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Abstract. Most machine learning algorithms require that training data
are identically distributed to ensure effective learning. In biological stud-
ies, however, even small variations in the experimental setup can lead to
substantial deviations. Domain adaptation offers tools to deal with this
problem. It is particularly useful for cases where only a small amount of
training data is available in the domain of interest, while a large amount
of training data is available in a different, but relevant domain.
We investigated to what extent domain adaptation was able to improve
prediction accuracy for complex biological data. To that end, we used
simulated data and time-lapse movies of differentiating blood stem cells
in different cell cycle stages from multiple experiments and compared
three commonly used domain adaptation approaches. EasyAdapt, a sim-
ple technique of structured pooling of related data sets, was able to im-
prove accuracy when classifying the simulated data and cell cycle stages
from microscopic images. Meanwhile, the technique proved robust to the
potential negative impact on the classification accuracy that is common
in other techniques that build models with heterogeneous data. Despite
its implementation simplicity, EasyAdapt consistently produced more ac-
curate predictions compared to conventional techniques.
Domain adaptation is therefore able to substantially reduce the amount
of work required to create a large amount of annotated training data in
the domain of interest necessary whenever the domain changes even a lit-
tle, which is common not only in biological experiments, but universally
exists in almost all data collection routines.

Keywords: Transfer learning · Domain adaptation · EasyAdapt ·
Batch effect
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1 Introduction

Over the last decade, machine learning, especially supervised learning, has be-
come increasingly important in biological and medical research. Example appli-
cations range from protein structure prediction [1,2] and the identification of
new disease subgroups from gene expression data [3,4], to the identification of
cell connectivity [5] and the prediction of phenotypes from time-lapse [6] data
and high throughput imaging [7]. With improving capabilities of data collection
and growing computational resources, machine learning will be playing an even
more important role in understanding of underlying biological processes.

One of the most well-known limitations of supervised learning, however, is the
need for a large amount of annotated data. In biological and medical research,
this requirement is often difficult to meet, as it necessitates expert knowledge
and intensive manual work. With an increase in high-throughput data it becomes
more and more unrealistic to annotate all observations. An appealing alternative
is to combine already-annotated data from one or multiple sources in order to
build a model for a new problem for which there is only little annotated data.

Another limitation of classic supervised learning techniques is the poor per-
formance in dealing with data from multiple sources. A typical problem in bi-
ological research are batch effects. Batch effects describe qualitative changes in
measurements because of experimental changes that are unrelated to the bio-
logical feature under investigation [8]. Typically, differences in the experimental
setup, the use of different protocols, reagents or different machine settings can all
lead to such effects. Conventional machine learning techniques are less effective
in data with batch effects, due to differences in underlying distributions. Even in
the case of an experiment being designed to be a replicate, the classifier trained
with data from one experiment often tends to have lower predictive accuracy
when applied to data from another replicate [9]. While it is possible to build
a new model using only data from one experiment, this would mean wasting
expert knowledge and involve labor-intensive annotation for each separate ex-
periment. Consequently, it is desirable to have a model that can achieve a high
performance with limited additional annotation work.

Domain adaptation describes the case where at least a part of the data used to
train a model follows a different distribution from the data on which the model
is finally applied [10]. It is closely related to the notion of transfer learning
and mutlitask learning [10,11,12]. We follow Pan and Yang [11] and consider
transfer learning as the more general term, with domain adaptation being one
special form of transfer learning. Domain adaptation can be applied where a large
number of annotated data are available in one or more domains that are not of
direct interest (the source domain), while only a limited amount of annotated
data is available in the domain of interest (the target domain) (Fig. 1). The idea
of domain adaptation is to transfer the knowledge from the source to improve
the learning in the target domain. Technically, it can be understood that the
pre-trained decision boundary only requires some ’minor’ tuning from a smaller
amout of data to be applied to the new domain. Domain adaptation techniques
have originally been developed to address text classification problems [13,14,15].
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Domain adaptation for robust classification of heterogeneous data sets 3

Domains in this context correspond to different types, styles or topics, e.g., a
model trained with news articles can be adapted to classify a corpus containing
fiction texts [14]. However, the concept is very broad and can be applied to
any variable that is likely to lead to differences in the data distribution, e.g.
different machines, protocols or reagents. Here, we consider domains representing
different replicates of a biological experiment, where each replicate can be seen
as a different domain.

