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 28	

ABSTRACT 29	

 30	

Background: Late-onset Alzheimer’s disease (LOAD) is the most common form of 31	

dementia worldwide. To date, animal models of Alzheimer’s have focused on rare 32	

familial mutations, due to a lack of frank neuropathology from models based on 33	

common disease genes. Recent multi-cohort studies of postmortem human brain 34	

transcriptomes have identified a set of 30 gene co-expression modules associated with 35	

LOAD, providing a molecular catalog of relevant endophenotypes. Results: This 36	

resource enables precise gene-based alignment between new animal models and 37	

human molecular signatures of disease. Here, we describe a new resource to efficiently 38	

screen mouse models for LOAD relevance. A new NanoString nCounter® Mouse AD 39	

panel was designed to correlate key human disease processes and pathways with 40	

mRNA from mouse brains. Analysis of three mouse models based on LOAD genetics, 41	

carrying APOE4 and TREM2*R47H alleles, demonstrated overlaps with distinct human 42	

AD modules that, in turn, are functionally enriched in key disease-associated pathways. 43	

Comprehensive comparison with full transcriptome data from same-sample RNA-Seq 44	

shows strong correlation between gene expression changes independent of 45	

experimental platform. Conclusions: Taken together, we show that the nCounter 46	

Mouse AD panel offers a rapid, cost-effective and highly reproducible approach to 47	

assess disease relevance of potential LOAD mouse models. 48	

 49	

 50	

 51	
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BACKGROUND 52	

Late-onset Alzheimer’s disease (LOAD) is the most common cause of dementia 53	

worldwide (1). LOAD presents as a heterogenous disease with highly variable 54	

outcomes. Recent efforts have been made to molecularly characterize LOAD using 55	

large cohorts of post-mortem human brain transcriptomic data (2). Systems-level 56	

analysis of these large human data sets has revealed key drivers and molecular 57	

pathways that reflect specific changes resulting from disease (2,3). These studies have 58	

been primarily driven by gene co-expression analyses that reduce transcriptomes to 59	

modules representing specific disease processes or cell types across heterogenous 60	

tissue samples (2,4,5). Similar approaches have been used to characterize mouse 61	

models of neurodegenerative disease (6). Detailed cross-species analysis reveals a 62	

translational gap between animal models and human disease, as no existing models 63	

fully recapitulate pathologies associated with LOAD (7,8). New platforms to rapidly 64	

assess the translational relevance of new animal models of LOAD will allow efficient 65	

identification of the most promising preclinical models.  66	

In this study, we describe a novel gene expression panel to assess LOAD-relevance of 67	

mouse models based on expression of key genes in the brain. We used a recent human 68	

molecular disease catalog based on harmonized co-expression data from three 69	

independent post mortem brain cohorts (ROSMAP, Mayo, Mount Sinai Brain bank) (9–70	

11) and seven brain regions that define 30 human co-expression modules and five 71	

consensus clusters derived from the overlap of those modules (12). These modules 72	

were used to design a mouse gene expression panel to assess the molecular overlap 73	

between human disease states and mouse models. This nCounter Mouse AD panel 74	
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was piloted with samples from three novel mouse models of LOAD. Same-sample 75	

comparison between NanoString and RNA-Seq data demonstrated high per-gene 76	

correlation and overall concordance when separately compared to human disease co-77	

expression modules. Taken together, the rapid screening of mouse models in the 78	

course of different life stages will allow better characterization of models based on 79	

alignment with specific human molecular pathologies. 80	

 81	

RESULTS 82	

Human-mouse co-expression module conservation and probe coverage across 30 83	

LOAD associated modules 84	

An overview of the Mouse AD panel design for translating the 30 human AMP-AD co-85	

expression modules from three cohorts and seven brain regions is depicted in Figure 1. 86	

Mouse to human gene prioritization resulted in the selection of 760 key mouse genes 87	

targeting a subset of highly co-expressed human genes plus 10 housekeeping genes, 88	

which explained a significant proportion of the observed variance across the 30 human 89	

AMP-AD modules (Methods). Co-expression modules were grouped into functionally 90	

distinct consensus clusters as previously described by Logsdon, et al (see also 91	

