
ChromSCape  :  a  Shiny/R  application  for  interactive

analysis of single-cell chromatin profiles

Pacôme Prompsy1,2,*, Pia Kirchmeier1,2,*, Céline Vallot1,2

1CNRS UMR3244, Institut Curie, PSL Research University, 75005 Paris, France,

 2Translational Research Department, Institut Curie, PSL Research University, 75005 Paris,

France

* These authors contributed equally to this work

Abstract

Assessing chromatin profiles at single-cell resolution is now feasible thanks to recently published

experimental methods such as single cell chromatin immunoprecipitation followed by sequencing

(scChIP-seq) (Grosselin et  al.,  2019; Rotem et  al.,  2015) and single-cell  assay for transposase-

accessibility chromatin (scATAC-seq) (Buenrostro et al., 2015; Chen et al., 2018; Cusanovich et al.,

2015; Lareau et al.,  2019). With these methods, we can detect the heterogeneity of epigenomic

profiles within complex biological samples. Yet, existing tools used to analyze bulk epigenomic

experiments are not fit for the low coverage and sparsity of single-cell epigenomic datasets. Here,

we present ChromSCape: a user-friendly Shiny/R application that processes single-cell epigenomic

data to help the biological interpretation of epigenomic landscapes within cell populations. The user

can identify different sub-populations within heterogeneous samples, find differentially enriched

regions between subpopulations and identify associated genes and pathways. ChromSCape accepts

multiple  samples  to  allow  comparisons  of  cell  populations  between  and  within  samples.

ChromSCape source code is written in Shiny/R, works as a stand-alone application and is freely

downloadable at  https://github.com/vallotlab/ChromSCape. Here, using ChromSCape on multiple
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H3K27me3 scChIP-seq datasets,  we deconvolve  chromatin landscapes  within the  tumor  micro-

environment,  identifying  distinct  H3K27me3  landscapes  associated  to  cell  identity  and  tumor

subtype.

Contact: pacome.prompsy@curie.fr ; celine.vallot@curie.fr

Introduction

Epigenetic  landscape  defined  by  histone  modifications  is  driving  chromatin  folding  and  genes

accessibility to transcription machineries. The recent development of single-cell methods to study

the  epigenome  enables  the  appreciation  of  the  heterogeneity  of  chromatin  features  within  a

population, which cannot be assessed using bulk ATAC-seq or ChIP-seq method. Such methods

include scChIP-seq (Grosselin et al., 2019; Rotem et al., 2015), scChIL-seq (Harada et al., 2019),

scChIC-seq (Ku et al., 2019) and scCUT&Tag (Kaya-Okur et al., 2019) which identify genomic

regions enriched for repressive or active histone marks (H3K27me3, H3K4me3, ...) and scATAC-

seq (Chen et al., 2018; Cusanovich et al., 2015; Lareau et al., 2019) which assesses regions of open

chromatin. There are existing tools publicly available to analyze scATAC-seq such as chromVar

(Schep et al., 2017), Cicero (Pliner et al., 2018) or Scasat (Baker et al., 2019). However these tools

are dedicated to scATAC-seq and are not stand-alone applications, thus requiring some scripting

skills. To the best of our knowledge, there has not been any stand-alone analytic tool destined to

comprehensively analyze region-based scChIP-seq count data. With ChromSCape, we propose a

user-friendly,  step-by-step  and  customizable  Shiny  application  to  analyze  sparse  single-cell

chromatin profiling datasets. The pipeline is designed for high-throughput single-cell datasets with

samples containing as low as 100 cells and with a minimum of 1000 reads per cell. The interactive

process  includes  filtering  out  cells  with  low  coverage  and  regions  with  low  cell  count,

dimensionality  reduction by PCA, classifying  cells  in  an unsupervised manner  to  identify sub-

populations and find biologically relevant loci differentially enriched in each sub-populations. To
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overcome the sparsity of matrices due to the current technical limitations of these technologies,

reads mapped to the genome must be binned prior to the use of ChromSCape into successive bins of

the genome. These bins range from 5,000bp (recommendation for H3K4me3 scChIP-seq datasets)

up  to  50,000bp  (recommendation  for  H3K27me3  scChIP-seq  datasets),  depending  on  the

modification studied, to increase signal with a resolution trade-off.

