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Abstract

Background Single-cell RNA sequencing (scRNAseq) is a powerful tool for studying com-

plex biological systems, such as tumour heterogeneity and tissue microenvironments.

However, the sources of technical and biological variation in primary solid tumour tissues

and patient-derived mouse xenografts for scRNAseq, are not well understood. Here, we

used low temperature (6°C) protease and collagenase (37°C) to identify the transcriptional

signatures associated with tissue dissociation across a diverse scRNAseq dataset com-

prising 128,481 cells from patient cancer tissues, patient-derived breast cancer xenografts

and cancer cell lines.

Results We observe substantial variation in standard quality control (QC) metrics of

cell viability across conditions and tissues. From FACS sorted populations gated for cell

viability, we identify a sub-population of dead cells that would pass standard data filtering

practices, and quantify the extent to which their transcriptomes differ from live cells. We

identify a further subpopulation of transcriptomically “dying” cells that exhibit up-regulation

of MHC class I transcripts, in contrast with live and fully dead cells. From the contrast

between tissue protease dissociation at 37°C or 6°C, we observe that collagenase di-

gestion results in a stress response. We derive a core gene set of 512 heat shock

and stress response genes, including FOS and JUN, induced by collagenase (37°C),

which are minimized by dissociation with a cold active protease (6°C). While induction

of these genes was highly conserved across all cell types, cell type-specific responses

to collagenase digestion were observed in patient tissues. We observe that the yield

of cancer and non-cancer cell types varies between tissues and dissociation methods.

Conclusions The method and conditions of tumour dissociation influence cell yield and

transcriptome state and are both tissue and cell type dependent. Interpretation of stress

pathway expression differences in cancer single cell studies, including components of sur-
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face immune recognition such as MHC class I, may be especially confounded. We define

a core set of 512 genes that can assist with identification of such effects in dissociated

scRNA-seq experiments.
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ovarian cancer; tumour microenvironment

Introduction

Recent advancements in sequencing technologies have allowed for RNA sequencing at

single cell resolution, which can be used to interrogate features of tumour tissues that may

not not be resolved by bulk sequencing, such as intratumoural heterogeneity, microen-

vironmental architecture, clonal dynamics and the mapping of known and de novo cell

types. Due to the sensitivity of single cell RNA sequencing (scRNAseq), small changes

in gene expression can dramatically influence the interpretation of biological data. scR-

NAseq data is also subject to technical and biological noise [1, 2]. The inherent nature of

the transcriptome is transient and dynamic, reflecting the ability of cells to quickly respond

to their environment. In addition, the transcriptional behaviour of single cells can deviate

profoundly from the population as a whole, and gene expression pulse patterns have been

shown to contribute significant noise levels to scRNAseq data [3]. Inherent variations in tis-

sue composition, cell quality and cell-cell variability can also make it difficult to confidently

interpret scRNAseq data. While current technologies attempt to mitigate noise from am-

plification during library construction by the incorporation of unique molecular identifiers

(UMIs) during cDNA synthesis [4], this does not address changes to the transcriptome
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prior to reverse transcription. High-quality scRNAseq data requires highly viable single

cell suspensions with minimal extracellular components, such as debris. Standard sam-

ple preparation methods for solid tissues require enzymatic and mechanical dissociation,

and depending on the tissue origin, density, disease state, elastin or collagen content,

may require long enzymatic digestion and/or vigorous mechanical disruption. Transcrip-

tional machinery remains active at 37°C, and extended incubation at high temperatures

may introduce gene expression artifacts, independent of the biology at the time of har-

vest. Moreover, extended incubation at higher temperatures in the absence of nutrients

or anchorage, or harsh dissociation may induce apoptosis or anoikis, polluting the viable

cell population or generating low quality suspensions [5]. Therefore, it is imperative to

characterize the inherent variation and potential effects of cell isolation methods on the

transcriptomic profiles of tissues. Recently it has been shown that a serine protease

(subtilisin A) isolated from a Himalayan glacier-resident bacterium, Bacillus Lichenformis,

is suitable for dissociation of non-malignant renal tissues at 4-6°C, and can reduce scR-

NAseq artifacts in these tissues, including reducing global and single cell gene expression

changes [6].