Fig. 1. Illustration of a domain adaptation classifier in the target domain that lever-
ages knowledge from a related, but different problem in the source domain. A direct
application of the source domain (left) classifier (solid line) would lead to a poor clas-
sification in the target domain (right). On the other hand, using only data available
in the target domain to train a target domain classifier (dotted line) would also lead
to poor performance, as the available data is not sufficient to fully learn the deci-
sion boundary. Transferring the knowledge from the source to the target domain using
domain adaptation leads to an enhanced classification performance.

2 Methodology

2.1 Definitions

We define a domain D as a feature space X with the marginal probability distri-
bution P (X) and a label space Y . A function f(·) maps xi to yi, where xi ∈ X
and yi ∈ Y . We consider problems with an arbitrary number of source domains
Ds1 , . . . , Dsm(m ≥ 1) and a single target domain Dt . For a multi-class classifica-
tion problem, we convert to a set of binary classification problems in a one-vs-all
manner, i.e. by training a single classifier per class, with the observations of that
class as the positive examples and all other observations as negative examples.
The aim of domain adaptation is to use the knowledge from the source domains
and limited labeling information from the target domain to effectively learn the
objective predictive function f(·) for the target domain.
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2.2 Learning techniques

We compare a particular domain adaptation algorithm, the EasyAdapt tech-
nique [16], with four more conventional techniques of building classifiers. We
refer to these as the ’Source’, ’Target’, ’Combined’ and ’Domain’ techniques. In
this study, all domains share the same feature space X. In general, the tech-
niques require a common feature subspace across domains. The details of these
techniques are outlined below and illustrated in Fig. 2. For all techniques, we as-
sume that the number of observations in the source domains is sufficiently large
to estimate a model that will generalize to unseen data from the same distribu-
tion. In the Source technique, we only use labeled data from the source domains
Ds1 , . . . , Dsm to train the model. The model trained on the source domains is
then evaluated on data from the target domain, giving an indirect measure of
proximity between source and target domains. In the Target technique, we only
use labeled data from the target domain Dt to train the model, without con-
sidering the data from the source domains. Given enough training data in the
target domain, this model should perform the best. In the Combined technique,
we use labeled data from both the source and the target domains without any
reference to the domain membership when training the models (where every
data point is weighted equally). This is arguably one of the most common ap-
proaches in practice [17,18,19], where a typical scenario consists of a relatively
large amount of labeled data from the source domains and a limited amount of
data from the target domain. In the Domain technique, we slightly adapt the
Combined approach. An additional set of binary variables encoding the domain
membership, in the form of one-hot-encoding, is added to the existing feature
set [20]. It is expected to enable the estimated function to have a different offset
for each domain, while making use of all the other predictors from all domains to
define the shape of the function in common. The EasyAdapt domain adaptation
technique [16,21], uses a simple transformation to create a representation for the
general data structure common to source and target domains and a separate rep-
resentation for each domain. The transformations Φs1 , Φs2 , . . . , Φsm , Φt : X 7→ X̌
between the features spaces of the different domains have the following form:

Φs1(XDs1
) = 〈XDs1

,XDs1
,0Ds2

, . . . ,0Dsm
,0Dt

〉
Φs2(XDs2) = 〈XDs2 ,0Ds1 ,XDs2 , . . . ,0Dsm

,0Dt〉
...

