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Abstract 

Chronic immune-mediated diseases of adulthood often originate in early childhood. To investigate 

genetic associations between neonatal immunity and disease, we collected cord blood samples from a 

birth cohort and mapped expression quantitative trait loci (eQTLs) in resting monocytes and CD4+ T 

cells as well as in response to lipopolysaccharide (LPS) or phytohemagglutinin (PHA) stimulation, 

respectively. Cis-eQTLs were largely specific to cell type or stimulation, and response eQTLs were 

identified for 31% of genes with cis-eQTLs (eGenes) in monocytes and 52% of eGenes in CD4+ T cells. 

We identified trans-eQTLs and mapped cis regulatory factors which act as mediators of trans effects. 

There was extensive colocalisation of causal variants for cell type- and stimulation-specific neonatal 

cis-eQTLs and those of autoimmune and allergic diseases, in particular CTSH (Cathepsin H) which 

showed widespread colocalisation across diseases. Mendelian randomisation showed causal neonatal 

gene transcription effects on disease risk for BTN3A2, HLA-C and many other genes. Our study 

elucidates the genetics of gene expression in neonatal conditions and cell types as well as the 

aetiological origins of autoimmune and allergic diseases. 
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Introduction 

Infancy is a critical period during which physiological and developmental changes impact the 

pathogenesis of conditions later in life1,2. Many complex diseases, in particular immune and respiratory 

conditions, are partially determined by genetic predisposition and early-life environment exposures, 

such as microbes or allergens3-5. Yet, despite increasing evidence of its importance, little is known about 

early life genetic regulation of gene expression and its relevance to the genetic predisposition for 

diseases which arise later in life. 

Expression quantitative trait loci (eQTL) studies have provided insights into the gene regulatory effects 

of genetic variants and their relationship with complex disease6-9. The majority of eQTLs have been 

identified in adult tissues, and exploration of eQTLs in perinatal tissues has only recently commenced: 

for example, eQTLs identified in foetal placentas10 and foetal brains11 are enriched for genetic variants 

associated with development (e.g. adult height) and neuropsychiatric (e.g. schizophrenia) traits, 

respectively. In addition to genetic variation, disease development is influenced by individual response 

to external stimuli. Understanding the interaction between eQTLs and external stimuli can give insights 

into the condition(s), whether they be cell type, microbe or temperature, under which genetic variants 

may exert their effect on disease. Previous studies have investigated response eQTLs (reQTLs), eQTLs 

with genetic effects modified by external stimulation, in CD14+ monocytes12,13, macrophages14, 

dendritic cells15,16, and CD4+ T cells17. However, reQTL studies to date have largely been performed 

using samples from adult tissues and cell types and thus our knowledge of the genetic landscape of 

neonatal gene expression responses to common immune-mediated stimuli is limited. 

Here, we characterise the genetics of gene expression in the innate and adaptive arms of the neonatal 

immune system using purified cord blood samples from 152 neonates18-23. In these samples, we mapped 

cis- and trans-eQTLs of monocytes and CD4+ T cells as well as reQTLs for monotypes stimulated with 

lipopolysaccharide (LPS; a component of bacterial cell walls) and CD4+ T cells stimulated with 

phytohemagglutinin (PHA; a pan-T cell mitogen). Using mediation analysis, putative trans gene 

regulation was investigated to identify cis regulatory mechanisms. We explored the shared genetic basis 

of neonatal eQTLs and reQTLs with common autoimmune and allergic diseases. Finally, we used 

Mendelian randomisation to uncover causal effects of neonatal monocyte and CD4+ T gene expression 

on disease risk, and to highlight the potential importance of the perinatal period in understanding the 

origins of immune-mediated disease. 
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Results 

Genetics of neonatal gene expression in innate and adaptive immunity 

We performed eQTL analysis on in vitro cultures of resting and stimulated neonatal immune cells from 

152 neonates of the Childhood Asthma Study (CAS) cohort (Figure 1). The cell cultures comprised 

four experimental conditions: resting monocytes, LPS-stimulated monocytes, resting T cells, and PHA-

stimulated T cells. The total number of samples available for eQTL analysis was 116 for resting 

monocytes, 125 for LPS-stimulated monocytes, 126 for resting T cells, and 127 for PHA-stimulated T 

cells. 

To identify cis-eQTLs, we applied a hierarchical procedure to correct for multiple testing within each 

experimental condition at 5% false discovery rate (FDR; Methods). Stimulated cells yielded a larger 

number of cis-eQTLs and associated genes (eGenes) than resting cells (1,347 vs. 971 eGenes in PHA-

stimulated vs. resting T cells, respectively; 376 vs. 136 in LPS-stimulated vs. resting monocytes, 

respectively; Figure 2A, Table S1–4). To investigate the differences in numbers of eGenes between 

conditions, we repeated the analysis controlling for differences in sample size (randomly sampling 116 

samples in each condition). This yielded similar results to the numerical distribution of cis-eGenes: 

1,231, 900, and 350 in PHA-stimulated T cells, resting T cells, and LPS-stimulated monocytes, 

respectively. The lower number of eQTLs in monocytes may be explained by fewer genes being 

expressed (Figure S1). 

For eGenes with eQTLs in multiple experimental conditions, we performed conditional analysis to 

distinguish whether these were independent or shared signals between conditions (Methods). The 

majority (74%) of eQTL signals were specific to one cell type or stimulatory condition (Figure 2B), 

consistent with previous observations12. We observed a majority of cis-eQTL effects after stimulation: 

60% (262 of 376) of eGenes in LPS-stimulated monocytes and 58% (778 of 1,347) in PHA-stimulated 

T cells. Using a two-step conditional analysis (Methods), PHA-stimulated T cells had the largest 

number of eGenes (6.3%; Table S5) with multiple independent eQTL signals. GARFIELD enrichment 

analysis24 showed that the cis-eSNPs were enriched in 3’ untranslated regions (UTR), 5’ UTR, and exon 

regions (Figure S2), consistent with known mechanisms of cis-eQTLs. 