Given the heterogeneous nature of tumour tissue [7–9], and the potential application

of scRNAseq in studying the complex biology of cancer including the tumour microenvi-

ronment [10], tumour heterogeneity [9] and drug response [11], we sought to determine

the effects of of enzymatic dissociation and temperature on gene expression artifacts in

tumour tissues and cell lines. Here, using a diverse scRNAseq dataset of 40 samples and

128,481 cells comprising patient cancer tissues, patient-derived breast cancer xenografts

(PDXs) and cancer cell lines, we highlight the inherent variation in scRNAseq quality con-

trol metrics across samples and constituent cell types in patient tumour samples. We

identify a subpopulation of dead cells that would not be removed through standard data
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filtering practices and quantify the extent to which their transcriptomes differ from live

sorted cells. We identify a further subpopulation that represents transcriptomically dying

cells, expressing increased major histocompatibility complex (MHC)-class I genes. We

identify a core geneset of immediate, heat shock and stress response genes associated

with collagenase dissociation, highly conserved across cell and tissue types, which are

minimized by dissociation at cold temperature. These findings may significantly affect bio-

logical interpretation of scRNAseq data and should taken into careful consideration when

analyzing single cell experiments.

Results

Single cell RNA-sequencing of 128,481 cells

To uncover transcriptional variation and responses to dissociation method, we generated

scRNAseq data for 128,481 single cells across a range of substrates, cancer types, dis-

sociation temperatures, and tissue states (Figure 1), using the 10X Genomics Chromium

v3 platform [12]. scRNAseq was performed on cells from patient samples, PDXs and cell

lines across ovarian, lymphoid cell and breast cancers, including fresh and viably frozen

samples dissociated at 37°C or 6°C and cells incubated at 6°C, 24°C, 37°C, or 42°C (Fig-

ure 1).

We began by examining a set of commonly used quality control (QC) metrics across

all 40 sequencing experiments (Figure 1C), including total number of genes detected,

percentage of transcripts mapping to the mitochondrial genome, and total number of UMIs

sequenced. We observed significant variation across these metrics, in particular bi- and

tri-modal distributions of mitochondrial gene percentages across this varied sample set.

This variable mitchondrial gene content was also observed in publicly available datasets
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from 10x Genomics (Figure S1).

Conscious of the possibility of murine stromal cell contamination in PDX samples, we

classified cells as mouse or human based on alignment metrics. Of the 55,332 PDX cells

sequenced, 1,208 were reliably identified as mouse cells, with large inter-sample varia-

tion (Figure S2). We found 372 cells across primary tumour and cell line samples were

mis-identified as murine compared to 69,608 cells identified as human, suggesting this

approach to detecting murine contamination has a modest false positive rate of 0.5%. As

expected, murine cells scored consistently lower across a range of standard QC metrics

(% counts mitochondrial, total genes detected, total UMIs detected) when aligned to the

human genome (Figure S3).

Transcriptomic landscape of live, dead, and dying cells

Given the bi- and tri-modal distributions of mitochondrial gene count percentages appar-

ent in the 40 experiments and previous studies’ assertions that high mitochondrial gene

content is indicative of dead and dying cells [14, 15], we next sought to determine the

contribution of dead and dying cells to the variation observed in QC metrics in Figure 1.

In order to induce classical cell death pathways, we used TNFα[16, 17] to treat the non

tumourigenic, lymphoblastoid cell line GM18507 and FACS sorted cells into dead or and

dying fractions based on PI/Annexin V positivity (Figure 2A), as well as a live, untreated

fraction. Notably, cell yield from scRNAseq data was highly dependent on the cell sta-

tus, with 8,597 live cells recovered but only 1,280 and 885 dead and dying respectively

compared to targeted numbers of 3,000 cells.

A principal components analysis (PCA) following mutual nearest neighbours (MNN)

correction [18] demonstrated the cells approximately segregating along the first principal

component (PC1) by cell status (Figure 2B), albeit with high levels of heterogeneity in

6

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 27, 2019. ; https://doi.org/10.1101/683227doi: bioRxiv preprint 

https://doi.org/10.1101/683227
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 1:
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Figure 1: Overview of 40 single-cell experiments generated in this study. A
Schematic showing the various substrates used to generate the 40 single-cell experiments
in this dataset. B Descriptions of the cell status, substrate, cancer type, dissociation tem-
perature and tissue state of each sample in the dataset. C Substantial variability in 3 key
QC metrics (number of genes detected, percentage of counts mapping to the mitochon-
drial genome, number of UMIs sequenced) across all experiments. D Embedding of all 40
single-cell experiments to a low-dimensional projection with uniform manifold approxima-
tion and projection [13].

overlap. Indeed, PC1 closely tracked the mitochondrial gene content of the cells (Fig-

ure 2C), being significantly higher in dead cells (median 29.9%) compared to both dying

cells (median 3.13%, p =1.17e-126) and live cells (median 3.4%, p =4.65e-153) as shown

in Figure 2D. This observation justifies the practice of excluding cells with very high mito-

chondrial gene content as being likely dead cells.