Supplemental Table 1) (12). These consensus clusters contain expression modules 92	

from different brain regions and independent studies that share a high overlap in gene 93	

content and similar expression characteristics. Consensus clusters were annotated 94	

based on Reactome pathway enrichment analysis for the corresponding genes within 95	

each functionally distinct cluster (Methods, Supplemental Table 1). Since consensus 96	

clusters showed an enrichment of multiple biological pathways, the highest rank and 97	
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non-overlapping Reactome pathway was used to refer to each cluster (Supplemental 98	

Table 2). In order to assess the conservation of sequence and gene expression levels 99	

between human and mouse genes for each of the 30 human co-expression modules, 100	

dN/dS values were correlated with the overall overlap in expression in brains from six-101	

month-old C57BL/6J (B6) mice (Figure 2A). The fraction of orthologous genes 102	

expressed in the mouse brain, based on the presence or absence of transcripts at 103	

detectable levels, was very highly correlated with the overall module conservation (p-104	

value < 2.2e-16, Pearson’s correlation coefficient: -0.96). Module conservation was 105	

based on the median dN/dS statistics measuring the rate of divergence in the coding 106	

sequence for all genes within a given module between both species (Figure S1). 107	

Notably, human co-expression modules of Consensus Cluster C, associated with the 108	

neuronal system and neurotransmission, showed the lowest degree of sequence 109	

divergence with a high proportion of human genes (64-72%) expressed in six-month-old 110	

B6 mice. In contrast to the highly conserved neuronal modules, immune modules of 111	

Consensus Cluster B contained genes that recently diverged on the sequence level and 112	

acquired a higher number of destabilizing missense variants. These modules showed 113	

the highest median dN/dS values and the lowest fraction of genes (27-46%) expressed 114	

in the mouse brain across all tested modules. The remaining human co-expression 115	

modules, associated with different functional categories (Figure 2A, Supplemental Table 116	

1), had intermediate overlap in expression levels between human and mice. Each of the 117	

30 human co-expression modules was covered with an average of 148 NanoString 118	

mouse probes (SD = 50 probes), where a single mouse probe can map to multiple 119	

human modules from different study cohorts and across several brain regions. Overall, 120	
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mouse probe coverage for human co-expression modules ranged between 4% and 121	

19%, depending on the size and level of conservation of the targeted human module 122	

(Figures 2B and 2C, Supplemental Tables S2 and S3). For three of the largest human 123	

co-expression modules harboring over 4,000 transcripts, the probe coverage was 124	

slightly below the targeted 5% coverage threshold. However, these large modules are 125	

predominantly associated with neuronal function and show a high degree of expression 126	

and sequence conservation between human and mouse (Figures 2A). Immune 127	

modules, containing genes that recently diverged on the coding sequence level, are well 128	

covered with a median coverage of 10% (Figure 2C). A complete annotation of mouse 129	

probes to human transcripts for each human co-expression module is provided in 130	

Supplemental Table S3. In addition, we compared our novel panel to the existing 131	

nCounter Mouse Neuropathology panel designed to assess expression changes in 132	

multiple neurodegenerative diseases. We observed an overlap of 105 probes (7%) 133	

between both panels, highlighting that most of our selected probe content is novel and 134	

specific to LOAD associated disease processes and pathways.   135	

Prioritized subset of key genes show a higher degree of sequence conservation and 136	

expression level across modules 137	

In order to assess the level of sequence divergence and expression for the prioritized 138	

subset of genes on the novel panel, the selected subset of genes were compared to all 139	

genes across the 30 human co-expression modules. The 760 key genes, explaining a 140	

significant proportion of the observed variance in each human module, showed an 141	

overall lower level of sequence divergence (median dN/dS values) when compared to 142	

all other genes in the modules (Figure 3, Figure S1). Furthermore, the selected key 143	
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genes on the Mouse AD panel also displayed a higher average level of gene expression 144	

in brains of six-month-old B6 mice compared to the remaining genes for each of the 30 145	

modules (Figure 3). This highlights that our formal prioritization procedure resulted in 146	

the selection of a subset of highly expressed key genes, which are also more conserved 147	

between human and mouse facilitating the translation of co-expression profiles across 148	

species.  149	

Novel mouse models harboring LOAD associated risk variants correlate with distinct 150	