In comparing our resting and LPS-stimulated monocytes to those from adults in Fairfax et al.12, we 

found that approximately half of the cis-eQTLs from neonatal monocytes (including variants in high 

LD, r2 ≥0.8) replicated in adult monocytes (Table S6). Similarly, we compared resting and stimulated 

neonatal T cells to adults T cells of the DICE study7: although the stimuli were different, 32% and 18% 

of cis-eQTLs from resting and PHA-stimulated CD4+ T cells in neonates replicated in resting and anti-

CD3/CD28-stimulated CD4+ T cells, respectively. 
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Genetics of neonatal gene expression in response to stimuli 

To quantify how genetic regulation of gene expression is altered by external stimuli, we identified 

response eQTLs (reQTLs) and response eGenes (reGenes) by performing interaction tests on the top 

eSNPs of each eGene in monocytes and T cells separately, and controlling FDR at 5% using 

permutation-adjusted P-values (Methods). In monocytes, we identified 125 significant reQTLs 

involving 125 unique reGenes (31% of 398 monocyte eGenes); in T cells, we identified 956 reQTLs 

involving 918 unique reGenes (52% of 1,749 T cell eGenes), among which 38 reGenes had distinct cis-

eQTLs in two conditions where both eQTLs were reQTLs (Table S7–8). Consistent with our findings 

for cis eQTLs and eGenes, the number of reQTLs and proportion of reGenes were greater in stimulated 

compared to resting conditions. 

For two reQTLs, the direction of eQTL effect changed between conditions (Figure 2C). The 'C' allele 

of the top eSNP (rs5751775) for DDT (D-dopachrome tautomerase), a gene functionally related to the 

inflammatory cytokine MIF (migration inhibitory factor), increased DDT transcription in resting T cells 

but decreased expression after PHA stimulation (Figure S3A, Table S8). Similarly, the 'T' allele of the 

top eSNP (rs13068288) for ZNF589 increased transcription of ZNF589 in resting T cells but reduced 

expression after PHA stimulation (Figure S3B, Table S8). 

Disentangling trans and cis effects using mediation analysis 

We identified 25 trans-eQTLs in T cells (10 in resting, 15 in PHA-stimulated), and one trans-eQTL in 

monocytes (Figure 3A, Table S9) at a genome-wide FDR of 5%. Notably, the trans-eQTL for MYH10, 

a component of myosin heavy chain which regulates cytokinesis, was shared across all four 

experimental conditions; furthermore, the same eQTL was associated with multiple trans-eGenes in T 

cells: MIR130A and STX1B in resting and stimulated T cells, and IP6K2 and MIR1471 in resting T cells 

only (Figure 3A). 

Consistent with previous reports that trans-eQTLs are enriched for cis-eQTLs25, we found that multiple 

trans-eQTLs (the single trans-eQTL in monocytes, 6 of the 10 in resting T cells, and 3 of the 15 in 

PHA-stimulated T cells) were significantly associated with local genes in cis (Figure 3A, Table S9). 

The trans-eQTL for MYH10 was also a cis-eQTL for RPS26 (part of the 40S subunit of the ribosome) 

in all conditions except PHA-stimulated T cells. The top eSNP (rs1131017) for RPS26, located in its 5’ 

UTR, was also a cis-eQTL for SUOX (sulphite oxidase, a homodimer in the intermembrane space of 

mitochondria) in resting and stimulated T cells. Separately, the trans-eQTL (rs687492) for microRNA 

MIR330 was also a cis-eQTL for the long non-coding RNA SNHG8 in resting and stimulated T cells. 

Mediation analysis revealed that the trans-eQTL effects of rs687492 on MIR330 were cis mediated 

through SNHG8 (Figure 3B–C, Table S10, Methods), indicating a potential pathway containing this 
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lncRNA-miRNA cross-talk. Furthermore, mediation analysis also revealed the regulatory logic of the 

cis-eQTL (rs1131017) for SUOX and RPS26, revealing that rs1131017's trans-effects on MYH10, 

MIR130A, IP6K2 were mediated through RPS26 and not SUOX in resting T cells (Figure 3D, Table 

S10). 

Genetic overlap with immune-mediated diseases 

To investigate the genetic overlap between neonatal gene expression and disease, we used a multi-

pronged approach. First, we performed enrichment analyses to test for significant overlaps between the 

cis-eQTLs and variants associated with immune-mediated disease in genome-wide association studies 

(Methods). We found widespread enrichment amongst cis-eQTLs for genetic variants associated with 

diseases such as allergic disease (asthma, hay fever, or eczema) and inflammatory bowel disease 

(Figure S4). 

Second, we performed colocalisation analysis26 to identify variants sharing regulatory (eQTL) and 

disease-associated (GWAS) signals (Methods). In total, we observed 68 colocalisations, involving 5, 

9, 15, and 17 independent cis-eQTLs in resting monocytes, LPS-stimulated monocytes, resting T cells, 

and PHA-stimulated T cells, respectively (Figure 4A, Table S11). Our analysis revealed widespread 

colocalisation of the cis-eQTL for BACH2 in resting T cells with variants for autoimmune thyroid 

disease, celiac disease, multiple sclerosis, rheumatoid arthritis, and type 1 diabetes (Figure S5). BACH2 

encodes a transcriptional repressor that restrains terminal differentiation and promotes the development 

of memory lymphocytes including CD8+ T cells27 and B cells28. At the BACH2 locus, the 'A' allele at 

the top eSNP (rs72928038) was associated with decreased BACH2 expression and increased risk of the 

above diseases. This was consistent with previous studies which showed mutations and loss-of-function 

variants of BACH2 resulted in immunodeficiency and disruption to regulatory T cells function with 

subsequent autoimmunity29,30. 