Having observed that the transcriptomes of the different cell conditions are not entirely

distinct, we sought to discover the extent of mixing between transcriptomic states and

whether live and dead cells that appear transcriptomically “healthy” (ie would ordinarily

pass QC) are distinguishable. Using hierarchical clustering (methods) we clustered the

cells into 3 groups that approximately track PC1 (Figure 2E). Interestingly, these three

groups show variable composition in terms of cell states, with cluster 1 being comprised

mainly of live cells (86% live, 8.5% dying, 5.1% dead), cluster 2 containing an increased

proportion of dying and dead cells (68% live, 7.5% dying, 24% dead), and cluster 3 com-

prised mainly of dead cells (5.9% live, 6.7% dying, 87% dead). Furthermore, we observed

a step change increase in mitochondrial gene content between clusters (Figure 2G), with

cluster 1 having the lowest (median 3.13%), followed by cluster 2 having a significant

increase (median 26%, p =0) and cluster 3 having a significant increase beyond that

(median 82.2%, p =2.35e-149). Differential expression analysis between these clusters

revealed a significant up-regulation in stress-associated pathways such as MHC class I
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(Figure 2H) in cluster 2 compared to clusters 1 & 3. MHC class I genes are involved in

antigen presentation to T cells, but are also expressed in many cell types and are induced

in response to stress stimuli and contain heat shock-inducible elements [19].

Together, these results suggest a model whereby cluster 1 represents transcriptomi-

cally “healthy” cells, cluster 2 represents transcriptomically stressed cells that upregulate

stress pathways and have increased mitochondrial gene content (due to either an increas-

ingly permeable membrane causing loss of cytoplasmic mRNA or increased metabolic

demands), and cluster 3 represents transcriptomically dead cells whereby the membrane

has burst leaving majority mitochondrial transcripts. Importantly, cells that are FACS

sorted as either live, dying, or dead, are present in all three clusters, highlighting that

the transcriptomic state of the cell is not necessarily the same as the surface marker state

(though the two are correlated). Such concepts are reminiscent of “pseudotime” in single-

cell developmental biology, whereby developmentally ordering cells transcriptomically can

lead to early or late cells being placed at variable positions along the pseudotime trajec-

tory [20, 21]. Indeed, PC1 from Figure 2A approximates a pseudotime trajectory through

the data, that tracks transcriptomically healthy cells to transcriptomically dead cells with

increasing PC1 values.

Finally, we sought to determine if a sorted dead cell that appears transcriptomically

healthy remains distinguishable from a sorted live cell in the transcriptomically healthy

group. Using only cells in cluster 1, we further subsetted them to pass a strict set of QC

filters (at least 103 total genes detectable, % mitochondrial content between 1 and 10)

and performed a differential expression analysis between cells sorted as live and dead

in this group. Of the 10537 genes retained for analysis, 2130 (20.2%) were found to be

differentially expressed (Figure 2I), including downregulation of IFITM1 in dead cells. To

compare this type of variation to the inter-cluster transcriptomic variation, we performed a

9

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 27, 2019. ; https://doi.org/10.1101/683227doi: bioRxiv preprint 

https://doi.org/10.1101/683227
http://creativecommons.org/licenses/by-nc-nd/4.0/


second differential expression analysis between clusters 1 and 2, finding 8835 of 10933

(80.8%) genes significantly differentially expressed. Furthermore, the effect sizes were

significantly larger for the inter-cluster comparison than the within-cluster 1 live-dead com-

parison as demonstrated by the quantile-quantile plot of absolute effect sizes in figure Fig-

ure 2J. Together, these results suggest that though there are gene expression differences

between dead and live sorted cells within cluster 1, the magnitude of expression variation

is small compared to transcriptomically stressed clusters.