Implementation

ChromSCape  is  developed  in  Shiny/R  employing  various  Shiny  related  packages  (shinyjs,

shinydashboard,  shinyDirectoryInput)  for the user  interface.  The application takes advantage of

public  R  libraries  for  data  vizualisation  (RcolorBrewer,  colorRamps,  Rtsne,  colourpicker,

kableExtra, knitr, viridis, ggplot2, gplots, png, grid, gridExtra, DT) as well as for data manipulation

(tibble, dplyr, tidyr, stringr, irlba, reshape2, splitstackshape, rlist).  Some available bioinformatics

packages are used for manipulation of single-cell data (scater (McCarthy et al., 2017), scran (Lun

ATL and JC, 2016)), manipulation of genomic regions (IRanges and GRanges (Lawrence et al.,

2013)) and for clustering of cells (ConsensusClusterPlus (Wilkerson et al., 2010)). Some custom

functions  are  embedded  in  the  application  under  the  ‘Modules’ directory  and  serve  for  both

manipulation  and  vizualisation  of  data  sets.  Brief  command  lines  provided  in

https://github.com/vallotlab/ChromSCape enable users without any informatic background to install

all  R  dependencies  and  run  the  application  in  a  web  browser. A run  command-line  program

achieving similar results is also available at https://github.com/vallotlab/scChIPseq.

Methods

ChromSCape consists of multiple filtering and processing steps, saving  files on a user specified

directory at each step. When the user relaunches ChromSCape and selects a saved analysis, the

application automatically reloads the data and recomputes all the plots. This enables users to try
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various filtering and clustering parameters, visualize the data in reduced dimensional space and

choose the most appropriate set of parameters for their analysis.

Quality Control and Normalization

ChromSCape takes as input one or multiple count matrices with genomic regions in rows and cells

in  columns. Each input  matrix  should have the same regions  as rows to allow merging of  the

different  matrices.  An example  matrix  is  available  on  the  GitHub  repository;  guidelines  given

within the application allow users to understand the requirements for input formating. In order to

efficiently remove outlier cells from the analysis, e.g. cells with excessively high or low coverage,

the user sets a threshold on a minimum read count per cell and the upper percentile of cells to

remove. The latter could correspond to doublets, e.g. two cells in one droplet, while lowly covered

cells are not informative enough or may correspond to barcodes ligated to contaminant DNA or

library artifacts. Regions not supported by a minimum user-defined percentage of cells that have a

coverage  greater  than  1,000  reads  are  filtered.  Defaults  parameters  were  chosen  based  on  the

analysis  of  multiple  scChIP-seq  datasets  from  our  previous  study  (Grosselin  et  al.,  2019):  a

minimum coverage of 1,600 unique reads per cell, filtering out the cells with the top 5% coverage

and keeping regions detected in at least 1 % of cells. Post quality control filtering, the matrices are

normalized by dividing each cell by its total read count, and multiplying by the average total read

count across all cells. At this step, the user can provide a list of genomic regions, in BED format, to

exclude from the subsequent analysis, in cases of known copy number variation regions between

cells for example.

Dimensionality Reduction

In  order  to  reduce  the  dimensions  of  the  normalized  matrix  for  further  analysis,  principle

component analysis (PCA) is applied to the matrix, with centering, and the 50 first PCs are kept for

further analysis. The user can visualize scChIP-seq data after quality control in the PCs dimensional
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space.  The  t-distributed stochastic  neighbor embedding (t-SNE) algorithm (Maaten and Hinton,

2008) is applied on the PCA to visualize the data in two dimensions. The PCA and t-SNE plots are a

convenient way to check if cells form clusters in a way that was expected before any clustering

method  is  applied.  For  instance,  the  user  should  verify  whether  the  QC  filtering  steps  and

normalization procedure were efficient by checking the distribution of cells in PC1 and PC2 space.