We found 17 colocalisations of reQTLs and disease variants, in total involving 12 reQTLs: one 

monocyte reQTL specific to LPS stimulation (eQTL for CTSH), and 11 reQTLs in T cells, among which 

8 were specific to PHA stimulation. Notably, the reQTL for IL13 in PHA-stimulated T cells colocalised 

with GWAS hits associated with asthma, allergic sensitisation, and allergic disease (Figure 4, Table 

S11). The 'T' allele of the top eSNP (rs1295686) was associated with greater IL13 expression in PHA-

stimulated T cells as well as increased risk of all three diseases (Figure 4B). rs1295686 is intronic to 

IL13 and in strong LD (r2 >0.98) with four other eSNPs, including an Gln144Arg missense SNP 

(rs20541) in IL13. At the CCL20 locus, the 'A' allele of the cis-eQTL/reQTL (rs13034664) in PHA-

stimulated T cells was associated with lower CCL20 expression as well as increased risk of childhood-

onset asthma (Figure 4A, Figure S6, Table S11). CCL20 is part of the CCR6-CCL20 receptor-ligand 

axis, a key driver of dendritic cell chemotaxis31. 
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Our analyses uncovered complex condition-specific colocalisations at multiple loci. A T cell ubiquitin 

ligand that regulates apoptosis (UBASH3A) had two independent cis-eQTLs in resting and stimulated 

T cells, which were also reQTLs. However, only the cis-eQTL in resting T cells (rs1893592) colocalised 

with celiac disease, rheumatoid arthritis, and primary sclerosing cholangitis (PSC) (Figure 4, Table 

S11). Cis-eQTLs for CTSH, which encodes the lysosomal cysteine proteinase cathepsin H, colocalised 

with signals for different diseases in a cell type and condition specific manner (Figure S7, Table S11). 

Cis-eQTLs for CTSH in resting monocytes and resting T cells both colocalised with GWAS hits for 

celiac disease, narcolepsy, and type 1 diabetes. On the other hand, cis-eQTLs for CTSH in LPS-

stimulated monocytes and PHA-stimulated T cells both colocalised with primary biliary cirrhosis (PBC). 

Causal effects of condition-specific gene expression on immune-mediated diseases 

To identify putative causal effects of neonatal gene expression on risk of autoimmune and allergic 

disease, we performed two-sample Mendelian randomisation (MR) analysis using cis-eQTLs as genetic 

instruments, the neonatal cis-eGene as exposure, and disease as outcome (Methods). We tested the 52 

eGenes which had 3 or more genetic instruments available and the diseases above, for which we had 

GWAS summary statistics available. We considered genes for which at least three of four MR methods 

(inverse variance weighted, weighted median, weighted mode, and MR Egger) were in agreement in 

detecting significant causal effects (P-value ≤0.05) on a disease without significant pleiotropic effects 

(Table S12). 

In our MR analysis, we found multiple conditions where neonatal gene expression had a causal effect 

on multiple diseases (Figure 5), including BTN3A2 (butyrophilin subfamily 3 member A2), HLA-C 

(major histocompatibility complex class I molecule), MICB (ligand for an activatory receptor expressed 

on natural killer cells, CD8+ αβ T cells, and γδ T cells), ZNRD1 (RNA polymerase 1 subunit), and 

SLC22A5 (carnitine transporter) (Table S12). BTN3A2 had a relatively large number of genetic 

instruments for resting (7 to 8) and stimulated (3 to 5) T cells, and the causal estimates were similar 

between these two conditions (Figure S8–9). In resting T cells, increased expression of BTN3A2 was 

causally associated with decreased risk of asthma (weighted mode causal estimate = -0.056 log odds 

decrease per s.d. increase in BTN3A2), both childhood- and adult-onset asthma (-0.047 and -0.039, 

respectively), allergic rhinitis (-0.044), PSC (-0.440), and systemic lupus erythematosus (SLE; -0.256). 

Conversely, increased BTN3A2 expression was associated with increased risk of inflammatory bowel 

disease (IBD; 0.025), including Crohn’s disease (0.053), as well as risk of PBC (0.129), where PBC 

variants also showed colocalisation with BTN3A2 eQTLs (Figure 4, Figure S10). Expression of HLA-

C in T cells showed strong causal association with autoimmunity, in particular positive causal effects 

on psoriasis, SLE, PSC, multiple sclerosis, IBD, and ulcerative colitis; and negative causal effects on 

juvenile idiopathic arthritis, PBC, and rheumatoid arthritis (Figure 5). 
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Discussion 

In this study we investigated the genetic regulation of gene expression in the innate and adaptive arms 

of the neonatal immune system and its relationship to the genetic basis of autoimmune and allergic 

diseases. In this context, we illustrated that the genetics of gene expression in neonates is strongly 

specific to cell type and stimulatory condition. We described regulatory mechanisms of eQTLs whose 

trans effects are mediated via gene expression in cis. In exploring the potential early life origins of 

disease, our analyses showed extensive genetic overlap of genetic variants associated with immune-

mediated diseases and those with effects on gene expression in neonatal immune cells. Finally, 

Mendelian randomisation showed that myriad changes in gene expression at birth had potentially causal 

effects on autoimmune and allergic disease risk. 

We observed stimuli changing the direction of eQTL effects in resting and PHA-stimulated T cells. 

This was the case for the 'C' allele of reQTL (rs5751775) and DDT, a cytokine structurally and 

functionally related to MIF, a critical regulator of both innate and the adaptive immune response32,33. It 

is known that eQTL effects can change direction in immune cells34. In the Genotype-Tissue Expression 

(GTEx) Project6, the direction of eQTL effect for the 'C' allele at rs5751775 was also variable across 

liver, pancreas, stomach, testis, brain, and muscle tissues. 

Our results revealed a trans mediation role for RPS26, rather than SUOX, consistent with previous 

studies linking RPS26 to IP6K235,36. RPS26 and SUOX were both identified as significant mediators in 

multiple tissues in the GTEx dataset; however, within the same tissue, the trans-associations mediated 

through SUOX were not identical to those through RPS26, indicating distinct effects of SUOX and 

RPS26 on distant genes36. RPS26 encodes a ribosomal subunit protein which, apart from its role in 

ribosome assembly and translation37,38, is involved in various other cellular processes, including 

nonsense-mediated mRNA decay39 and p53 transcriptional activity40. It is likely that the broad trans 

effects of RPS26 are related to its ribosomal functions. 

