB0079408 CH2-2 FB0079408 CH2-2 FB0079407 AHR FB0079407 AHR FB0079407 AHR FB0079407 AHR FB0079408 CH2-2 FB0079408 CH2-2 FB007940 CH2-2 FB007

100 TPM 1000

0

Figure 3- figure supplement 2

bioRxiv preprint doi: https://doi.org/10.1101/682815; this version posted June 26, 2019. The copyright holder for this preprint (which was not certified by peer review) is the authoritumer? Who has granted bioRxiv a license to display the preprint in perpetutive? Who has granted bioRxiv a license to display the preprint in perpetutive? Who has granted bioRxiv a license. 1-a3 1-61>a 1-a1 1-y1pedc>a/ß 1-α3 1-β1>α 1-α1 1-γ1pedc>α/β 1. PAM-β2 symbol symbol <u>γ2</u>α'1 α3 α'2α2 ''2a 4<γ1γ2 /5 \72α'1 α3 α'2α2 1'2a 4<γ1γ2 /1pedc /1pedc σ ~

	gene_id	current_symbol	KC γ KC α/β	MBON-α3 MBON-β1>α MBON-α1 MBON-γ1pedc>α/β	PPL1-y1pedc PAM-y5	PPL1-V2a'1 PPL1-a3 PPL1-a3 PPL1-a3 PAM-8'2a PAM-8'1 PAM-61 PAM-61 PAM-61 PAM-61		gene_id	current_symbol	KC γ KC α/β	MBON-α3 MBON-β1>α MBON-α1 MBON-α/β	PPL1-γ1pedc PAM-v5	РРЦ.1-ү2а ¹ РРЦ.1-ү2а ¹ РРЦ.1-а ² аа РАМ-4 ² а РАМ-4 ³ РАМ-4 ³ РАМ-4 ³ РАМ-6 ¹
Acetylcholine	FBtr0072367 FBtr0081789 FBtr0034726 FBtr0070973 FBtr033010 FBtr033010 FBtr033010 FBtr0334916 FBtr0084639 FBtr084640 FBtr0289988 FBtr0339652 FBtr030867 FBtr0308331 FBtr0308332 FBtr032872 FBtr032872 FBtr030867 FBtr0079913 FBtr0079913 FBtr0079913 FBtr0079914 FBtr0079915 FBtr0079915 FBtr0079915 FBtr0079916 FBtr0074680 FBtr031284 FBtr031834 FBtr031835 FBtr0343798 FBtr031835 FBtr03308 FBtr033085 FBtr033085 FBtr033085 FBtr03300 FBtr0073300 FBtr007300	mAChR-A mAChR-B mAChR-B mAChR-C nAChRalpha1 nAChRalpha1 nAChRalpha2 nAChRalpha3 nAChRalpha3 nAChRalpha3 nAChRalpha4 nAChRalpha4 nAChRalpha4 nAChRalpha4 nAChRalpha4 nAChRalpha5 nAChRalpha5 nAChRalpha5 nAChRalpha6 nAChRalpha6 nAChRalpha6 nAChRalpha6 nAChRalpha6 nAChRalpha6 nAChRalpha6 nAChRalpha6 nAChRalpha6 nAChRalpha7	31 35 34 34 40 4 1 6 30 6 31 6 32 6 34 6 35 6 36 7 37 1 38 7 39 7 30 7 31 1 32 20 33 7 34 8 35 7 36 6 37 7 38 7 39 7 30 7 31 7 32 7 33 7 34 8 35 8 36 8 37 8 38 8 39 8 30 7 31 8 32<	AB AB<	2 3 3 1 2 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 3 3 5 4 4 2 3 3 1 3 3 2 3 3 3 3 3 4 3 3 5 4 4 2 3 3 3 3 3 4 3 3 5 4 4 6 3 3 6 3 3 7 4 3 8 4 3 9 3 3 9 3 3 9 3 3	31 32 34<	Glutamate	FBtr0076982 FBtr0079106 FBtr0330340 FBtr0330341 FBtr0330341 FBtr038969 FBtr008938 FBtr0110837 FBtr089184 FBtr0332858 FBtr0332859 FBtr0312859 FBtr0312859 FBtr031379 FBtr0315418 