AMP-AD modules in a brain region- and pathway-specific manner 151	

Three novel mouse models, harboring two LOAD risk alleles, (Supplemental Table S4) 152	

were used to translate co-expression profiles between human and mouse brain 153	

transcriptome data using our novel Mouse AD panel. Transcriptome analysis was 154	

performed for the APOE4 KI mouse, carrying a humanized version of the strongest 155	

LOAD associated risk allele (APOE-ε4) and the Trem2*R47H mouse, which harbors a 156	

rare deleterious variant in TREM2. The rare TREM2 R47H missense variant 157	

(rs75932628) has been previously associated with LOAD in multiple independent 158	

studies [16,17]. In addition, a mouse model harboring both, the common and rare AD 159	

risk variants (APOE4 KI/Trem2*R47H) was used to compare the transcriptional effects 160	

in mice carrying both variants to mice carrying only a single risk allele and B6 controls. 161	

Mouse transcriptome data for half brains was analyzed at different ages (4-14 months) 162	

to estimate the overlap with human post-mortem co-expression modules during aging. 163	

We observed specific overlaps with distinct disease processes and molecular pathways 164	

at different ages for the APOE4 KI and Trem2*R47H mouse models. At an early age (2-165	

5 months), male APOE4 KI and Trem2*R47H mice showed strong positive correlations 166	
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(p-value < 0.05, Pearson’s correlation coefficient < -0.3) with human co-expression 167	

modules in Consensus Cluster E that are enriched for transcripts associated with cell 168	

cycle and RNA non-mediated decay pathways in multiple brain regions (Figure 4). 169	

Furthermore, Trem2*R47H male mice showed a significantly negative association (p-170	

value < 0.05, Pearson’s correlation coefficient < -0.2) with immune related human 171	

modules in the superiortemporal gyrus, the inferiorfrontal gyrus, cerebellum and 172	

prefrontal cortex (Figure 4). This effect becomes more pronounced later in 173	

development, between six and 14 months, when the correlation with human immune 174	

modules is also observed in Trem2*R47H female mice. During mid-life, (6-9 month-old 175	

age group), we observed an age-dependent effect for the APOE4 KI mouse in which 176	

human neuronal modules in Consensus Cluster C start to become positively correlated 177	

with the corresponding human expression modules (Figure 4). Interestingly, neuronal 178	

co-expression modules which are associated with synaptic signaling appear to be 179	

positively correlated with APOE4 KI, but not Trem2*R47H mice in an age dependent 180	

manner. This up-regulation of genes associated with synaptic signaling and a decrease 181	

of transcripts enriched for cell cycle, RNA non-mediated decay, myelination and glial 182	

development in aged mice was consistent for multiple brain regions and across three 183	

independent human AD cohorts. When compared to APOE4 KI mice, Trem2*R47H 184	

mice showed an age dependent decrease in genes associated with the immune 185	

response in several AMP-AD modules which is not observed for APOE4 KI mice (Figure 186	

4). Notably, the APOE4 KI/Trem2*R47H mice showed characteristics of both single 187	

variant mouse models. At an early age, an overlap with both neuronal and immune 188	

associated human modules is observed and becomes more pronounced during aging.  189	
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Comparison between nCounter Mouse AD panel and RNA-Seq data 190	

To assess the validity of the novel Mouse AD panel across transcriptomic platforms, we 191	

compared the results from the nCounter analysis to results from RNA-Seq data for the 192	

same 137 mouse brain samples. A correlation analysis was performed to compare the 193	

expression of the 770 NanoString probes across co-expression modules with RNA-Seq 194	

transcript expression for all ages (3-5, 7-9, 12-14 months), highlighting the different 195	

LOAD mouse models as independent variables (Figure 5). For the direct comparison, 196	

between the 770 NanoString probes with corresponding RNA-Seq transcripts, a similar 197	

range of correlation coefficients between human data and the three mouse models was 198	

observed (Figure 5A). Overall, the correlation between the RNA-Seq and NanoString 199	

platforms were high across all age groups (Pearson’s correlation coefficients: 0.65-0.69) 200	

when comparing the subset of 760 key transcripts and 10 housekeeping transcripts 201	

across platforms. This demonstrates that the novel NanoString panel, despite the 202	

limited number of key custom probes, can achieve similar results when compared to 203	

high-throughput RNA-Seq data. Furthermore, the alignment of human and mouse 204	

modules based on the expression of all genes within each modules showed a weaker 205	

range of correlations when compared to transcripts covered by the 770 NanoString 206	

probes (Figure 5B). Notably, we observed an age specific effect in which the correlation 207	

between nCounter probe expression and RNA-Seq transcripts increased over time 208	