Dissociation with collagenase at 37°C induces a distinct stress response in single-

cell transcriptomes

To uncover the effect of digestion temperature on the transcriptome, we performed a dif-

ferential expression analysis on the 23,731 cells found by combining all experiments mea-

sured in a PDX or cell line at either 6°C or 37°C. We removed any samples corresponding

to primary tumours as we discovered that yield of constituent cell types was affected

by digestion temperature (Figure S6), which would confound our differential expression

results. After retaining genes with at least 10 counts across all cells, we performed differ-

ential expression analysis with edgeR [22], while controlling for the sample-of-origin.

We found that of the 19,464 genes retained for analysis, 11,975 (62%) were differ-

entially expressed at a Benjamini-Hochberg corrected false discovery rate (FDR) of 5%.

We defined a core set of genes meaningfully perturbed by digestion temperature as those

significantly differentially expressed as above, but with an absolute log fold change of at

least 1.5. Therefore, for a gene to be included under these criteria it must be differentially

expressed and its abundance increased or decreased by at least 50% by digestion tem-

perature. This produced a core gene set of 512 genes, of which 507 were upregulated

at 37°C and the remaining 5 downregulated. This gene set includes multiple canonical
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Figure 2:
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Figure 2: Transcriptomic landscape of live, dead, and dying cells A FACS analysis
showing gating strategy for untreated, live cells (PI-/AnnexinV-) or TNFα-treated dying
cells (PI-/AnnexinV+) and dead cells ((PI+/AnnexinV+). B PCA projection of the 3 cell
conditions showing approximate segregation of cell status along the first principal compo-
nent (PC1), with live and dying cells enriched at lower PC1 values and dead cells enriched
at higher values. C PCA projection coloured by the percentage mitochondrial genes (“%
transcriptome mitochondrial”) shows significant increase along the PC1. D Dead cells
exhibit significantly higher % of the transcriptome as mitochondrial compared to both live
and dying cells. E Unsupervised clustering of the gene expression profiles clusters the
cells into 3 groups, approximately tracking both PC1 of the data and the % transcriptome
mitochondrial. F The composition of each cluster demonstrates that cluster 1 is primarily
composed of live cells, cluster 2 a mix of live, dying, and dead cells, while cluster 3 is
composed mainly of dead cells. G The % transcripts mitochondrial is significantly differ-
ent between the three clusters, with a step increase in proportion moving from cluster 1
to 2 and 2 to 3. H Cluster 2 significantly up-regulates the MHC class I gene set, sug-
gesting it represents stressed or pre-apoptotic cells. I Differential expression analysis of
transcriptomically “healthy” cells within cluster 1 reveals residual differences between cells
sorted as live and dead. J The distribution of absolute effect sizes (log fold change) of live
vs. dead cells within cluster 1 (x-axis) compared to between clusters 1 and 2 (y-axis)
demonstrates the residual effect on the transcriptome of being live/dead sorted is small
compared to the inter-cluster expression variance.
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stress-related genes such as FOS, FOSB, ATF3 and heat shock proteins (HSPs) (Fig-

ure 3A), expression of which have shown to be induced by collagenase dissociation in

a subset of muscle cells [23]. A UMAP embedding of the cells coloured by dissocia-

tion temperature and the expression of several key genes (FOS, JUNB, NR4A1, Figure

3B) further demonstrates the digestion temperature-specific induction of the expression

of these genes.

Noting the large number of HSP proteins significantly upregulated at the 37°C colla-

genase digestion, we examined their expression in the MDA-MB-231 samples incubated

at different temperatures (6°C, 24°C, 37°C, 42°C). Upregulation of the HSP genes in the

512 core geneset typically follows a step increase between 37°C and 42°C incubation

rather than a gradual increase with increasing temperature (Figure S4), implying their in-

duction at 37°C collagenase digestion is due to a different mechanism than the digestion

temperature alone, consistent with previous results [23].

We subsequently performed a pathway enrichment analysis on the differential expres-

sion results, searching for enrichments in given hallmark pathways [24] (Figure 3C). Of

particular note was TnF signalling via NF-κB of which 46.5% of annotated pathway genes

were included in the core set of 512 genes (Figure S5). Further enrichment of stress-

associated pathways including Hypoxia, Apoptosis, and Inflammatory response is further

indicative of collagenase dissociation at 37°C as inducing a stress response on the tran-

scriptomes of single cells.