At the CCL20 locus, the reQTL (rs13034664) in PHA-stimulated T cells colocalised with childhood-

onset asthma41 (Figure 4A, Figure S6). CCL20 encodes a C-C chemokine ligand that binds to a G 

protein-coupled receptor, and elevated CCL20 expression has been shown in airways of patients with 

chronic obstructive pulmonary disease (COPD)42 and asthma43,44. CCL20 induces mucin production by 

binding to its unique receptor (CCR6) in human airway epithelial cells45. However, in PHA-stimulated 

T cells, the 'A' allele of the reQTL (rs13034664), which was linked to increased risk of childhood-onset 

asthma, was associated with reduced CCL20 expression (Figure S6B). This reQTL and its direction of 

effect were replicated by others in activated CD4+ T cells7. T cells themselves respond to CCL20 via 

binding to CCR6, and this process is observed during allergen provocation46. 
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On the other hand, the reQTL for IL13 in neonatal PHA-stimulated T cells appeared to share causal 

variants with allergic disease and asthma, suggesting that this reQTL may affect allergic disease risk 

via mechanisms involving T cell activation and interleukin 13 (IL-13). PHA is a pan T cell mitogen47, 

and downstream intracellular signalling may be shared between PHA and allergen-mediated T cell 

activation. IL-13 is produced by activated CD4+ and CD8+ T cells48 among others, promoting 

immunoglobulin E (IgE) production in B cells49. IL-13 has been shown to induce asthma symptoms 

including airway hyper-responsiveness, increased total serum IgE, and increased mucus production in 

murine models50. Increased IL-13 expression is observed in sputum and bronchial biopsy in mild51 and 

severe52 asthma and can serve as a biomarker for severe refractory asthma53. Therapies that target IL-

13 (anti-IL-13 antibodies) have been developed, such as lebrikizumab54 and tralokinumab55; however, 

they show inconsistent or only modest effects in treating severe asthma exacerbations in phase 3 clinical 

trials. Our results are consistent with IL-13 as a therapeutic target for asthma and may suggest 

potentially increased efficacy in genetic subgroups. 

We found strong causal effects of neonatal BTN3A2 expression on various autoimmune and allergic 

diseases. Butyrophilin (BTN) family members are immunoglobulin-like molecules that act as immune 

check-point regulators with roles in self-tolerance56. Increased BTN3A2 protein expression is a 

favourable prognostic biomarker in epithelial ovarian cancer patients, and indicates a higher density of 

intraepithelial infiltration of T cells57. BTN3 family members BTN3A1 and BTN3A3 are proximal to 

BTN3A2. The antigen-presenting BTN3A1 is critical to human γδ T cell activation58,59. A recent study 

showed that BTN3A2 regulated subcellular localisation of BTN3A1, and both were required for T cell 

activation60. Previous MR analysis found BTN3A2 lung expression had a causal effect on COPD risk61. 

Our findings suggest that altered neonatal BTN3A2 expression, with presumed subsequent 

dysfunctional immunomodulation, plays a role in the pathogenesis of multiple inflammatory conditions. 

In our study, neonatal HLA-C expression in both monocytes and T cells was causally associated with 

multiple autoimmune diseases such as psoriasis, SLE, and primary biliary cirrhosis. HLA-C encodes an 

MHC Class I receptor which presents antigens to CD8+ T cells. It is also the major ligand for killer 

immunoglobulin-like receptors (KIRs), which regulate the activity of natural killer (NK) cells. HLA-C 

is an established locus for psoriasis susceptibility62 and the interaction between HLA-C and ERAP1 is 

associated with psoriasis risk, where ERAP1 variants only have psoriasis effects in individuals with the 

HLA-C risk allele63. In our analysis of resting neonatal T cells, the largest causal effect of HLA-C 

expression was for psoriasis. 

In conclusion, our study shows the remarkable complexity of the genetic regulation of gene expression 

in the innate and adaptive arms of the immune system at birth, and its potential role in the pathogenesis 

of autoimmunity and allergic disease. 
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Methods 

Study cohort and RNA sample preparation 

The study population is a subset of the Childhood Asthma Study (CAS), a prospective birth cohort of 

234 individuals followed from birth to up to 10 years of age18-23. Cord blood samples were collected for 

152 individuals at birth. One million peripheral blood mononuclear cells (PBMCs) from each individual 

were stimulated with either an innate immune system stimulant (LPS: lipopolysaccharide), or a pan T 

cell stimulant (PHA: phytohemagglutinin) for 24 hours (Figure 1). Unstimulated resting PBMC 

samples were also available. Non-adherent cells in suspension from resting and PHA-stimulated 

cultures were removed and purified for CD8-/CD4+ T cells using Dynabeads (Invitrogen) and stored in 

RNAprotect Cell reagent (Qiagen). Cells remaining in suspension in resting and LPS-stimulated 

cultures were aspirated, leaving an enriched population of monocytes and macrophages adhered to the 

culture wells. These adherent cells were then resuspended and transferred into RNAprotect. All cells in 

RNAprotect Cell reagent were banked at -80°C. 

The cells were thawed and centrifuged briefly for RNA extraction. Reagent was removed and total RNA 

was extracted from pelleted cells by an established in-house procedure using TRIzol (Life Technologies) 

in combination with RNEasy MinElute columns (Qiagen). The aqueous phase containing the RNA was 

then loaded onto an RNeasy MinElute column (Qiagen) to purify and concentrate the RNA. RNA 

quality was assessed on a Bioanalyzer 2100 using the RNA 6000 Nano kit (Agilent). There were 607 

samples (one missing sample) in total from 152 individuals for gene expression profiling. 

Gene expression profiling and data processing 

Total RNA from four cell culture conditions (resting and LPS-stimulated monocytes, and resting and 

PHA-stimulated T cells) was quantified with Illumina HumanHT-12 v4 BeadChip gene expression 

array at the Genome Institute of Singapore. After excluding 31 samples with suspected cross-

contamination or insufficient quantity of cDNA, 576 samples were successfully scanned. The raw 

microarray data and probe detection P-values were exported by the Illumina software BeadStudio. We 

first removed 3 samples with zero intensity for almost all probes including negative controls and probes 

targeting housekeeping genes (2 resting monocyte samples and 1 LPS-stimulated monocyte sample). 