(Figure 5B). A mild correlation at around three months of age (Pearson’s correlation 209	

coefficient: 0.39) increased to a moderate correlation at 12 months of age (Pearson’s 210	

correlation coefficient: 0.51). Furthermore, we observed a high correlation of log count 211	

values for the majority of NanoString probes when compared to log TPM transcript 212	
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ratios from RNA-Seq data. The majority of the 770 measured NanoString probes 213	

(716/770 probes, 93%) were positively correlated with RNA-Seq transcripts (Figure S2). 214	

In order to test whether noise introduced by highly variable transcripts affects the 215	

correlation between NanoString probes and RNA-Seq transcripts, Pearson’s correlation 216	

coefficients and variance in RNA-Seq expression across 137 samples were compared. 217	

There was no significant trend indicating an effect of highly variable transcripts on the 218	

overall correlation coefficients between transcripts measured by RNA-Seq and 219	

NanoString (Figure S2). 220	

DISCUSSION 221	

Here, we describe a novel systems biology approach to rapidly assess disease 222	

relevance for three novel mouse models carrying two human risk variants, strongly 223	

associated with LOAD. The nCounter Mouse AD gene expression panel was designed 224	

to align human brain transcriptome data covering 30 co-expression modules. Cross-225	

species comparison of human and mouse revealed that immune associated co-226	

expression modules which harbor genes that have recently diverged in sequence were 227	

more likely to be lowly expressed or absent at the transcript level in brains from 6 month 228	

old B6 mice. In contrast, neuronal modules containing genes with a lower degree of 229	

sequence divergence between both species were more likely to be highly and 230	

constitutively expressed in the mouse brain when compared to the remaining co-231	

expression modules. This is in line with evidence from multiple studies highlighting that 232	

conserved neuronal process in the brain are under strong purifying selection while 233	

immune related genes are more likely to diverge in function and expression patterns 234	

across species (13,14). By using our prioritization approach, we selected for 760 key 235	
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mouse genes targeting a subset of highly co-expressed human genes. This subset of 236	

genes on the NanoString panel showed overall lower levels of sequence divergence 237	

compared to human genes and higher expression levels in the mouse brain, reducing 238	

potential noise introduced by lowly expressed transcripts across expression modules.  239	

Furthermore, we observed a robust and significant correlation between human co-240	

expression modules and three mouse models carrying two LOAD associated risk 241	

variants (APOE4 KI, Trem2*R47H, APOE4 KI/Trem2*R47H). Cross-platform 242	

comparison between the novel Mouse AD panel and RNA-Seq data revealed a strong 243	

correlation between mouse gene expression changes independent of platform related 244	

effects. Notably, the correlation between nCounter probe and RNA-Seq transcript 245	

expression with human co-expression modules was highest in aged mice older than 12 246	

months. This age-dependent overlap might be expected due to the late-onset nature of 247	

Alzheimer’s disease resulting in an increased number of highly co-expressed genes in 248	

aged mice carrying human LOAD risk variants. In addition, the strongest correlation 249	

between human and mouse module signatures was observed when using the subset of 250	

770 transcripts on the NanoString panel. This highlights that assessment of key genes 251	

in the brain, contributing highly to module expression, can improve the characterization 252	

of novel LOAD mouse models and their alignment with specific human co-expression 253	

modules. 254	

Interestingly, novel LOAD mouse models showed better concordance with distinct 255	

human co-expression modules, reflecting a different transcriptional response driven by 256	

the human APOE and TREM2 associated LOAD risk variants. The strong negative 257	

correlation between the Trem2*R47H knock-in mice and immune related human co-258	
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expression highlights the important role of the LOAD associated TREM2 R47H variant 259	

in Alzheimer’s related immune processes. This effect is reproducible across human co-260	

expression modules, which derive from three independent cohorts and five different 261	

brain regions (cerebellum, frontal cortex, temporal gyrus, frontal gyrus, frontal pole). 262	