FBtr0335419 FBtr0335420 FBtr0335421 FBtr0335421 FBtr0335421 FBtr0335421 FBtr0335422 FBtr0335421 FBtr0335421 FBtr0335421 FBtr0335421 FBtr0335421 FBtr0343789 FBtr0343789 FBtr0343789 FBtr0343700 FBtr089194 FBtr088195 FBtr033701 FBtr083987 FBtr0081476 FBtr0110895	GluRIA GluRIB GluRIB GluRIB GluRIB GluRIB GluRIB GluRIB GluRID GluRIIC mGluR mGluR mGluR mGluR dmGlut GluClalpha	42 55 0 0 5 8 4 3 6 0 9 0 4 3 9 0 10 0 11 3 12 7 13 0 14 7 15 8 16 7 17 34 18 7 19 10 11 33 11 34 12 1 13 1 14 1 15 1 16 1 17 34 18 74 19 10 10 10 11 35 12 1 13 10 14 10 15 10 16 10 <tr< td=""><td>ididididii<</td><td>8 0 1 1 1 1 2 0 0 0 1 1 2 0 1 1 2 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 4 1 5 0 2 2 4 1 5 0 6 0 7 2 8 0 7 2 8 0 7 2 8 0 7 2 8 0 7 2 8 0 9 0 10 0 11 0</td><td>0 2 0 2 0 1 0 1 2 20 16 61 51 65 52 0 0 2 24 1 1 46 51 0 0 2 2 0 0 1 0 2 0 0 2 2 0 0 1 0 2 0 0 0 2 0 0 1 0 1 10 1 11 12 34 16 50 1 10 1 10 44 16 27 60 1 11 1 1 1 1 1 20 2 1 1 2 1 11 1 1 1 1 0 45 2 2 1 1 1 1 1 1 1 1 1 1<!--</td--></td></tr<>	ididididii<	8 0 1 1 1 1 2 0 0 0 1 1 2 0 1 1 2 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 4 1 5 0 2 2 4 1 5 0 6 0 7 2 8 0 7 2 8 0 7 2 8 0 7 2 8 0 7 2 8 0 9 0 10 0 11 0	0 2 0 2 0 1 0 1 2 20 16 61 51 65 52 0 0 2 24 1 1 46 51 0 0 2 2 0 0 1 0 2 0 0 2 2 0 0 1 0 2 0 0 0 2 0 0 1 0 1 10 1 11 12 34 16 50 1 10 1 10 44 16 27 60 1 11 1 1 1 1 1 20 2 1 1 2 1 11 1 1 1 1 0 45 2 2 1 1 1 1 1 1 1 1 1 1 </td
GABA	FBtr0084682 FBtr0078064 FBtr0304732 FBtr0084167 FBtr0084167 FBtr039154 FBtr039154 FBtr0301439 FBtr0308257 FBtr0343786 FBtr0343786 FBtr0343787 FBtr0346526 FBtr0076534 FBtr0333834 FBtr0333834 FBtr0333834 FBtr0333836 FBtr0074129	nAChRbeta2 nAChRbeta3 GABA-B-R1 GABA-B-R2 GABA-B-R2 GABA-B-R2 GABA-B-R3 GABA-B-R3 GABA-B-R3 GABA-B-R3 GABA-B-R3 GABA-B-R3 GABA-B-R3 GABA-B-R3 Rdl Rdl Rdl Rdl Rdl Rdl Rdl Rdl Rdl	44 32 9 56 21 29 32 32 16 10 2 1 3 32 16 10 2 1 0 0 0 0 0 0 0 0 17 30 18 70 19 31 19 42	BS 44 55 6 2 27 42 9 21 43 3 7 24 0 3 7 24 0 2 31 0 0 2 31 0 0 2 31 0 <t< td=""><td>0 0 1 0 1 0 1 0 1 0 1 0 0 0 1 0 1</td><td>10 20<</td><td></td><td>FBtr0083978 FBtr0335015 FBtr0078763 FBtr0078763 FBtr0091453 FBtr0091454 FBtr0301842 FBtr0301843 FBtr0301844 FBtr0339592 FBtr0083933 FBtr0083934 FBtr0110936 FBtr0330712 FBtr0346759 FBtr0084260 FBtr0100322 FBtr0301484 FBtr0311930</td><td>Grik Grik Mmdar1 Nmdar2 Nmdar2 Nmdar2 Nmdar2 Nmdar2 Nmdar2 Nmdar2 Mmdar2 Oamb Oamb Oamb Oamb Oamb Oamb Oamb Oamb</td><td>5 1 1 