Φt(XDt) = 〈XDt ,0Ds1 ,0Ds2 , . . . ,0Dsm
,XDt〉

0Dd
denotes a matrix of dimensions corresponding to the dimensions of do-

main d filled with zeros. EasyAdapt can be applied to an arbitrary number m
of source domains Ds1 , . . . , Dsm and a single target domain Dt (see Fig. 2 for a
visualization and a comparison with other techniques). Features only available
in the target domain could also be incorporated by setting the relevant entries
for the other domains to 0. The technique is simple and flexible and can be
used with any supervised classifier. However, it is recommended that the num-
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ber of features per domain is not too large, because the feature space increases
to R(m+2)p dimensions with p being the dimension of the shared feature space.
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Fig. 2. Schematic overview over the different learning techniques. We denote the feature
matrices with xs1 to xsm for the m source domains and with xt for the target domain.
Label vectors are denoted by ysi and yt, respectively. Single underlined zeros and ones
are column vectors, while double underline indicates matrices of dimensions matching
the dimensions of xi. The Domain technique is adding an additional feature encoding
the domain membership in the form of a one-hot encoding, where the kth domain
is encoded via a 1 at position k. The EasyAdapt technique creates both a unified
representation of the data across all domains (analogously to the Combined technique)
and a separate representation for each domain (diagonal entries).

3 Results

3.1 Simulation study

In order to visualize how the different techniques work and to test their perfor-
mance, we created a two dimensional artificial data set with one source domain
and one target domain (each with 200 data points), where the ground truth is
known (see Fig. 3A). The data was created as follows: In the source domain,
we simulate the positive class by sampling 200 data points uniformly around a
central point with coordinates (1.0, 0.0). The distance from the centre is sampled
from a uniform distribution with mean 0.5 and a range between 0.1 and 0.9. The
radial angle is uniformly distributed between 0 and 360 degrees. For the nega-
tive class, 200 data points are sampled uniformly around the same central point,
but the distance from the centre is sampled from a uniform distribution with
mean 0.9 and a range between 0.5 and 1.3. Again, the radial angle is uniformly
distributed between 0 and 360 degrees. In order to create the data for the target
domain, we translate both classes in the source domain by y′ = y − 0.60, where
y is the horizontal coordinate in the source domain while y′ is the horizontal
coordinate in the target domain. 15% of the data in the target domain was used
for training. The remainder of data in the target domain was used for perfor-
mance evaluation. Support Vector Machine (SVM) [22,23] with a radial basis
function (RBF) kernel was chosen as the basic classifier for all the five learning
techniques described in the previous section. Parameters were selected using a
grid search with 5-fold cross-validation. From both the contour lines (Fig. 3B-F)
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and the ROC curves (Fig. 3G) it is evident that the EasyAdapt technique cap-
tured the distribution of the target domain most accurately (AUC = 0.91), by
leveraging information from both the source domain and the limited amount of
training data from the target domain in building the classifier. Fig. 3B illustrates
that due to the limited amount of training data in the target domain, the Tar-
get technique (AUC = 0.86) learned a decision boundary that was much more
complicated than the underlying distribution. The Source technique (AUC =
0.55, Fig. 3C) directly applied the decision boundary learned from the source to
the target domain, leading to an evident discrepancy with respect to the target
domain distribution. The Combined technique (AUC = 0.64, Fig. 3D), shifts
towards the target domain when building the model. Due to the comparatively
large number of source domain data, however, the model is strongly biased to-
wards the source distribution. The Domain technique (AUC = 0.89, Fig. 3E)
learned a model that describes the target domain quite well, especially in regions
close to the centre. In regions that were farther away, however, the contour lines
were clearly distracted by source domain information. Compared with these four
techniques, the EasyAdapt technique (Fig. 3F) learned a model that described
the target distribution the best, by successfully integrating the information from
the two domains.