Conserved stress response to collagenase dissociation method in breast and ovar-

ian patient tissues

Having derived a core geneset of stress and heat shock genes induced in PDX samples

during dissociation with collagenase, we next examined the effect of dissociation method
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Figure 3: Dissociation with collagenase at 37°C induces a distinct stress response
in 23,731 cells from PDX samples that is minimized by dissociation at 6°C . A The
top 40 genes (by log fold-change) from the 11,975 identified as significantly differentially
expressed between cells digested at 6°C and 37°C. B UMAP plots of ncellspdxde cells
coloured by digestion temperature (top) then by normalized expression of 3 key stress re-
sponse genes (FOS, JUNB, NR4A1) demonstrates a distinct concordance between tem-
perature and induction of the stress gene signature. Expression values are log normalized
counts (methods) winsorized to [0, 2) then scaled to [0, 1). C Pathway analysis of differen-
tially expressed genes with the MSigDB hallmark gene sets highlights induction of genes
involved in NF-κB signalling at 37°C digestion with 46.5% of 200 genes annotated in the
pathway being found in the 512 core gene set.

14

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 27, 2019. ; https://doi.org/10.1101/683227doi: bioRxiv preprint 

https://doi.org/10.1101/683227
http://creativecommons.org/licenses/by-nc-nd/4.0/


on recovery and transcriptomes of constituent cells of the tumour microenvironment in

breast and ovarian patient samples. Histology and FACS analysis revealed a complex and

variable tumour microenvironment (Figure 4A-B). Dissociation of ovarian cancer sample

with cold protease yielded enhanced capture of lymphocytes including T cells, cytotoxic T

cells, and NK cells (Figure 4B, Figure S6). We generated scRNAseq data of 2 high grade

serous ovarian (HGSC) and 3 breast cancer samples (table S1) dissociated using collage-

nase at 37°C or cold protease at 6°C as described above. Total cell yield was highly vari-

able, ranging from 282 to 9,640 cells across samples. Cells were subsequently assigned

to a range of tumour microenvironment cell types using CellAssign [25], assuming a set

of common marker genes for cell types (table S2, table S3). A UMAP project of the data

(Figure 4C) demonstrates the broad range of cell types identified from the scRNA-seq

data, including epithelial cells, structural cell types such as endothelial and myofibroblast

cells, and an array of immune cell type such as B cells, T cells, Monocyte/Macrophage

populations and plasma cells, consistent with FACS analysis (Figure 4B). While enhanced

capture of certain lymphocyte populations was apparent in ovarian samples dissociated

at 6°C, overall microenvironment composition was highly variable both between patients,

reflected in histological analysis (Figure 4A), and dissociation protocols (Figure S6), no

consistent loss or gain of cell types was observed between conditions in all samples.

To uncover whether the transcriptional response to 37°C collagenase dissociation

identified in PDX models is conserved in primary tumour samples, we next performed a dif-

ferential expression analysis comparing the dissociation methods separately for each cell

type (Figure 4 D). We found large consistent upregulation of the of the 512 genes iden-

tified in the core collagenase-associated geneset in PDX samples,with 61.7% to 78.1%

upregulated across cell types and 8.6% to 54.9% significantly upregulated (table S4, Fig-

ures S7 and S8).
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Though cell-type specific gene expression effects in response to digestion method

were evident (Figure S9), global pathway analysis of differentially expressed genes for

each cell type revealed conserved upregulation in NFκB signaling, apoptosis and inflam-

matory pathways as the most upregulated in all cell types (Figure 4 E). Smaller cell type-

specific effects observed included increased hedgehog and apical surface pathways in

breast epithelial cells, and reactive oxygen species pathways in cytotoxic T cells and my-

ofibroblasts (Figure 4 E). Taken together, these findings indicate that all cell types exhibit

some level of stress response to dissociation with collagenase, with some cell types ex-

hibiting cell-type specific responses.