We further removed 16 outlier samples (8 resting monocyte samples, 5 LPS-stimulated monocyte 

samples, and 3 resting T cell samples) with a low number of detectable probes (lying outside median 

±2 ´ inter quartile range). Compared with other samples, these excluded samples had much lower 

intensity for positive controls including those targeting housekeeping genes. 
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After quality control, 557 samples remained for normalisation (resting monocytes: 130, LPS-stimulated 

monocytes: 141, resting T cells: 142, and PHA-stimulated T cells: 144). We performed background 

correction based on the intensity of the 770 negative control probes on the microarray, and then we 

performed quantile normalisation and log2 transformation within each cell type and condition using the 

neqc function from the limma R package64. We used updated probe annotation data and restricted the 

analysis to 33,436 reliable probes, excluding unaligned probes and probes aligned to multiple regions 

that were more than 25 bp apart65. Fifteen probes with missing data in ≥5 samples were removed. 

Detectable probes targeting autosomal genes (N = 20,532) were kept, comprising of probes with 

BeadStudio detection P-values ≤0.01 in ≥2.5% of the samples from a specific condition group, or in 

≥5% of all samples12. Gene annotation was obtained from the GENCODE66 release 19 (GRCh37 

alignment, downloaded in October 2017). Among detectable probes, 19,230 had gene annotation in the 

GENCODE reference data. For genes that had multiple probes, we kept the probe with the highest mean 

intensity67, resulting in 13,109 autosomal genes. For eQTL analysis, we performed a rank-based inverse 

normal transformation within each group, so that each gene expression followed a standard normal 

distribution. 

Genotyping and imputation 

Genomic DNA was extracted from blood samples collected from 218 individuals. Genotyping was 

performed with Illumina Omni2.5 BeadChip array, with coverage of approximately 2.5 million markers. 

Variants with missing call rates >1%, MAF <1%, or Hardy-Weinberg Equilibrium (HWE) test P-value 

<1×10-6 were excluded, and individuals with missing call rates >1% were removed. This produced an 

initial count of 1.4 million SNPs for 215 genotyped individuals. Of these, a total of 135 children also 

had gene expression data from cord blood (i.e. overlap with the 152 individuals described previously). 

We performed genotype imputation using the Michigan Imputation Server68 with Haplotype Reference 

Consortium69 (HRC) release r1.1 as the reference panel. After filtering out variants with low imputation 

accuracy (R2 <0.3), 12.7 million SNPs remained. For eQTL analysis, we focused on 4.3 million SNPs 

with MAFs ≥10%. The MAF cut-off used here was suggested by an eQTL simulation study in order to 

avoid inflated false positives in low-frequency variants given our limited sample size70. 

Cis-eQTL mapping and conditional analysis 

To identify cis-eQTLs within each cell type and treatment group, we performed linear additive 

regression to model the effect of each SNP located within 1Mb of the transcription start site (TSS) of 

the corresponding gene using the Matrix eQTL R package71. The sample size for eQTL mapping in each 

experimental condition was: 116 for resting monocytes, 125 for LPS-stimulated monocytes, 126 for 

resting T cells, and 127 for PHA-stimulated T cells. Genotype data were recoded as 0, 1, 2 based on the 
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dosage of the HRC alternative allele. Gender, first three genotype PCs72 and first ten PEER73 factors 

capturing technical variation in transcriptomes were included as covariates in the linear model. 

We applied a hierarchical correction procedure to correct for multiple testing70. Firstly, nominal P-

values for all cis-SNPs from Matrix eQTL were adjusted by multiplying the number of effective 

independent SNPs for each gene (local correction), which was estimated by eigenMT based on genotype 

correlation matrix74. Secondly, the minimum locally adjusted P-value for each gene was kept and the 

FDR of significant genes was controlled at 5% using the Benjamini-Hochberg (BH) FDR-controlling 

procedure (global correction)75. Genes with global FDR ≤0.05 were considered significant eGenes. 

Thirdly, to obtain the list of significant eSNPs for each eGene, the locally adjusted minimum P-value 

corresponding to the global FDR threshold of 0.05 was calculated, and SNPs with a locally adjusted P-

value lower than the threshold were considered significant eSNPs. 

Next, we performed conditional analyses to identify additional independent eQTL signals for each 

eGene. The gene-level P-value nominal thresholds calculated in the hierarchical multiple-testing 

correction (eigenMT-BH) were used to determine significant associations: the locally adjusted 

minimum P-value corresponding to the global FDR threshold of 0.05 multiplied by the number of 

estimated independent SNPs for each gene. We used a two-step conditional analysis scheme as 

follows76: 

(1) Forward stage. For each eGene, the number of independent cis-eQTL signals was learnt from an 

iterative procedure. We started from the top SNP with the minimum P-value for the eGene, which was 

added as a covariate in the linear model to test for cis-eQTLs. If any significant SNPs (with P-values 

smaller than the gene’s nominal threshold) were identified, the new top SNP identified in this iteration 

was added to the list of independent eQTL signals. In the next iteration of eQTL mapping, all previously 

identified eSNPs were adjusted for as covariates. The forward stage terminated if no additional 

significant associations were identified. 

(2) Backward stage. In this stage, the final list of significant SNPs representing each independent eQTL 

signal was determined. Let the list of independent SNPs for each eGene obtained from the forward stage 

be !"#$, !"#&, !"#', … , !"#) , where M is the number of independent eQTL signals. Each of the 

independent eQTL signals was tested separately using a leave-out-one model adjusting for all other 

SNPs in the list as covariates. For example, when the ith eQTL signal was tested, 

!"#$, … , !"#*+$, !"#*,$, … , !"#) were added as covariates together with other covariates used in the 

original eQTL scan. The final set of independent eQTLs comprised of the eSNPs that remained 

significant in the backward stage. 
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For genes that had eQTLs in more than one experimental condition, we also applied conditional 

analyses to identify independent eQTL signals between conditions. More specifically, to determine 

whether two eQTL signals for an eGene identified in two experimental conditions were independent or 

the same signal, we adjusted for the top eSNP in one condition by adding it as a covariate in the linear 

model and performed eQTL scan again in the other condition. If any SNP was significant in the 

conditional model using the P-value threshold determined by the hierarchical correction procedure 

(eigenMT-BH), we considered these two eQTLs as independent signals. If none were significant in the 

conditional model, we considered it as shared eQTL signal between two conditions or lack of power to 

detect the independent signal. 