Cells  should  group  independently  of  normalized  coverage.  In  our  hands,  for  our  scChIP-seq

H3K27me3 datasets, minimum coverage of 1,600 unique reads per cell was required to separate

cells independently of coverage post normalization (Grosselin et al., 2019). We haven’t observed

any  batch  effect  between  our  experiments  in  our  first  study  most  probably  because  we  were

working with a single batch of hydrogel beads.  Therefore no correction is implemented in this

version of the application, but we are planning to implement solutions to correct batch effect in a

future version.

Correlation and Filtering

Using  the  normalized  dataset  as  input,  hierarchical  clustering  is  performed  on  the  pairwise

Pearson’s correlation matrix.  To improve the stability of our clustering approaches and to remove

from the analysis isolated cells that do not belong to any subgroup,  cells displaying a Pearson’s

pairwise  correlation  score  below  a  threshold  t with  at  least  p %  of  cells  are  filtered  (p is

recommanded to be set  at 1 % or 2 % depending on the dataset).  The correlation threshold  t is

calculated as a user-defined percentile of Pearson’s pairwise correlation scores for a randomized

dataset (percentile is recomanded to be set as the 99th percentile). The correlation heatmaps before

and after correlation filtering and the number of remaining cells are displayed to inform users on the

filtering process.

Consensus Correlation Clustering
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ChromSCape uses Bioconductor ConsensusClusterPlus package (Wilkerson et al., 2010) to examine

the stability of the clusters and compute item consensus score for each cell. Consensus partitions of

the dataset into a number of cluster ranging from 2 to 10 is done on the basis of 1,000 resampling

iterations  (80%  of  cells  sampled  at  each  iteration)  of  hierarchical  clustering,  with  Pearson's

dissimilarity as the distance metric and Ward's method for linkage analysis. The optimal number of

clusters can be chosen in order to maximize intra-cluster correlation scores based on the graphics

displayed  on  the  ‘Consensus  Clustering’ tab  after  processing.  Clustering  results  can  also  be

visualized in two dimensions with the t-SNE plot. This unsupervised clustering allows to discover

clusters of cells based on their respective chromatin profile within a population without any prior

knowledge.

Peak Calling for genomic region annotation

This step of the analysis is optional, but recommended in order to obtain meaningful results with the

enrichment  analysis.  To  be  able  to  run  this  module,  some  additional  command  line  tools  are

required such as Samtools (Li et al., 2009), Bedtools (Quinlan and Hall, 2010) and MACS2 (Liu,

2016). The user needs to input BAM files for the samples (one separate BAM file per sample),  with

each read being labeled with the barcode ID. ChromSCape merges all files according and split them

again according to the previously determined clusters of cells (one separate BAM file per cluster).

Customizable significance threshold for peak detection and merging distance for peaks (defaults to

p-value=0.05  and  peak  merge  distance  to  5,000)  allows  to  identify  peaks  in  close  proximity

(<1000bp) to a gene transcription start site (TSS); these genes will be later used as input for the

enrichment  analysis.  For  the  annotation,  ChromSCape  uses  the  reference  human  transcriptome

Gencode hg38 v26 (Frankish et al., 2018), limited to protein coding, antisense and lncRNA genes.

Differential Analysis and Gene Set Enrichment Analysis
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To identify  differentially  enriched  regions  across  single-cells  for  a  given  cluster,  ChromSCape

performs a non-parametric two-sided Wilcoxon rank sum test comparing normalized counts from

individual cells  from one cluster versus all  other cells.  We test  for the null  hypothesis that the

distribution of normalized counts from the two compared groups have the same median, with a

confidence interval 0.95.  The calculated p-values are then corrected by the Benjamini-Hocheberg

procedure (Benjamini and Hochberg,  1995).  The user can set  a log2 fold-change threshold and

corrected p-value threshold for regions to be considered as significantly differentially enriched (we

recommend to set corrected p-value and log2 fold-change thresholds respectively to 0.01 and 1).

Using the refined annotation of peaks done in previous step, the final step is to look for enriched

gene sets of the MSigDB v5 database (Subramanian et al., 2005) in differentially enriched regions.