2 0 1 8 7 4 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 3 11 62 12 3 10 3 11 62 0 1 10 3 11 62 12 3 13 3 14 13 15 13 16 3 17 13</td><td>0 0 0 0 0 0 0 0 0 0 1 0 0 0 10 15 54 40 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 0 1 0 1 1 1 1 0 0 0 1 1 0 0 0 0</td><td>0 1 0 1 0 2 11 2 1 2 1 2 1 2 1 2 1 2 0 0 0 0 0 3 0 2 0 4 0 2 0 2 0 3 0 2 1 1 1 1 1 1</td><td>3 20<!--</td--></td></t<>	0 0 1 0 1 0 1 0 1 0 1 0 0 0 1 0 1	10 20<		FBtr0083978 FBtr0335015 FBtr0078763 FBtr0078763 FBtr0091453 FBtr0091454 FBtr0301842 FBtr0301843 FBtr0301844 FBtr0339592 FBtr0083933 FBtr0083934 FBtr0110936 FBtr0330712 FBtr0346759 FBtr0084260 FBtr0100322 FBtr0301484 FBtr0311930	Grik Grik Mmdar1 Nmdar2 Nmdar2 Nmdar2 Nmdar2 Nmdar2 Nmdar2 Nmdar2 Mmdar2 Oamb Oamb Oamb Oamb Oamb Oamb Oamb Oamb	5 1 1 2 0 1 8 7 4 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 3 11 62 12 3 10 3 11 62 0 1 10 3 11 62 12 3 13 3 14 13 15 13 16 3 17 13	0 0 0 0 0 0 0 0 0 0 1 0 0 0 10 15 54 40 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 0 1 0 1 1 1 1 0 0 0 1 1 0 0 0 0	0 1 0 1 0 2 11 2 1 2 1 2 1 2 1 2 1 2 0 0 0 0 0 3 0 2 0 4 0 2 0 2 0 3 0 2 1 1 1 1 1 1	3 20 </td
Serotonin	FBtr0086577 FBtr0086599 FBtr0330056 FBtr0078854 FBtr0078854 FBtr0300474 FBtr0339395 FBtr0303603 FBtr0330144 FBtr0339322 FBtr0085746 FBtr0334508	5-HT1A 5-HT1B 5-HT1B 5-HT2A 5-HT2A 5-HT2A 5-HT2A 5-HT2A 5-HT2B 5-HT2B 5-HT2B 5-HT2B 5-HT7 5-HT7	45 182 78 20 77 4 0 0 2 0 1 1 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0	35 7 15 15 16 2 16 2 3 3 19 2 3 3 10 0 0 1 0 2 0 0 2 1 0 0 0 0 1 1 0 0 0 0 1 17 3 7 15 5 1 0 12 2 1 2		Iso 44 64 2 36 37 37 2 45 45 4 0 5 15 1 3 4 0 6 0 10 15 1 0 4 0 0 0 0 1 1 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 <	Octopamine	FBtr0100019 FBtr0304845 FBtr0304845 FBtr0304846 FBtr030120 FBtr0290334 FBtr0290334 FBtr0290335 FBtr0301944 FBtr0308597 FBtr0078479 FBtr0304930 FBtr0083532 FBtr0344474 FBtr0346161 FBtr083512 FBtr0332173 FBtr0332174 FBtr0332174	Octbeta2R Octbeta2R Octbeta2R Octbeta2R Octbeta2R Octbeta3R Octbeta3R Octbeta3R Octbeta3R Octbeta3R Octbeta3R Oct-TyrR Oct-TyrR TyrR TyrR TyrR TyrRII TyrRII TyrRII TyrRII	0 0 1 0 1 0 5 2 0 15 2 0 11 0 12 0 11 1 1 3 3 0 4 0 0 0 11 1 3 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0	0 0 2 5 3 11 4 19 0 0 50 51 2 21 1 16 2 20 0 55 4 10 1 16 1 1 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	58 125 109 19 0 6 64 21 6 15 11 2 0 0 4 4 6 0 1 3 0 0 0 15 8