Replication of cis-eQTLs in external datasets 

We downloaded summary statistics of significant cis-eQTLs from a response eQTL study 

(Supplemental Table S2 of the Fairfax et al. study12) and the DICE (database of immune cell expression, 

eQTLs, and epigenomics) project (URLs)7. Fairfax et al. mapped cis-eQTLs in resting and LPS-

stimulated CD14+ monocytes (with two different durations of LPS: 2 or 24 hours) obtained from adults 

aged from 19 to 56 years, with the sample size being 414 for resting monocytes, and 261 and 322 for 

monocytes treated with LPS for 2 hours and 24 hours, respectively12. The downloaded cis-eQTLs were 

significant at FDR 5% using pooled BH FDR method (i.e. BH FDR-controlling procedure applied to 

all tests). In the DICE study, 13 immune cell types were collected from 91 subjects, and CD4+ T cells 

and CD8+ T cells also had activated conditions7. We downloaded eQTLs (P-value ≤1´10-4) identified 

in CD14+ monocytes, CD4+ T cells, and activated CD4+ T cells (4-hour treatment with anti-CD3/CD28 

antibodies). In each of the four experimental conditions, we focused on top eSNPs and eSNPs in high 

LD (r2 ≥0.8) for each eGene, and if any of these eSNPs were significantly associated with the same 

eGene in the corresponding conditions in the Fairfax et al. and the DICE datasets, this eQTL signal was 

considered as replicated. 

Enrichment analysis 

We performed enrichment analyses using GARFIELD (version 2) to investigate the enrichment patterns 

of cis-eQTLs using predefined features (“annotation data”) such as genic annotations from ENCODE, 

GENCODE, and Roadmap Epigenomics project provided by this tool24. GARFIELD evaluates 

enrichment using generalised linear regression models that account for allele frequency, distance to the 

nearest gene TSS, and LD. LD correlation based on the UK10K dataset is also provided by the software. 

In each experimental condition, we used P-values for all SNPs tested in cis-eQTL analysis. If a SNP 

was tested for association with multiple genes, the smallest P-value was kept. Enrichment odds ratios 

were calculated at various eQTL significance thresholds: 1´10-3, 1´10-4, …, 1´10-8. 
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Response eQTL detection 

Response eQTLs (reQTLs) were identified in monocytes and T cells separately. For each cell type, we 

focused on top eSNPs of eGenes that were significant in either resting or stimulated conditions. For 

eGenes that were significant in both conditions and for which two top eSNPs were not in high LD (r2 

<0.8), we tested both of the top eSNPs; on the other hand, if the two top eSNPs were in high LD, we 

tested the more significant one, to reduce tests on redundant SNPs. In monocytes, 417 interaction tests 

involving 398 eGenes were performed, and 1,959 tests involving 1,749 eGenes were performed in T 

cells. Gene expression data in two conditions were combined within each cell type, and the following 

linear mixed-effects model was tested for eGene–top eSNP pairs using the lmer function in the lme4 R 

package77: 

-*	~	0* + 2* + 0*×2* + 245*
$ + ⋯+ 245*

$7 + 245*
$×2* + ⋯+ 245*

$7×2* + (1|!;<=*) 

where -* indicates the expression level of an eGene for the ith sample, 0* the SNP allele dosage, 2* the 

condition (resting: 0 and stimulated: 1) in which the gene expression was measured, 245*
$, …	245*

$7 the 

14 covariates used in the original eQTL mapping (gender, 3 genotype PCs, and 10 PEER factors), and 

!;<=*  the individual from which the ith sample was taken. The term 0*×2*  models the interaction 

between the genotype and the condition, and 1 !;<=*  indicates the individual-specific random effect 

for this paired study design. 

We applied permutations to estimate empirical P-values for the interaction term. In each permutation 

step, the condition variable was shuffled within each individual, and the same linear mixed model was 

tested to get the permuted statistics for the interaction term. The permutation adjusted P-value for each 

interaction test was calculated as follows: 

? =
A + 1
B + 1

 

where n was the total number of permutations (1,000) and s was the number of cases where the 

permutated statistics were more significant than the original observed ones. We added 1 to both the 

numerator and the denominator to avoid underestimating permutation P-values78. BH FDR-controlling 

procedure was applied to permutation adjusted P-values and significant interactions were identified at 

5% FDR. 

Trans-eQTL identification 

To detect trans-acting genetic regulation of gene expression in each condition, we tested for 

associations between SNPs and genes that were located on different chromosomes using the same linear 
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model and covariates as in the cis-eQTL mapping. We tried the following different approaches to deal 

with the multiple testing: 

(1) Genome-wide FDR correction. BH FDR-controlling procedure was applied to nominal P-values 

from all trans-association tests, and significant trans-associations were identified at 5% FDR6. 

(2) Gene-level FDR correction. For each gene, P-value of the top SNP was multiplied by 1´106, which 

was the estimated number of independent SNPs across the genome (calculated as 0.05 divided by the 

commonly used genome-wide significance threshold of 5´10-8). To control gene-level FDR, BH FDR-

controlling procedure was then applied to the minimum adjusted P-values for all genes. 

(3) Gene-level Bonferroni correction. Bonferroni correction was used to control the gene-level FDR, 

by using a significance P-value threshold of 3.8´10-12 (5´10-8/13,109, where the denominator indicates 

the number of genes). The Bonferroni correction was extremely conservative because the tests (or genes) 

were not independent with each other. 

In resting monocytes as well as in LPS-stimulated monocytes, one trans-eQTL signal was significant 

in all three methods. At 5% genome-wide FDR level, we observed 10 and 15 eGenes with significant 

trans-eQTLs (trans-eGenes) in resting and PHA-stimulated T cells, respectively, corresponding to a 

nominal P-value threshold of 1.9´10-10 in resting T cells and 2.5´10-10 in PHA-treated T cells. The 

number of significant trans-eGenes dropped, respectively, to 6 and 8 by using the gene-level FDR 

correction (corresponding to a nominal P-value threshold of 5.3´10-12 in both conditions), and to 5 and 

7 by using the gene-level Bonferroni correction. The limited power was the major issue given the 

sample size; thus we used genome-wide FDR correction, the least conservative method to determine 

significant trans-eQTLs used in the downstream analysis6. 