Discussion

The advent of single cell sequencing technologies has empowered the study of com-

plex biological systems including tissue microenvironments, tumour heterogeneity as well

as the discovery of novel cell types otherwise difficult to detect [1]. Current sequencing

techniques require single cell suspensions for passage through microfluidic or microwell

platforms, and generation of single cell suspensions from solid tissues requires the enzy-

matic and mechanical disruption of extracellular matrix and cell-cell contacts. To date, the

effect of these dissociation methods on the transcriptome of single cells has been largely

ignored, despite the potential effects on the interpretation of scRNAseq data. Moreover,

during both dissociation of tissues and passage through fluidic devices, cells can undergo

stress, shearing, anoikis and apoptosis [26]. For this reason, efforts must be made on

both sample handling and bioinformatics to ensure minimal noise and optimal filtration of

data. Here, we endeavoured to describe the artifactual gene expression associated with

tissue dissociation and dead or dying cell populations.

Using a large, diverse dataset, we highlight the variability in key QC metrics, including

16

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 27, 2019. ; https://doi.org/10.1101/683227doi: bioRxiv preprint 

https://doi.org/10.1101/683227
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 4:
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Figure 4: Conserved stress response to collagenase dissociation method in breast
and ovarian patient tissues A Histology of ovarian cancer patient sample highlighting
the architecture of the tumour microenvironment. B FACS analysis of ovarian tumour tis-
sue dissociated at 37°C with collagenase or 6°C with cold active protease and stained
with markers for tumour cells (EpCAM), endothelial cells (CD31), fibroblasts (FAP), lym-
phocytes (CD45), B Cells (CD19), NK cells (CD56) and T cells (CD8, CD3). C UMAP of
combined scRNAseq experiments of ovarian cancer (n=2) and breast cancer (n-3) patient
tissues with cell type assignments according to known gene markers for each cell type. D
The top 40 genes from the geneset derived in Figure 3 as expressed in each cell type in
breast and ovarian patient samples. Black circles around points denote significance at 5%
FDR. E Pathway analysis of the differential expression results with the MSigDB hallmark
gene sets for each cell type.

percentage of mitochondrial genes, number of UMIs and number of genes detected. We

identify subpopulations of dead cells that express either high or low mitochondrial genes,

contrary to the notion that dead cells can be characterized by their mitochondrial gene

content alone. Importantly, cells that are FACS sorted as either live, dying, or dead based

on PI/Annexin V staining are present in all three clusters, highlighting that the transcrip-

tomic state of the cell is not necessarily the same as the surface marker state (though

the two are correlated). As noted, this is reminiscent of “pseudotime” orderings, with

PC1 from Figure 2A approximating a trajectory through the data that tracks transcriptom-

ically healthy cells to transcriptomically dead cells with increasing PC1 values. Though

transcriptomally similar to live, healthy cells, dead cells with low mitochondrial content ex-

pressed significantly high levels of MHC class I genes such as HLA-A, HLA-B and B2M.

MHC class I genes are involved in antigen presentation to T cells, but are also expressed

in many cell types and are induced in response to stress stimuli and contain heat shock-

inducible elements [19]. In addition to standard practices of excluding cells with high

mitochondrial content, cells with induction of these MHC class I genes may also be con-

sidered with caution. Moreover, interpretation of stress pathway expression in single cell

studies, including components of surface immune recognition such as MHC class I, may
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be especially confounded.

We identify a conserved collagenase-associated transcriptional pattern including in-

duction of stress and heat shock genes, consistent with a transcriptional response identi-

fied in a subset of muscle stem cells [23], and which was minimized when samples were

dissociated at cold temperatures with a cold active serine protease. Transcription of these

genes as a result of sample preparation methods may mask their induction due to other

means. For example, JUN and FOS are associated with cancer drug resistance and

metastatic progression [27–29]. Moreover, though less stark as the core collagenase-

associated geneset, cell type-specific effects were observed during dissociation, included

increased hedgehog and apical surface pathways in breast epithelial cells, and reactive

oxygen species pathways in cytotoxic T cells and myofibroblasts. Taken together, these

findings indicate that all cell types exhibit some level of stress response to dissociation

with collagenase, with some cell types exhibiting cell-type specific responses. These

stress responses, which may significantly influence the interpretation of scRNAseq data,

are minimized by dissociation at cold temperatures.

Methods

Ethical approval

The Ethics Committees at the University of British Columbia approved all the experiments

using human resources. Patients in Vancouver, British Columbia were recruited and sam-

ples were collected under tumour tissue repository (H06-00289) and Neoadjuvant PDX

(H11-01887) protocol with informed consent. This fulfills the requirements of UBC BCCA

Research Ethics Board. All animal studies were approved by the Animal Care Committee

at the University of British Columbia.
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Specimen collection

After informed consent, tumour fragments from patients undergoing excision or diagnostic

core biopsy were collected. Tumour materials were processed as described in [30].