Figure 3- figure supplement 2

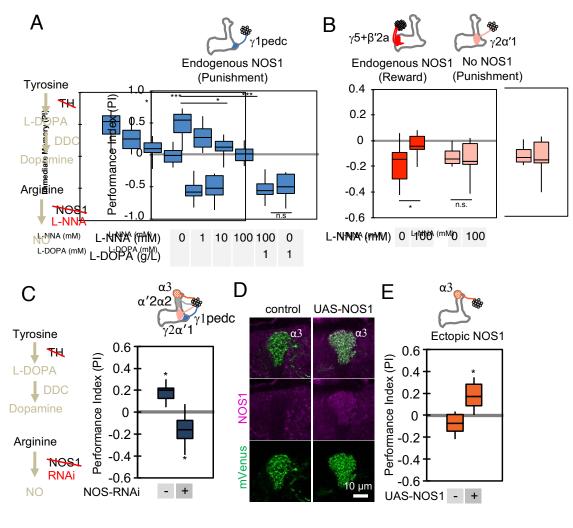


Figure 4

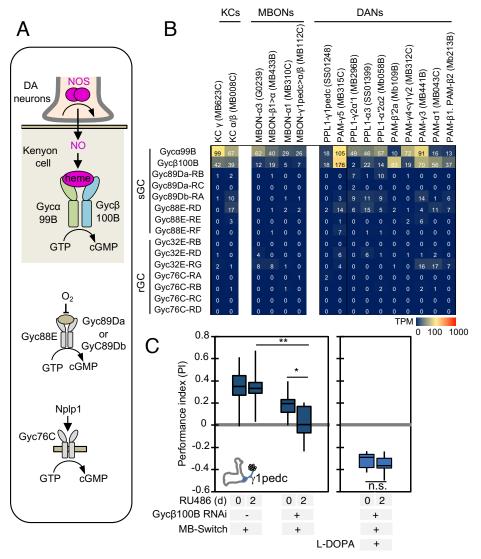


Figure 5

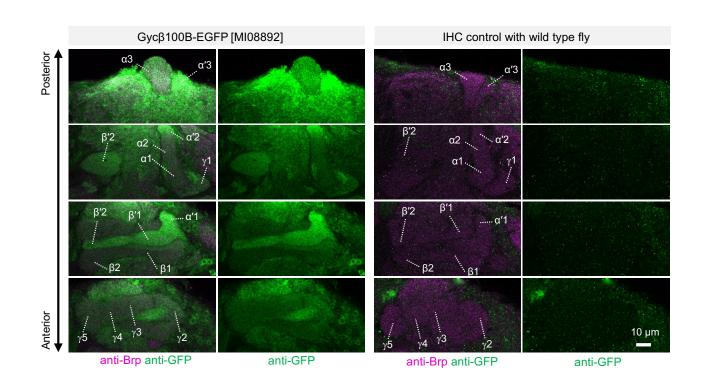


Figure 5- figure supplement 1