We apply hypergeometric tests to identify gene sets from the MSigDB v5 database overrepresented

within differentially enriched regions, correcting for multiple testing with the Benjamini-Hochberg

procedure. Users can then visualize most significantly enriched or depleted gene sets corresponding

to the epigenetic signatures of each cluster and download gene sets enrichment tables.

Application : ChromSCape deconvolves chromatin landscapes

of the tumor micro-environment

To showcase the use of ChromSCape to interrogate heterogeneity of chromatin landscapes within

several samples, we analyzed together four H3K27me3 mouse scChIP-seq datasets (GSE117309),

two of which had not been analyzed in our previous study (Grosselin et al., 2019). The raw FASTQ

reads were  processed  using  the latest  version  of  our  scChIP-seq data  engineering  pipeline that

allowed a  more  precise  removal  of  PCR and RT duplicates  (code  available  at  Github).  Count

matrices (available at Figshare) were formatted into a ChromSCape compliant format. The samples

correspond to the mouse cells from patient-derived xenograft (PDX) originating from two different

human donors. The HBCx-22 and HBCx-22-TamR datasets correspond to mouse cells from a pair

of luminal ER+ breast PDXs: HBCx-22, responsive to Tamoxifen and HBCx-22-TamR, resistant to
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Tamoxifen.  The  HBCx-95  and  HBCx-95-CapaR  correspond  to  a  triple-negative  breast  cancer

(TNBC) tumor model of acquired resistance to chemotherapy. The four 50,000-bp binned matrices

of raw counts, in mm10 reference genome, were given as input to ChromSCape to interrogate the

heterogeneity of chromatin states within the tumor micro-environment of both luminal and TNBC

tumors.  Tumor  micro-environment  is  a  key  player  in  tumor  evolution  processes,  and can  vary

between tumor types and with response or resistance to cancer therapy. With ChromSCape, we

propose  a  comprehensive  view  of  cell  populations  based  on  their  chromatin  profiles,  and  the

identification  of  tumor-type  and  treatment-specific  cell  populations  and  respective  chromatin

features. All figures excepted Fig. 2d were automatically produced by the application and are easily

downloadable.

In the quality filtering step, a threshold of 2,000 minimum reads per cell was set due to a relatively

high initial number of cells (5,516 cells in total, see Fig. 1d). Samples were not affected to the same

extent by the filtering step (Fig. 1d, p-value = 5e-04, Fisher’s exact test): sample HBCx-95-CapaR

was affected twice more than all other samples by the filtering probably due to a lower initial cell

coverage.  After  normalization  and  dimensionality  reduction,  the  data  is  visualized  in  reduced

dimensional spaces (after PCA and t-SNE reduction steps) according to either total count or sample

of origin (Fig. 1a-b). In both representations, we can observe multiple clouds of high count cells,

showing that  total  count  is  not  the  only  source  of  variation  between  cells  post  normalization.

Interestingly, cells from the two different model mix generally well together showing that no major

batch effect was present between samples. Correlation filtering (Fig. 1c-d) was done setting the

quantile threshold at 99%, i.e cells need to have a correlation score greater than 0.44 with at least

1% of other cells to be kept for downstream analysis (Sup. Fig. 1). We note that this filtering step

may be biased towards removing meaningful cells from samples with low cell number,  as they

might not have enough representative cells with each chromatin profile to pass treshold.

After performing consensus clustering approach on the filtered dataset for k=2 to k=10 clusters, we

chose to partition the data into k=4 clusters based on the knee method as a major leap in area under

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 22, 2019. ; https://doi.org/10.1101/683037doi: bioRxiv preprint 

https://doi.org/10.1101/683037
http://creativecommons.org/licenses/by-nc-nd/4.0/


the CDF curve was observed between k=3 and k=4 clusters, and not between k=4 and k=5 (see Sup.