Mediation analysis 

We hypothesised that trans-eQTLs regulated the expression of distant genes through cis-mediators, or 

local genes whose expression was regulated by the same trans-eQTLs. To test this hypothesis, we 

focused on the trans-eQTLs that were also associated with adjacent cis-eGenes, meaning that the trans-

eQTLs were also cis-eQTLs. For each trans-eGene–cis-eGene pair, we tested the trans-eSNP with the 

smallest P-value as the exposure, a cis-eGene as the mediator, and a trans-eGene as the outcome 

(Figure 3B). In total, we tested 14 mediation trios: 1 from resting monocytes, 1 from LPS-stimulated 

monocytes, 9 from resting T cells, and 3 from PHA-stimulated T cells. 

We performed mediation test for the 14 trios using the mediation R package79. The effect of the 

exposure on the mediator (C) was estimated in cis-eQTL mapping. The effect of the mediator on the 
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outcome (<) adjusting for the exposure and the effect of the exposure on the outcome (2′) adjusting for 

the mediator were estimated in the following multiple regression: 

-*	~	0* + 0*
E*F + 245*

$ + ⋯+ 245*
$7 

where -*  indicates the value of the outcome (or the expression level of the trans-eGene) for the ith 

sample, 0* the exposure (or the eSNP allele dosage), 0*
E*F the mediator (or the cis-eGene expression), 

and 245*
$, …	245*

$7  the 14 covariates used in eQTL mapping. The estimates of <  and 2′ were beta 

coefficients for 0*
E*F  and 0* , respectively. The “direct effect” of the exposure on the outcome was 

quantified as 2′ , the “indirect effect” of the exposure on the outcome through the mediator was 

quantified as C×<, and the “total effect” was the sum of the previous two effects80. Complete mediation 

occurs when the direct effect 2′ is zero after controlling for the mediator, and partial mediation happens 

when the direct effect is different from zero. To identify significant mediation trios (the null hypothesis 

GH: C< = 0), we used a nonparametric bootstrap method (10,000 simulations) implemented in the 

mediation R package for variance estimation and P-value calculation. BH FDR-controlling procedure 

was applied to correct for multiple testing. 

Genetic overlap of eQTLs and disease 

We downloaded publicly-available GWAS data from the following three resources: ImmunoBase 

(URLs), LD Hub81 (URLs), and GWAS Catalog82 (URLs). If one disease was investigated in multiple 

studies, we focused on the most recent one, which usually had the largest sample size. We also 

downloaded summary statistics of GWAS that were carried out using the ImmunoChip array from the 

ImmunoBase resource; this array was designed for immunogenetics studies and captured more variants 

of immune-relevant genetic loci83. We had summary statistics for the following immune-mediated 

diseases: allergic disease (asthma, hay fever, or eczema)84, allergic rhinitis85, allergic sensitisation85, 

asthma86, childhood-onset asthma41, adult-onset asthma41, inflammatory bowel disease (IBD) including 

its two subtypes – Crohn’s disease and ulcerative colitis87, celiac disease88,89, autoimmune thyroid 

disease90, juvenile idiopathic arthritis91, multiple sclerosis92, narcolepsy93, primary biliary cirrhosis 

(PBC)94,95, primary sclerosing cholangitis (PSC)96, psoriasis97, rheumatoid arthritis98,99, systemic lupus 

erythematosus (SLE)100, and type 1 diabetes101,102. These datasets contained summary statistics obtained 

using European populations for both significant and non-significant genetic variants, and GRCh37 

genomic coordinates were available. 

We performed enrichment tests for each of the four sets of significant eQTLs using GARFIELD24. 

Generalised linear models were applied to test for enrichment in eQTLs of variants associated with the 

above diseases at a significance threshold of 1´10-6. Bonferroni correction was applied to correct for 

multiple testing, where the number of tests was the number of GWAS datasets (24) multiplied by the 
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number of eQTL datasets (4), and the Bonferroni-adjusted P-value threshold was 5.2´10-4, adjusting 

for the 4´24 (96) tests. 

Colocalisation of cis-eQTLs with disease associations 

We applied a Bayesian method implemented in the coloc v3.1 R package26 to test whether any of the 

disease-associated GWAS loci shared the same causal variants with the cis-eQTLs. Full summary 

statistics were required to run the colocalisation analysis using coloc. For loci where cis-eQTLs were 

also associated with diseases at a P-value threshold of 1´10-6, colocalisation test was performed on a 

400-kb window centered on the top cis-eSNP. For each locus, colocalisation test was performed on 

overlapping SNPs where both eQTL and GWAS summary statistics were available. We excluded 

regions where not enough SNPs (<25) were available for colocalisation test. As shown in Guo et al.103, 

selection of different prior probabilities of a SNP being causal for both of the traits had effects on the 

posterior support for colocalisation. To be conservative, we used a lower prior probability of 1´10-6 

instead of the default value of 1´10-5. 

For each locus, the Bayesian method assessed the support for the following five exclusive hypotheses: 

no causal variants for either of the two traits (H0), a causal variant for gene expression only (H1), a 

causal variant for disease risk only (H2), distinct causal variants for two traits (H3), and the same shared 

causal variant for both traits (H4). The package estimated posterior probabilities (PP0, PP1, PP2, PP3, 

PP4) to summarise the evidence for the above five hypotheses. High PP1 or PP2 and low PP3 + PP4 

indicate a lack of power to identify the causal signals26. We excluded loci where PP3 + PP4 <0.8, and 

focused on loci with strong evidence support for shared causal variants (H4), i.e. ratio of PP4 to PP3 ≥5. 

Mendelian randomisation analysis 

To investigate causal effects of eGene expression on the above immune-mediated diseases, we 

performed a two-sample Mendelian randomisation (MR) analysis. Summary statistics from both our 

eQTL and external GWAS studies were required, including beta coefficient and its standard error, 

effective allele (based on which the beta was estimated), the other allele, and P-value. For each disease 

trait, we used cis-eSNPs that were also included in the GWAS dataset, and removed ambiguous variants 

(if any) using the TwoSampleMR R package104. We then selected LD pruned (r2 <0.1) cis-eSNPs as 

genetic instrumental variables (IVs). We focused on eGenes with at least 3 genetic IVs available, and 

performed the following MR methods implemented in the MendelianRandomization R package105: 

inverse variance weighted (IVW), weighted median, weighted mode, and MR Egger. These methods 

have different assumptions for valid IVs: IVW assumes that all IVs are valid106; weighted median 

assumes that valid IVs contribute to more than 50% of the weight107; weighted mode assumes that the 

largest group of IVs are valid108; MR Egger regression, which is the least sensitive, assumes that the 
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pleiotropic effects of IVs are not correlated with the genetic effects on exposure109. We excluded the 

causal associations for which the intercept in the MR Egger method was significantly not equal to 0, 

indicating significant average pleiotropic effects. Gene expression was considered to have suggestive 

evidence of causal effects when at least 3 out of the 4 methods provided significant P-value (≤0.05). In 

the Results section, we reported the statistics of the weighted mode method, which has the least 

assumption among all methods except the MR Egger, but more sensitive than MR Egger. 