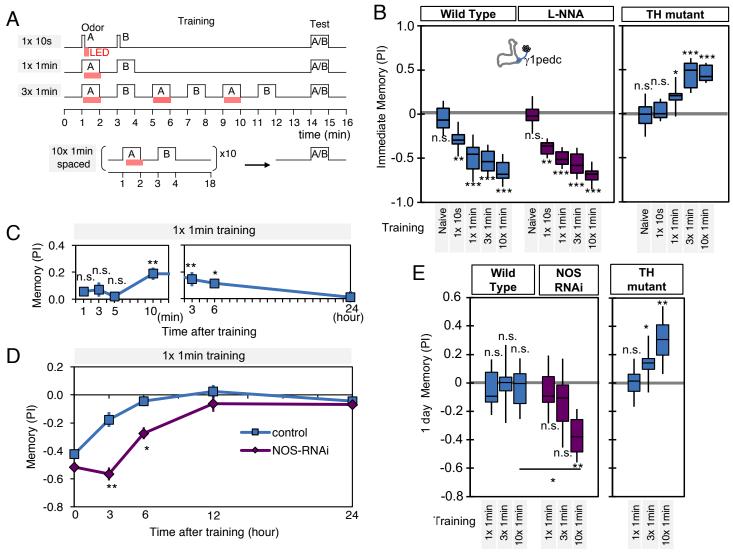


Figure 6

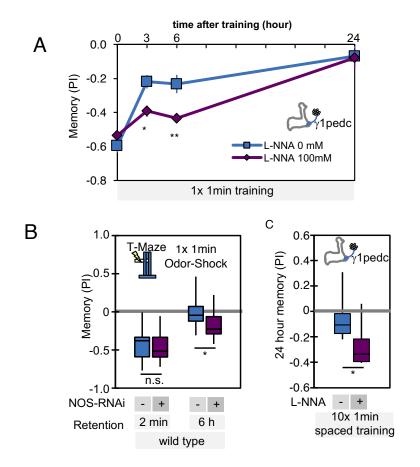


Figure 6- figure supplement 1

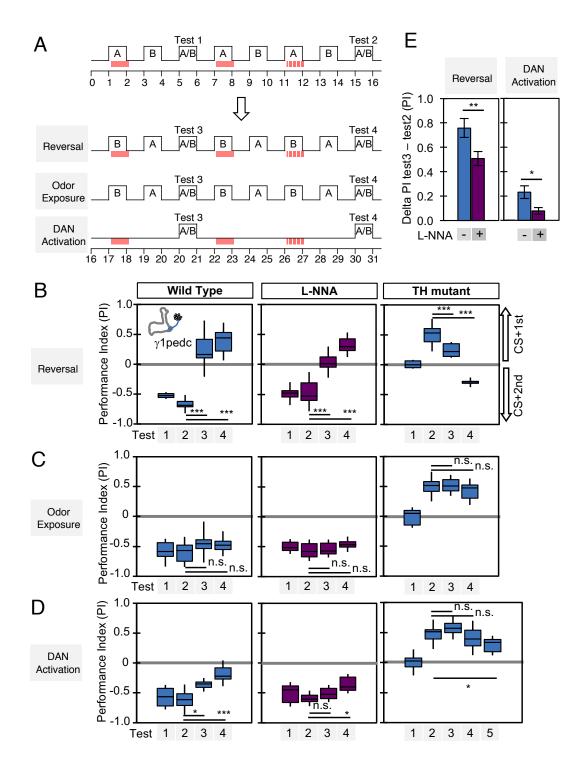


Figure 7

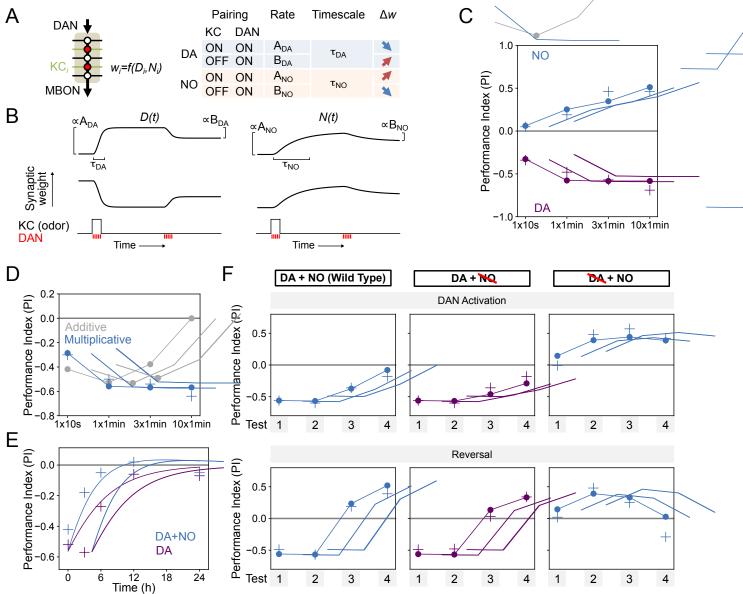


Figure 8