Patient-derived Xenografts

Tumour fragments were transplanted subcutaneously into female NOD/SCID interleukin-2

receptor gamma null (NSG) and NOD Rag-1 null interleukin-2 receptor gamma null (NRG)

mice as previously described [30].

Tissue dissociation at 37°C

Tumour fragments from patient breast and ovarian samples and PDXs were incubated

for 2 hrs with a collagenase/hyaluronidase enzyme mix in serum-free Dulbecco’s Modi-

fied Eagle’s Medium (DMEM) at 37°C with intermittent gentle trituration with a wide bore

pipette tip. Cells were resuspended in 0.25% trypsin-edta for 1 min followed by neutral-

ization with 2% FBS in Hank’s Balanced Salt Solution (HBSS) and centrifugation. Cells

were resuspended in 2% FBS/HBSS and filtered through a 40µm filter. Where neces-

sary, dead cells were removed using MACS Dead Cell Removal Beads (Miltenyi Biotec)

according to the manufacturer’s instructions. Cells were centrifuged and resuspended in

0.04% BSA/PBS and cell concentration adjusted for scRNAseq.

Tissue dissociation at 6°C

Tumour fragments were incubated for 30 mins at 6°C with a serine protease, subtilisin

A, derived from the Himalayan soil bacterium Bacillus Lichenformis (Creative Enzymes

NATE0633) in PBS supplemented with 5mM CaCl2 and 125U/ml DNAse, as described in
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[6, 31]. During dissociation, samples were gently triturated every 5 min using a wide-bore

pipette. Cells were resuspended in 0.25% trypsin-edta for 1 min at room temperature,

neutralized with 2% FBS in HBSS and filtered through a 40µm filter. Following dissocia-

tion, samples were processed for scRNAseq as described above.

Cell culture

GM18507 cells were maintained in RPMI-1640 supplemented with 10% FBS. MDA-MB-

231 cells were maintained in DMEM supplemented with 10% FBS. Cells were trypsinized

using 0.05% trypsin-edta and placed on ice. Cells were then incubated for 2 hrs at 6°C,

24°C, 37°C or 42°C before being harvested for scRNAseq.

Flow Cytometry

GM18507 cells were treated with or without 100ng/ml TNFαfor 24 hrs before being stained

with propidium iodide and annexin V and sorted into dying, dead or live populations ac-

cording to single, double or negative staining respectively using a FACS Aria Fusion (BD

Biosciences).

Single cell RNA sequencing

Single cell suspensions were loaded onto a 10x Genomics Chromium single cell controller

and libraries prepared according to the 10x Genomics Single Cell 3’ Reagent kit standard

protocol. Libraries were then sequenced on an Illumina Nextseq500/550 with 42bp paired

end reads, or a HiSeq2500 v4 with 125bp paired end reads. 10x Genomics Cell Ranger

3.0.2 was used to perform demultiplexing, counting and alignment to GRCh38 and mm10.
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Removal of murine contamination from patient derived xenograft samples

To identify murine cells in the PDX samples, we re-ran CellRanger version 3.0.2 aligning

cells to both GRCh38 and mm10 (separately). We then considered all cells for which a

valid barcode was identified in the raw (unfiltered) data for either alignment, and counted

the number of reads mapping to each genome for each cell. A cell was subsequently

designated as a contaminating mouse cell if more reads mapped to mm10 than GRCh38,

and a human cell otherwise.

Analysis of existing 10X datasets

The processed data for the datasets nuclei 900, pbmc4k, t 4 were downloaded from the

10X genomics website https://support.10xgenomics.com/single-cell-gene-expression/

datasets/2.1.0/ on April 30th 2019.

Differential expression and core heat-related gene set

All differential expression analyses were performed with edgeR [22] version 3.24.3 using

the quasi-likelihood F-test as was the top-performing method in a recent review [32]. We

included both a scaled cellular detection rate (scaled fraction of transcriptome detected per

cell) and the patient / xenograft / cell line ID in the design matrix to account for unwanted

technical and biological variation. In every case we only considered genes with minimum

10 counts across all cells.