3.2 Imaging data set

For a realistic evaluation case, we applied the techniques to a biological data
set [25] consisting of 2888 cells with 186 cell texture and shape features from
time lapse microscopy experiments, where 8 different cell cycle stages have been
manually annotated. The data comes from three experiments, with 1468, 726,
and 694 cells, respectively. It is important to note that the experiments differ
regarding the microscope objectives and the magnification factor (10x for exper-
iments 1 and 3, and 20x for experiment 2) used, and were conducted by different
lab technicians [25]. The different techniques were trained and tested in a one-
vs-all manner on the 8 cell cycle stages (where each stage is treated as a separate
class). We always picked two experiments to represent the source domains and
the remaining experiment as the target domain. We tested all three possible
combinations of two source domains and one target domain. All data from the
source domains together with the data from the target train set were centered
and scaled to unit variance. Subsequently, we applied a principal component
analysis (PCA) to the data, (i) keeping only factors explaining 98% of variance
(reducing the number of features to roughly 20-30), and (ii) keeping only the
16 highest loaded principal components. We used 4-fold cross-validation and a
grid search to select parameters and subsequently evaluated performance on a
test set in the target domain. The procedure was repeated 50 times for different
target training set sizes of 100, 120, 150, 200, 250, 300, and 400 samples in order
to obtain robust estimates for variable performance, especially when using small
training set sizes. Independent of the amount of data available in the target do-
main, we used a fixed-sized test set with 240 samples for performance evaluation,
which was randomly chosen for every iteration and for every new training set. In
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Fig. 3. Simulated data: with limited training data and sufficient domain similarity,
EasyAdapt has the best classification performance on the target domain. (A) Distribu-
tion of the two classes in the source (light blue and orange symbols, right) and target
domain (blue and red symbols, left). The target domain was divided into a training set
and a test set. The target training set consisted of 15% randomly sampled data from
the target domain. Classifiers were trained using RBF kernel SVM. (B-F) Classifiers
created using Target (B), Source (C), Combined (D), Domain (E) and EasyAdapt (F).
Contour lines represent different thresholds of the decision boundary of the correspond-
ing classifier. (G) ROC curves for the different techniques.
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Fig. 4. EasyAdapt outperforms other techniques in particular for small training set
sizes. Performance for (A) linear SVM, (B) radial basis function (RBF) kernel SVM,
and (C) random forest classifiers for learning with experiments 1 and 3 as source
domains and experiment 2 as the target domain. Performance is measured as micro-
averaged AUC (mean±standard deviation, n=50 iterations) [24]. We do not plot the
Source technique since it is independent of the training set size.

order to evaluate and compare performance of techniques, we chose the micro-
averaged AUC. Using this metric, class imbalances were taken into account by
computing cumulative values for true positives, false negatives, true negatives
and false positives for every label and then computing the performance measure
from the aggregated values [24]. We compared three different base classifiers,
namely a linear SVM [23], an RBF kernel SVM [22], and a random forest clas-
sifier [26].

We found that the EasyAdapt technique is particularly robust when working
with a small set of training samples in the target domain and consistently per-
formed among the top techniques in the regime of small training set sizes (Fig. 4).
As expected, with increasing training set size the Target technique catches up
and for 400 training samples (the maximum training set size in the study), the
performance for this technique was among the best performing techniques. In
general performance improved for all techniques with increasing training set size
with exception of the Source technique, which was not trained with any of the
target domain data. Results from all experiments are summarised in Table 1,
showing the performances of the five learning techniques across three different
base classifiers, two different feature selection methods and three different target
domains (each combination of a base classifier, a feature selection method and
a target domain is referred to as a ‘setting’ below).
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Fig. 5. Relative performance, measured as area under the curve for each of the 50
iterations that were used to generate the average performance lines in Fig. 4. Each data
point shows performance over the range of training set sizes (100-400) for one iteration
of the target domain; each box plot comprises data from 50 iterations. Performance
is shown for (A) linear SVM, (B) radial basis function (RBF) kernel SVM, and (C)
random forest classifiers.