Similarly, a strong negative correlation between co-expression modules associated with 263	

cell cycle and DNA repair was observed for the mouse APOE4 KI model. This overlap 264	

with human late-onset co-expression signatures early in life was observed for a number 265	

of different brain regions and is absent in Trem2*R47H knock-in mice. Furthermore, 266	

aged APOE4 KI mice show a strong overlap with several human neuronal co-267	

expression modules enriched for genes that play an important role in synaptic signaling 268	

and myelination. Although, APOE4 KI mice lack a clear neurodegenerative phenotype, 269	

this age dependent shift in co-expression patterns associated with core LOAD 270	

pathologies points to an increased susceptibility of cognitive decline in aged mice. This 271	

is in line with several studies, which have shown that cognitive deficits in APOE4 272	

transgenic mice develop late in life (15,16). 273	

Limitations of the approach 274	

Albeit being an excellent resource for characterizing molecular pathways and key 275	

drivers of disease, co-expression modules based on human post-mortem brain data 276	

have several limitations. They might not reflect changes that occur early in disease 277	

pathogenesis. In addition, although a high concordance was observed across brain 278	

regions for the 30 modules, they might not cover individual or region-specific differences 279	

in patients in response to amyloid and tau pathology (12). Furthermore, we used brain 280	

homogenates from our mouse models for the transcript comparison with different 281	
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human brain regions in this study. Dissection of mouse brain regions to match the 282	

human studies might further improve the observed co-expression module correlations. 283	

CONCLUSIONS 284	

Taken together, we show that the novel nCounter Mouse AD gene expression panel 285	

offers a rapid and cost-effective approach to assess disease relevance of novel LOAD 286	

mouse models. Furthermore, this co-expression based approach offers a high level of 287	

reproducibility and will supplement methods solely based on differential expression 288	

analysis. Ultimately, this will help us to better understand the relevance of novel LOAD 289	

mouse models in regard to specific pathways and processes contributing to late-onset 290	

Alzheimer’s disease.  291	

METHODS 292	

AMP-AD post-mortem brain cohorts and gene co-expression modules 293	

Data on the 30 human AMP-AD co-expression modules was obtained from the Synapse 294	

data repository (DOI:	10.7303/syn11932957.1). The modules derive from three 295	

independent LOAD cohorts, including 700 samples from the ROSMAP cohort, 300 296	

samples from the Mount Sinai Brain bank and 270 samples from the Mayo cohort. 297	

Details on post-mortem brain sample collection, tissue and RNA preparation, 298	

sequencing, and sample QC can be found in previously published work related to each 299	

cohort (10,11,17). A detailed description on how co-expression modules were identified 300	

can be found in the recent study that identified the harmonized human co-expression 301	

modules as part of transcriptome wide AD meta-analysis (12). Briefly, Logsdon et al. 302	

performed library normalization and covariate adjustments for each human study 303	
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separately using fixed/mixed effects modeling to account for batch effects. Among the 304	

2,978 AMP-AD modules identified across all tissues (10.7303/syn10309369.1), 660 305	

modules were selected by Logsdon et al. which showed an enrichment for at least one 306	

AD-specific differential expressed gene set from the meta-analysis 307	

(10.7303/syn11914606) in cases compared to controls. Lastly, the edge betweenness 308	

graph clustering method was applied to identify 30 aggregate modules that are not only 309	

differentially expressed but are also replicated across multiple independent co-310	

expression module algorithms (12). Among the 30 aggregate co-expression modules, 311	

five consensus clusters have been described by Logsdon et al. (12). These consensus 312	

clusters consist of a subset of modules which are associated with similar AD related 313	

changes across the multiple studies and brain regions. Here, we used Reactome 314	

pathway (https://reactome.org/) enrichment analysis to identify specific biological 315	

themes across these five consensus clusters. A hypergeometric model, implemented in 316	

the clusterProfiler R package (18), was used to assess whether the number of selected 317	

genes associated within each set of AMP-AD modules defining a consensus cluster was 318	

larger than expected. All p-values were calculated based the hypergeometric model 319	