Fig. 2 a-b). Consensus score matrix in Fig. 1e shows that most of the cells were stably assigned to

four chromatin-based populations. Cluster C2 and C4 cells assignment is less stable than C1 and C3

(mean consensus scores are respectively 0.84 and 0.90 for C1-C3 and 0.70 and 0.71 for C2-C4, see

Sup. Fig. 2.a), suggesting that cells from C2 and C4 might share H3K27me3 features, whereas cells

from C1 and C3 have distinct H3K27me3 landscapes. Clusters C1, C2 and C4 contain cells from all

four samples, with a significantly higher proportion of HBCx-22-TamR for C1 (p-value = 3e-05,

Pearson’s Chi-squared test) (Fig. 1f, 1g, 2a). On the other hand, cluster C3 is almost exclusively (p-

value < 1e-05) composed of cells from model HBCx-95 (Fig. 1b,  2a),  revealing a stromal cell

population specific to the triple negative breast cancer model (HBCx-95).

To further identify the specific features of each chromatin-based population, we proceeded to peak

calling,  differential  analysis  and  gene  set  enrichment  analysis  using  default  parameters  (see

Methods). As H3K27me3 is a repressive histone mark, we focused our analysis on loci depleted in

H3K27me3, where transcription of genes can occur. The differential analysis identified respectively

189, 210, 83 and 9 depleted regions for clusters C1 to C4 (Fig.  2b).  We found loci  devoid of

H3K27me3 specific to cluster C2, enriched for genes involved in apical junction such as  Bcar1

(Fig. 2c) and Ptk2, which are characteristic of genes expressed in fibroblasts. We found a depletion

of  H3K27me3  specific  to  cluster  C3  over  the  genes  Nrros (Fig.  2c)  and  Il10ra,  two  genes

characteristic of immune expression programs. Depletion of H3K27me3 over the transcription start

site of Rap1gap2, a gene expressed in endothelial cells, was a key feature of cluster C4 (Fig. 2c).

For  cluster  C1  and  C2,  we  found  a  depletion  of  H3K27me3  over  Eln,  a  gene  expressed  in

fibroblasts.

Gene set enrichment analysis (q-value < 0.1) for genes located in regions depleted of H3K27me3

enrichment only revealed very few enriched gene lists, mostly for cluster C2 (Fig. 2d, multiple gene

sets  related  to  stem  and  cancer  cells)  and  one  list  for  C1

(“LPS_VS_CONTROL_MONOCYTE_UP”)  and  (Fig.  2b). Linking  H3K27me3  enrichment  to
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transcription is indeed indirect, we see our gene list tool more appropriate for H3K4me3 scChIP-seq

or scATAC-seq datasets, where enriched regions are directly associated to gene transcription. In

addition, we are working on improving this step in future versions of the application, including

enhancer annotation for example. 

Overall, these results are consistent with our previous analysis of HBCx-95 scRNA-seq datasets

where  subpopulations  were  differentially  expressing  markers  of  fibroblasts,  endothelial  and

macrophage  cells  (Grosselin  et  al.,  2019).  This  new analysis  comprising  the  HBCx-22  dataset

allowed us to identify the H3K27me3 signature of potential endothelial cells (cluster C4). These

cells  are  present  in  each  model,  but  might  not  have  been  previously  detected  in  the  previous

scChIP-seq  analysis  due  to  low  cell  representation.  In  addition,  the  H3K27me3  signature  of

potential immune cells is restricted to cells from the TNBC model (cluster C3), suggesting that

these immune cells are absent from the luminal tumor. Altogether, ChromSCape can effectively

deconvolve chromatin landscapes in complex samples, such as tumors.

Conclusion

ChromSCape is a standalone Shiny/R application designed for both biologists and bioinformaticians

to analyze complex chromatin profiling datasets such as scChIP-seq datasets. The comprehensive

application  is  quick  to  take  over  plus  the  direct  visualization  of  cells  clusters  combined  to

configurable parameters and incremental saving of intermediary R objects eases bench-marking of

parameters. With an analysis of several scChIP-seq datasets of mouse stromal cells, we show that

heterogeneity of chromatin landscapes between and within cell populations can robustly be detected

by implementing multiple  filtering steps  as  well  as consensus  clustering approach.  Overall,  we

predict that ChromSCape will be a useful tool to probe heterogeneity and dynamics of chromatin

profiles in various biological settings, not only in cancer development but also in cell development