To assess performance of the different techniques across training set sizes
(Fig. 4), we measured the area under the curve for each of the 50 iterations
for a given setting. This renders an aggregated performance for each train/test
split across the range of training set sizes we used and gives us an estimate of
performance for small to medium training set sizes. In contrast to the micro-
averaged AUC across different training set sizes, this measure takes into account
the fact that we tested more smaller training set sizes (in the range of 100-200
samples) and is a more conservative measure than simple averaging in our case.
This is achieved by weighting performance according to train set size sampling
frequency. Additionally, we normalized performance, so that a perfect classifier
would achieve an relative performance of 1, corresponding to an AUC of 1 for
all training set sizes in the range from 100 to 400 samples. Fig. 5 shows the
distribution of this performance measure for different techniques, classifiers and
transfer directions. Across all settings, the EasyAdapt technique consistently
showed superior performance over other techniques: Among 18 different settings,
EasyAdapt ranked 15 times the best or tied for the best and 3 times as the
second best. This not only demonstrates the effectiveness of knowledge transfer
of EasyAdapt, but also shows its generality with respect to base classifiers and
feature selection methods under different transfer situations. The second best
technique was the Domain technique, with 8 times the best or tied for the
best and 3 times in the second place. This indicated that in many cases the
membership feature used by the Domain technique was also able to leverage some
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knowledge from related domains. The technique with the lowest performance was
the Source technique, which ranked last in every setting.

Table 1. Mean micro-averaged AUC for different classification methods, learning tech-
niques, feature sets (see text for explanation), and target domains. The best performing
technique in a row is marked in bold. Note that the performance is averaged over the
full range of training set sizes and that one value in the table corresponds to an average
of the performance across different training set sizes. Thus, while the average perfor-
mance for the Target technique appears relatively high, it is much lower when the
target training size is small. EasyAdapt, on the other hand, consistently outperforms
other methods, when the target training data size is small (e.g., 100 - 200 instances,
see Fig. 4).

Method number of
features

Target
domain EasyAdapt Domain

technique
Target

technique
Combined
technique

Source
technique

linear
SVM

16
1 0.972 0.970 0.971 0.959 0.952
2 0.978 0.949 0.976 0.941 0.803
3 0.987 0.987 0.986 0.983 0.981

98%
1 0.976 0.974 0.974 0.966 0.958
2 0.982 0.958 0.978 0.951 0.800
3 0.991 0.990 0.988 0.987 0.983

RBF
kernel
SVM

16
1 0.976 0.976 0.974 0.973 0.956
2 0.982 0.967 0.982 0.963 0.512
3 0.991 0.992 0.990 0.990 0.985

98%
1 0.979 0.979 0.976 0.967 0.955
2 0.984 0.970 0.983 0.966 0.531
3 0.993 0.993 0.991 0.991 0.977

random
forest

16
1 0.970 0.970 0.967 0.965 0.943
2 0.980 0.976 0.977 0.970 0.693
3 0.988 0.989 0.986 0.986 0.979

98%
1 0.972 0.971 0.967 0.968 0.950
2 0.979 0.971 0.975 0.965 0.696
3 0.989 0.990 0.985 0.989 0.982

In practice, it is hard to predict whether pooling of data will actually improve
prediction performance or lead to negative transfer, i.e. learning in the target
domain might be negatively affected by the use of additional information, if
domains are too different [11,27]. An example for such negative transfer is the
case of experiment 2 as the target domain. Here, both the Combined and Domain
techniques performed considerably worse compared to the Target technique (see
Table 1). This can probably be explained by stronger differences in distributions
between experiments 1 and 3 on the one hand, and experiment 2 on the other,
as experiment 2 used a different magnification. This difference can also be seen
from the extremely poor performance of the Source technique for experiment 2 as
the target domain. It is worth noting that the negative transfer that affected the
Combined and Domain techniques with experiment 2 as target domain appears
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stable across different training set sizes (Fig. 4). Importantly, we do not observe
such negative transfer in the case of the EasyAdapt technique. Performance of
EasyAdapt was comparable or even slightly better than the Target technique
when looking at experiment 2 as the target domain.