(19). Pathways were ranked based on their Bonferroni corrected p-values to account for 320	

multiple testing. Finally, consensus clusters were annotated based on the highest 321	

ranked and non-overlapping term for each functionally distinct cluster. 322	

Selection of NanoString probes for the nCounter Mouse AD Panel 323	

Since NanoString gene expression panels are comprised of 770 probes with the option 324	

to customize 30 additional probes, we developed a formal prioritization procedure to 325	

identify the most representative genes and ensure broadest coverage across all 326	
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modules (Figure 1). Expression and transcript annotations for the 30 human co-327	

expression modules were obtained via the AMP-AD knowledge portal 328	

(www.synapse.org/#!Synapse:syn11870970/tables/). To prioritize probe targets for the 329	

novel Mouse AD panel, human genes were ranked within each of the human AMP-AD 330	

co-expression modules based on their percentage of variation explaining the overall 331	

module behavior. First, we calculated a gene ranking score by multiplying correlations 332	

of transcripts with the percentage of variation explained by the first five principal 333	

components within each of the aggregated human AMP-AD modules. Secondly, the 334	

sums of the resulting gene scores for the first five principal components were calculated 335	

and converted to absolute values in order to rank highly positive or negative correlated 336	

transcripts within each human co-expression module. As a next step, only human 337	

transcripts with corresponding one-to-one mouse orthologous genes that are expressed 338	

in whole-brain tissue samples from six-month-old B6 mice were retained for 339	

downstream prioritization. Furthermore, we included information on drug targets for 340	

LOAD from the AMP-AD Agora platform (agora.ampadportal.org), as nominated by 341	

members of the AMP-AD consortium (10.7303/syn2580853). A total of 30 AMP-AD drug 342	

discovery targets that were highly ranked in our gene ranking approach and nominated 343	

by multiple AMP-AD groups were included on the panel (Supplemental Table 3). Finally, 344	

ten housekeeping genes (AARS, ASB7, CCDC127, CNOT10, CSNK2A2, FAM104A, 345	

LARS, MTO1, SUPT7L, TADA2B) were included on the panel as internal standard 346	

references for probe normalization. This resulted in a total of 770 proposed NanoString 347	

probes, targeting the top 5% of ranked genes for each human AMP-AD expression 348	

module.  349	
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nCounter Mouse AD Panel Probe Design 350	

The probe design process breaks a transcript’s sequence down into 100 nucleotide (nt) 351	

windows to profile for probe characteristics, with the final goal of choosing the optimal 352	

pair of adjacent probes to profile any given target.  Each window is profiled for intrinsic 353	

sequence makeup – non-canonical bases, G/C content, inverted and direct repeat 354	

regions, runs of poly-nucleotides, as well as the predicted melting temperature (Tm) for 355	

each potential probe-to-target interaction.  The window is then divided in half to 356	

generate a probe pair, wherein each probe is thermodynamically tuned to determine the 357	

optimal probe length (ranging in size from 35-50 nt) within the 100 nt target region.  358	

Next, a cross-hybridization score is calculated for each probe region, using BLAST (20) 359	

to identify potential off-target interactions. In addition to a cross-hybridization score, a 360	

splice isoform coverage score was generated to identify transcripts that are isoforms of 361	

the gene intended to be targeted by the probe in question. Once all of this information is 362	

compiled, the final probe is then selected by identifying the candidate with the optimal 363	

splice form coverage, cross-hybridization score, and thermodynamic profile. 364	

In-silico panel QC for intramolecular interactions 365	

To ensure that there are no potential intramolecular probe-probe interactions that could 366	

cause elevated background for any individual probe pair, a stringent intermolecular 367	

screen is run on every collection of probes assembled into a panel. A sensitive 368	

algorithm was used that calculates both the Tm and the free energy potential of 369	

interactions between every possible pair of probes in the project. If two probes conflict in 370	

a way that would likely cause background based on this calculation, an alternative 371	
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probe is selected for one of the targets and the screening is re-run until there are no 372	

known conflicts. 373	

Mouse models 374	

All experiments involving mice (Supplemental Table S4) were conducted in accordance 375	

with policies and procedures described in the Guide for the Care and Use of Laboratory 376	

Animals of the National Institutes of Health and were approved by the Institutional 377	