and cellular differentiation.
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Fig. 1. Filtering and Unsupervised Clustering of single-cell ChIP-seq H3K27me3 histone mark profiles of 
mouse stromal cells from patient derived xenografts models (HBCx-22, HBCx-22-TamR, HBCx-95, 
HBCx-95-CapaR PDXs, see Grosselin et al., 2019). Cells with lower than 2000 counts or with higher counts 
than the 95th percentile were filtered. Regions not represented in at least 1% (n=23) of remaining cells were 
excluded. (a) PCA and t-SNE plots colored by unique mapped reads. (b) PCA and t-SNE plots colored by 
sample of origin. (c) Hierarchical clustering of cell-to-cell Pearson’s correlation scores before filtering step. (d) 
Table of each sample's cell number before and after correlation filtering. (e) Hierarchical clustering and 
corresponding heatmap of cell-to-cell consensus clustering of cells using k = 4 clusters. Consensus score ranges 
from 0 (white: never clustered together) to 1 (dark blue: always clustered together). Cluster membership is color 
coded above the heatmap. (f) Hierarchical clustering and corresponding heatmap of cell-to-cell Pearson’s 
correlation scores for ‘correlated’ cells only. (g) Table of samples memberships to the clusters. P-value column 
results from Pearson's Chi-squared goodness of fit test without correction, checking if the observed distribution 
of samples in each cluster differs from theoretical distribution.

d

c

t-
SN

E
2

t-SNE1

Count

PC
2

PC1 PC1 t-SNE1

30

20

10

0

-10

60

30

0

-30

t-
SN

E
2

HBCx-22

HBCx-22-TamR

HBCx-95

HBCx-95-CapaR

Sample30

20

10

0

-10

t-SNE1
t-

SN
E

2

60

30

0

-30

PC
2

b

c
Correlation matrix before correlation filtering

Sample

Count

e

f

Sample
Count

Cluster

Correlation matrix after correlation filtering and 
hierarchical clustering

Cluster

Consensus score matrix and assignment to clusters (k=4)

g

0 50 100 0 50 1000-30 -10-20 10 20 0-30 -10-20 10 20

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 22, 2019. ; https://doi.org/10.1101/683037doi: bioRxiv preprint 

https://doi.org/10.1101/683037
http://creativecommons.org/licenses/by-nc-nd/4.0/


Fig. 2. Differential Analysis and Gene Set Enrichment Analysis of single-cell ChIP-seq H3K27me3 
histone mark profiles of mouse stromal cells (samples HBCx-22, HBCx-22-TamR, HBCx-95,
HBCx-95-CapaR PDXs). (a) t-SNE representations after correlation filtering (n=903 cells) and colored by 
cluster or sample of origin. (b) Differentially bound regions identified by Wilcoxon signed-rank test. 
Genomic regions were considered enriched (red) or depleted (green) in H3K27me3 if the adjusted p-
values were lower than 0.01 and the fold change greater than 2. (c) t-SNE representation of scChIP-seq 
dataset, points are colored according to H3K27me3 enrichment signals in each cell for genes located in 
depleted regions in C1 to C4, respectively Eln, Bcar1, Nrros and Rap1gap2. The adjusted p-values and 
log2FC of the associated regions are indicated above each plot. (d) Barplot displaying the -log10 of 
adjusted p-values from pathway analysis for cells of cluster C2 compared to all other cells in depleted loci. 
Only the top 15 significant gene sets are indicated, filtering out depleted gene sets from MSIGdb classes 
"c2_computational" and "c3_motifs".
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Supplementary Fig. 2. Consensus clustering of n=903 mouse stromal cells using 80% of cells at each
iteration and 1,000 iterations (samples HBCx-22, HBCx-22-TamR, HBCx-95, HBCx-95-CapaR PDXs).
(a) Barplot of consensus scores for each segmentation, from k=2 to 10. k=4 clusters was chosen. The
names of the clusters corresponding to the analysis is showed above histogram for k=4.  (b) Relative
change in area under the Cumulative Distribution Fraction for k=2 to 10 clusters.
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