4 Discussion

In the present study, we investigated whether accounting for experimental vari-
ation in biological data using a domain adaptation techniques can help improve
prediction performance and reduce the need for labeled data. We show that in-
deed, given only limited training data, the EasyAdapt domain adaptation tech-
nique boosts prediction performance both in a simulation study and a data set
of imaged single cells [25] and leads to more robust predictions in the presence
of experimental variation.

Recently, there have been a number of approaches that try to improve gen-
eralization of deep neural network performance across multiple domains. This is
important, as neural networks have been known to generalize relatively poorly
[28]. Often, the approach is to learn transferable representations that both iden-
tify the factors driving variation within the data and match feature distributions
across domains [29,30]. Recent work has used models that are able to adapt to
different domain very quickly by using an efficient parametrization of deep neu-
ral networks and adapter residual modules [31,32]. There is also interesting work
combining generative adversarial networks with domain adaptation [33,34,35].
It is worth noting that the approach described in this work is orthogonal to
these models, and can be used with any type of supervised machine learning
algorithm, including but not limited to deep neural networks.

Applications of domain adaptation techniques in biological research have so
far been mostly restricted to genomic sequence analysis [36,37]. Widmer et al.
[38,39] used a more general multi-task learning framework in conjunction with
regularization based supervised learning methods, such as SVM and logistic re-
gression for splice-site and binding site prediction and to transfer model parame-
ters learned on 2D images to 3D images in order to enhance learning. In contrast
to [39], we do not learn domain specific differences explicitly. In practice, this
information is also often hard to quantify. Here, we rather focus on the effect
of training set size and the pooling of heterogeneous data without quantitative
knowledge about the relationship between domains. We compare performance of
the EasyAdapt technique across three different machine learning algorithms. Fur-
thermore, we consider a range of common ways of combining information from
different domains, e.g. via explicit encoding of domain membership, a procedure
that is often used in practice. We demonstrate that the EasyAdapt technique is
relatively robust to negative effects of data pooling.

Our results have implications for dealing with biological batch effects in ma-
chine learning tasks and for improving learning in settings with limited training
data, if additional source data is available. The EasyAdapt technique allows
the reuse of existing data sets as source data and avoids cost-intensive manual
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labelling of training data. Results confirm the problem that is one major moti-
vation of this work: a model trained using data from one biological experiment is
likely to have much inferior performance when applied to a different experiment,
despite the experiments sharing similar experimental setups. Importantly, the
EasyAdapt technique is general in that it does not change the machine learning
method used and can therefore be applied to a wide set of problems. Because
the feature space grows linearly in the number of domains, the approach is not
applicable in cases with very large feature spaces or a large number of domains.

In general, classification accuracy in the transfer learning setting will be an
increasing function of both the number of training samples available and the ho-
mogeneity and level of relatedness of the training samples to the test set. Given a
limited set of training samples and reasonable relatedness between training and
test set, transfer learning can help to improve classification accuracy. However,
in the case when the relatedness between training and test set is insufficient to
enable transfer, there is potential for negative impact when adding additional
data from a different domain (known as negative transfer). EasyAdapt strikes
a balance between improving performance in cases when additional information
is available and robustness to experimental variations. Compared with classic
techniques such as the Domain and Combined techniques, the EasyAdapt tech-
nique is less affected by negative transfer and for small to medium training set
sizes it can improve learning in the target domain.

The technique is limited by the necessity to identify domains, i.e. it is nec-
essary to have domain knowledge about potential differences in experimental
conditions and fundamental differences in feature distributions that define do-
mains. Furthermore, it requires that the domains have a shared feature subspace
and are distinct [16]. Both requirements are typically fulfilled in biological data.
Further research will be necessary to develop empirical measures of domain re-
lationships that help to identify cases where the use of domain adaptation in
machine learning can be particularly helpful.
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