We defined the core set of genes as those with FDR adjusted Q-value < 0.05 and

with | log2(fold change)| > log 2(1.5) - in other words we require the average change in

expression to be either 50% greater or less than the baseline to include the gene. Overall

this gave 192 genes (182 upregulated and 10 downregulated).
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Pathway enrichment was performed using camera [33] with trend.var=TRUE on the

Hallmark gene set [24] retrieved from http://bioinf.wehi.edu.au/software/MSigDB/

human_H_v5p2.rdata with timestamp 2016-10-10.

Cell type assignments

Cell types were determined using CellAssign, a probabilistic model that annotates scR-

NAseq data into pre-defined and de novo cell types assuming a set of markers known

marker genes for cell types [25]. Briefly, CellAssign takes a pre-defined set of marker

genes for each cell type in the data, and probabilistically models a cell as being of a cer-

tain type if it has increased expression of its marker genes. A given gene can be a marker

for multiple cell types and a marker gene can be expressed in cell types other than those

for which it is a marker, albeit at lower levels. The marker genes used in this study are

listed in table S2 and table S3.

Clustering of live, dying, and dead cells

Cells were hierarchically clustered using the hclust function in R applied to the 10-dimensional

output of MNN, and clusters assigned using the cutree function.

Reproducible data analysis

A dockerized workflow to enable reproduction of all figures and analysis in this paper

is available at https://github.com/kieranrcampbell/scrnaseq-digestion-paper with

corresponding docker image at https://cloud.docker.com/u/kieranrcampbell/repository/

docker/kieranrcampbell/statgen2 (version 0.4).
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Abbreviations

UMI : unique molecular identifier; PDX : patient-derived xenograft; MHC : major histo-

compatibility complex; QC : quality control; PCA : principal componenst analysis; HSP :

heat shock protein; UMAP : uniform manifold approximation and projection; FDR : false

discovery rate; HGSC : high grade serous carcinoma
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Figure S1: Mitochondrial gene content of single cells as a function of number of genes de-
tected for three publicly available datasets using the 10X genomics platform (nuclei 900,
pbmc4k, t 4). These datasets contain sets of cells with distinctly increased mitochondrial
gene content percentages with a lower number of detected genes.
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Figure S2: Percentage of cells identified as mouse cells across all scRNA-seq samples in
the study exhibits large variation across datasets. While the vast majority were detected in
PDX samples, a small number were also detected in cell line and patient primary tumour
samples, suggesting either small levels of contamination or a modest false positive rate to
the detection method.
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Figure S3: Quality control metrics (% mitochondrial gene counts, total counts, total genes
detected) across all scRNA-seq of PDX included in the study. On average, murine cells
score lower across all three metrics though with notable inter-dataset variability.
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Figure S4: Heat shock protein (HSP) gene expression across different digestion temper-
atures in MDA-MB-231 cells.
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Figure S5: Pathway membership of top 40 genes (based on log fold change) from the 512
genes in the PDX digestion method core set.
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Figure S6: Microenvironment composition across primary tumour samples digested at 6
°C or 37 °C. Results show enhanced capture of T cell and cytotoxic T cells in ovarian
cancer patient samples, though the composition of the tumour samples was variable, and
no consistent difference was observed between conditions in all samples.

Figure S7: % of genes identified in the 512 digestion method dependent core gene set in
PDX that are upregulated in each primary tumour cell type.
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Figure S8: % of genes identified in the 512 digestion method dependent core gene set in
PDX that are significanty upregulated (FDR < 5%) in each primary tumour cell type.

Figure S9: Spearman correlation between the log fold changes in response to digestion
method (37C collagenase vs 6C cold protease) in PDX vs. primary tumours of a given
cell type.
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Cell type % upregulated % significantly upregulated
B cells 68.95 12.11
Breast epithelial cells 71.88 54.88
Cytotoxic T cells 77.73 38.28
Endothelial cells 75.00 33.40
Monocyte/Macrophage 74.80 40.23
Myofibroblast 78.12 51.56
Ovarian epithelial cells 73.83 48.05
Plasma cells 61.72 8.59
T cells 69.92 18.16

Table S4: % of the 512 genes in the 37°C, collagenase-associated digestion core gene
set identified in PDX samples upregulated and significantly upregulated (5% FDR) in each
primary tumour cell type.
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