 

URLs 

DICE, https://www.dice-database.org 

ImmunoBase, https://www.immunobase.org/ 

LD Hub, http://ldsc.broadinstitute.org/ldhub/ 

GWAS Catalog, https://www.ebi.ac.uk/gwas/ 
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Figure 1: Study design and analysis work flow. Monocytes and T cell cultures were purified from 
resting and stimulated cord blood samples from the Childhood Asthma Study (CAS) cohort. Gene 
expression was quantified using a microarray platform. Genotype data are available for a subset of the 
CAS individuals. eQTLs were identified within each experimental condition. Datasets for resting and 
stimulated samples were merged to detect response eQTLs within each cell type. Next, we identified 
genetic loci where neonatal eQTLs and disease associations obtained from external GWAS datasets 
shared the same causal variants. We investigated the causal effects of gene expression at birth on 
immune diseases that develop later in life.  
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Figure 2: Cis-eQTLs and response eQTLs (reQTLs) in monocytes and T cells. (A) A bar plot shows 
the number of genes with significant cis-eQTLs (eGenes) identified in each cell type and treatment 
group (on x-axis). Percentages on each bar indicate the proportion of eGenes with significant reQTLs 
(green). (B) A heatmap shows eQTL sharing across four experimental conditions (rows). Columns in 
the heatmap are unique eQTL–eGene associations. Significant associations are in red. Percentages 
labelled on the heatmap show the proportion of unique eQTL–eGene associations that are specific to a 
certain cell type and stimulatory condition. (C) Two point plots show effect sizes (s.d. change in gene 
expression per allele) of significant reQTLs in resting (x-axes) and stimulated conditions (y-axes) in 
two cell populations: monocytes (left) and T cells (right). A gene might have two dots indicating two 
independent top SNPs (Methods). Colours indicate the condition in which the SNP was significant. 
ReQTLs of DDT and ZNF585 in the grey quadrants (red dots) show opposite directions of eQTL effects 
across conditions. 
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Figure 3: Trans-eQTL effects and their cis-mediators. (A) A circular plot shows trans-eQTL 
associations in lines, with arrows pointing to trans-eGenes with names annotated (in black) outside the 
rim indicating chromosome numbers. Dots on the other end point indicate nearby genes (names in 
purple) that are associated with the same loci (cis-eQTLs). Colours of the lines indicate the experimental 
conditions where the trans-eQTLs were identified: “Resting T”: resting T cells only, “PHA T”: 
stimulated T cells only, “Resting T & PHA T”: shared between both conditions of T cells, and “All four 
conditions”: shared across all four experimental conditions. (B) A diagram demonstrates the mediation 
analysis model, where effects of trans-acting eQTL (exposure) on trans-eGene (outcome) are either 
mediated through a cis-eGene (mediator), or through direct effects (Methods). (C) and (D) show two 
examples of cis-eGenes (green), SNHG8 and RPS26, acting as mediators for trans-effects (trans-
eGenes in yellow). Genes that were not significant in mediation analysis are in grey. Tables show 
statistics of the mediation tests, and the “Mediation” column indicates the proportion of total effects of 
the eQTL on the trans-eGene that was mediated through the cis-eGene. Two models involving SUOX 
(D) were not tested because the trans-eSNPs of IP6K2 and MIR1471 were not significantly associated 
with SUOX (Table S9). Significant mediations (FDR ≤0.05) are highlighted in bold.  
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Figure 4: Colocalisation of cis-eQTLs with disease associations. (A) A heatmap shows all cases with 
strong evidence of colocalisation between cis-eQTLs of corresponding genes (eGenes) in rows and 
GWAS hits associated with allergic and autoimmune diseases in columns (“ic” indicates that the study 
was performed using ImmunoChip array). Colours indicate the cell type where the significant 
colocalisation was observed. Asterisks indicate that the colocalised eQTLs are response eQTLs 
(reQTLs). (B) Box plots show the rank-normalised gene expression of IL13 (y-axes) in resting T cells 
(left) and in PHA-stimulated T cells (right) stratified by genotypes of the reQTL rs1295686 (x-axes), 
the top eSNP in PHA-stimulated T cells. In resting T cells, no SNP was significantly associated with 
IL13. (C) Regional plots show eQTL association with gene expression of IL13 in PHA-stimulated T 
cells (purple background), and GWAS associations with allergic disease (asthma, hay fever, or eczema), 
asthma, and allergic sensitisation. The minus log10 P-value is plotted on y-axes for all SNPs located 
within 200 kb from the top eSNP of IL13. Colours of dots indicate the LD correlation with the top eSNP 
(in purple). Positions of genes located on this locus are shown at the bottom. 
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Figure 5: Causal effects of neonatal gene expression on multiple immune-related diseases. (A) The 
heatmap shows the causal effect size estimated using the weighted mode method in the Mendelian 
randomisation (MR) analysis. Asterisks indicate significant causal associations (Methods). Causal 
associations with significant pleiotropy was excluded. If a gene was tested using the expression levels 
in multiple experimental conditions, the one with the highest number of genetic instruments was kept. 
Statistics of all MR tests are in Table S12. Grey indicates the gene-disease pairs that were not tested 
due to small number of genetic instruments (<3). Positive effect estimates in red indicate that increased 
gene expression is causally associated with increased disease risk, and negative causal associations are 
in blue. (B) Forest plots show causal estimates and 95% confidence intervals for neonatal expression 
of BTN3A2 and HLA-C. 
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