Animal Care and Use Committee at The Jackson Laboratory. All mice were bred and 378	

housed in a 12/12 hour light/dark cycle. All experiments were performed on a unified 379	

genetic background (C57BL/6J). 380	

Mouse brain sample collection 381	

Upon arrival at the terminal endpoint for each aged mouse cohort, individual animals 382	

were weighed prior to intraperitoneal administration of ketamine (100mg/kg) and 383	

xylazine (10mg/kg). First confirming deep anesthetization via toe pinch, an incision was 384	

made along the midline to expose the thorax and abdomen followed by removal of the 385	

lateral borders of the diaphragm and ribcage revealed the heart. A small cut was placed 386	

in the right atrium to relieve pressure from the vascular system before transcardially 387	

perfusing the animal with 1XPBS via injection into the left ventricle. With the vascular 388	

system cleared, the entire brain was carefully removed and weighed before hemisecting 389	

along the midsagittal plane. Hemispheres were immediately placed in a cryovial and 390	

snap-frozen on dry ice. Brain samples were stored at -80°C until RNA extraction was 391	

performed. 392	

RNA sample preparation 393	
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RNA was isolated from tissue using the MagMAX mirVana Total RNA Isolation Kit 394	

(ThermoFisher) and the KingFisher Flex purification system (ThermoFisher, Waltham, 395	

MA). Brain hemispheres were thawed to 0°C and were lysed and homogenized in 396	

TRIzol Reagent (ThermoFisher). After the addition of chloroform, the RNA-containing 397	

aqueous layer was removed for RNA isolation according to the manufacturer’s protocol, 398	

beginning with the RNA bead binding step. RNA concentration and quality were 399	

assessed using the Nanodrop 2000 spectrophotometer (Thermo Scientific) and the 400	

RNA Total RNA Nano assay (Agilent Technologies, Santa Clara, CA). 401	

RNAseq library preparation and data collection 402	

Sequencing libraries were constructed using TruSeq DNA V2 (Illumina, San Diego, CA) 403	

sample prep kits and quantified using qPCR (Kapa Biosystems, Wilmington, MA). The 404	

mRNA was fragmented, and double-stranded cDNA was generated by random priming. 405	

The ends of the fragmented DNA were converted into phosphorylated blunt ends. An ‘A’ 406	

base was added to the 3’ ends. Illumina®-specific adaptors were ligated to the DNA 407	

fragments. Using magnetic bead technology, the ligated fragments were size-selected 408	

and then a final PCR was performed to enrich the adapter-modified DNA fragments, 409	

since only the DNA fragments with adaptors at both ends will amplify. Libraries were 410	

pooled and sequenced by the Genome Technologies core facility at The Jackson 411	

Laboratory. Samples were sequenced on Illumina HiSeq 4000 using HiSeq 3000/4000 412	

SBS Kit reagents (Illumina), targeting 30 million read pairs per sample. Samples were 413	

split across multiple lanes when being run on the Illumina HiSeq, once the data was 414	

received the samples were concatenated to have a single file for paired-end analysis. 415	

NanoString gene expression panel and data collection 416	
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The NanoString Mouse AD gene expression panel was used for gene expression 417	

profiling on the nCounter platform (NanoString, Seattle, WA) as described by the 418	

manufacturer. nSolver software was used for analysis of NanoString gene expression 419	

values. 420	

Normalization of NanoString data 421	

Normalization was done by dividing counts within a lane by geometric mean of the 422	

housekeeping genes from the same lane. For the downstream analysis, counts were 423	

log-transformed from normalized count values. 424	

Mouse-human expression comparison 425	

First, we performed differential gene expression analysis for each mouse model and sex 426	

using the voom-limma  (21) package in R. Secondly, we computed correlation between 427	

changes in expression (log fold change) for each gene in a given module with each 428	

mouse model, sex and age. Correlation coefficients were computed using cor.test 429	

function built in R as:   430	

cor.test( LogFC(h), LogFC(m) )                                (1) 431	

where LogFC(h) is the log fold change in transcript expression of human AD patients 432	

compared to control patients and LogFC(m) is the log fold change in expression of 433	

mouse transcripts compare to control mouse models. LogFC values for human 434	

transcripts were obtained via the AMP-AD knowledge portal 435	

(https://www.synapse.org/#!Synapse:syn11180450).  436	

 437	
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Quality control of RNA-Seq data and read alignment  438	

Sequence quality of reads was assessed using FastQC (v0.11.3, Babraham). Low-439	

quality bases were trimmed from sequencing reads using Trimmomatic (v0.33) (22). 440	

After trimming, reads of length longer than 36 bases were retained. The average quality 441	

score at each base position was greater than 30 and sequencing depth were in range of 442	

60 – 120 million reads. All RNA-Seq samples were mapped to the mouse genome 443	

(mm10 reference, build 38, ENSEMBL) using ultrafast RNA-Seq aligner STAR (23) 444	

(v2.5.3). The genes annotated for mm10 (GRCm38) were quantified in two ways: 445	

Transcripts per million (TPM) using RSEM (v1.2.31) and raw read counts using HTSeq-446	

count (v0.8.0). 447	

Mouse-human co-expression module conservation 448	

Genomic information on orthologous groups was obtained via the latest ENSEMBL build 449	

for human genome version GRCh38. All orthologous relationships were downloaded via 450	

BioMart (24) (biomart.org). dN/dS statistics were retrieved for all orthologous gene pairs 451	

with a one-to-one relationship between human and mouse. dN/dS values are calculated 452	

as the ratio of nonsynonymous substitutions to the number of synonymous substitutions 453	

in protein coding genes. The dN/dS values in ENSEMBL were calculated based on the 454	

latest version of the codeml (http://abacus.gene.ucl.ac.uk/software/paml.html) package 455	

using standard parameters (ensembl.org/info/genome/compara/homology_method.html) 456	

(25). 457	

 458	
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FIGURES 622	

 623	

Figure 1: Overview of the nCounter Mouse AD panel design 624	

The novel Mouse AD panel measures expression of genes from a set of 30 human co-625	
expression modules from three human LOAD cohorts, including seven distinct brain 626	
regions. Human genes central to each of the human expression modules were 627	
prioritized for the Mouse AD panel to select conserved signatures of LOAD associated 628	
pathways. 629	
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Figure 2: Human to mouse comparison and probe coverage summary statistics  

(A) Human-mouse sequence divergence (median dN/dS values) is inversely correlated 
(Pearson’s correlation coefficient: -0.96) with the fraction of genes being expressed in 
B6 mouse brain for each of the human co-expression modules. (B) Coverage of the 770 
selected mouse NanoString probes for the 30 human co-expression modules 
associated with five functional consensus clusters. The size and number of human co-
expression modules differs for the three post-mortem brain cohorts (ROSMAP, Mayo, 
Mount Sinai Brain Bank) and across the seven included brain regions. (C) This results 
in a varying degree of probe coverage for each module with a number of disease 
associated consensus clusters (A-E), reflecting disease related pathways and 
processes. 
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Figure 3: NanoString Mouse AD probe genes are more conserved and have greater expression in the mouse 
brain 

Comparison between gene-level sequence divergence and transcript abundances in six month old B6 mouse brains for all 
genes (red) and the subset of 770 genes covered by NanoString probes (green).  
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	Figure 4: Correlations between mouse model effects and LOAD effects for the NanoString Mouse AD panel 
genes across 30 human co-expression modules 

Circles correspond to significant (p-value < 0.05) positive (blue) and negative (red) Pearson’s correlation coefficients for 
gene expression changes in mice (log fold change of strain minus age-matched B6 mice) and human disease (log fold 
change for cases minus controls). Human co-expression modules are ordered into Consensus Clusters A-E (12) 
describing major sources of AD-related alterations in transcriptional states across independent studies and brain regions. 
Consensus clusters are annotated based on the most significantly enriched and non-redundant Reactome pathway terms 
(Supplemental Tables S1, S2). 	
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Figure 5: Platform comparison between the nCounter Mouse AD panel and RNA-Seq correlation with AMP-AD 
modules across 137 samples 

The plots display the correlation between human AMP-AD co-expression modules and gene expression profiles derived 
from the NanoString panel and RNA-Seq data for the same 137 mouse samples. A detailed comparison is provided for 
three different age stages and three mouse models carrying LOAD associated risk variants. (A) A strong positive 
correlation was observed across all ages and samples combined when comparing expression of the 770 transcripts on 
the NanoString panel. (B) The correlation between NanoString and RNA-Seq expression analysis decreased overall when 
comparing all module transcripts measured by RNA-Seq to the subset of 770 probes on the NanoString panel. However, 
an age specific effect was observed for the mouse transcripts in which correlation with human co-expression modules 
increased with age. 
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