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Short title:  16 

MALDI biotyping-like method to address bee health  17 

 18 

Abstract: 19 

Among pollinator insects, bees undoubtedly account for the most important species. They play a 20 

critical role in boosting reproduction of wild and commercial plants and therefore contribute to the 21 

maintenance of plant biodiversity and sustainability of food webs. In the last few decades, 22 

domesticated and wild bees have been subjected to biotic and abiotic threats, alone or in combination, 23 

causing various health disorders. Therefore, monitoring solutions to improve bee health are 24 

increasingly necessary. MALDI mass spectrometry has emerged within this decade as a powerful 25 

technology to biotype micro-organisms. This method is currently and routinely used in clinical 26 

diagnosis where molecular mass fingerprints corresponding to major protein signatures are matched 27 

against databases for real-time identification. Based on this strategy, we developed MALDI 28 

BeeTyping as a proof of concept to monitor significant hemolymph molecular changes in honey bees 29 

upon infection with a series of entomopathogenic Gram-positive and -negative bacteria. A Serratia 30 

marcescens strain isolated from one “naturally” infected honey bee collected from the field was also 31 

considered. We performed a series of individually recorded hemolymph molecular mass fingerprints 32 

and built, to our knowledge, the first computational model made of nine molecular signatures with a 33 

predictive score of 97.92%. Hence, we challenged our model by classifying a training set of individual 34 

bees’ hemolymph and obtained overall recognition of 91.93%. Through this work, we aimed at 35 

introducing a novel, realistic, and time-saving high-throughput biotyping-like strategy that addresses 36 

honey bee health in infectious conditions and on an individual scale through direct “blood tests”. 37 
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 42 

Significance Statement: 43 

Domesticated and wild bees worldwide represent the most active and valuable pollinators that ensure 44 

plant biodiversity and the success of many crops. These pollinators and others are exposed to 45 

deleterious pathogens and environmental stressors. Despite efforts to better understand how these 46 

threats affect honey bee health status, solutions are still crucially needed to help beekeepers, scientists 47 

and stakeholders in obtaining either a prognosis, an early diagnosis or a diagnosis of the health status 48 

of the apiaries. In this study, we describe a new method to investigate honey bee health by a simple 49 

“blood test” using fingerprints of some peptides/proteins as health status signatures. By computer 50 

modelling, we automated the identification of infected bees with a predictive score of 97.92%. 51 
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Introduction 54 

Over several decades, an abnormal mortality of honey bees and other pollinators (bumblebees, solitary 55 

bees) has been observed in all industrialized countries (1-4). This phenomenon has been particularly 56 

recorded in honey bees (5). The global loss of honey bee colonies has detrimental consequences for 57 

plant biodiversity, bee products, and negative economic and societal effects (6). As a result, many 58 

scientific studies have been carried out to understand the mechanisms underlying phenomena such as 59 

colony weakening or collapse and colony mortality observed in most of the countries practicing 60 

intensive agriculture. Many reports concluded that biotic and abiotic factors are suspected to be 61 

involved in this phenomenon, either alone or in combination (2, 5, 7-10). Potential causes are exposure 62 

to (i) environmental and in-hive chemicals (11, 12), (ii) agricultural practices (13, 14), (iii) infection 63 

by micro-organisms and predation by parasites (15-17) and (iv) nutritional factors (18-20), among 64 

others, which lead to the transition from a health status qualified as normal to a health decline that 65 

would contribute to the colony collapse (7). The expression of this pathological state may notably be 66 

linked to a decrease in the immune capacities of the bee and/or the colony subjected to these 67 

combinations of stressors (21-25). The complex underlying mechanisms of stressors (biotic and 68 

abiotic) that affect bees and impact honey bee health status remain still partially understood. Both the 69 

fundamental molecular mechanisms associated with the modifications of health status and the 70 

development of solutions capable of rendering a prognosis, an early diagnosis or a diagnosis, remain 71 

to be elucidated. This is a prerequisite for limiting colony losses and protecting honey bees, but the 72 

tools and services to perform a clear sanitary diagnosis of beehives are currently lacking. Even if 73 

visual and PCR analyses are available for surveillance of pathogen loads, prediction of the likely 74 

impact on the colony remains an issue not satisfactorily addressed (26). Apart from typical methods 75 

for honey bee colony health monitoring like polymerase chain reaction assays and sensor-based 76 

devices (27-29), mass spectrometry (MS), which has been greatly improved in the past 20 years, may 77 

play an essential role in the quest for innovative solutions in monitoring bee health. Among the 78 

different MS approaches, Matrix-Assisted Laser Desorption-Ionization – Time of Flight Mass 79 

Spectrometry (MALDI-TOF MS) has become increasingly popular for biological sample identification 80 

in laboratory research and for clinical diagnostics in microbiology. The widespread interest of this 81 

technology for analysing biological matrices is due to the generation of mostly monocharged ions 82 

which satisfy the generation of simplified mass spectra when analysing complex biological samples 83 

(30). 84 

In the past ten years, MALDI-TOF MS has become a referenced system in microbiological 85 

laboratories. Technological developments, making this analytical technique a robust, fast and widely 86 

used commercial platform, paved the way for its use in routine clinical microbiology (31-33). In 2013, 87 

two independent systems, the VITEK® mass spectrometer (bioMérieux clinical Diagnostics) and the 88 

MALDI Biotyper® MicroFlex (Bruker Daltonics Inc.) received the US Food and Drug Administration 89 

(FDA) clearance for the identification by biotyping of micro-organism species including yeasts and 90 
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aerobic / anaerobic bacteria. In 2015, FDA clearance was announced for 193 and over 280 species 91 

using the VITEK® and the MALDI Biotyper® instruments, respectively (34, 35). These platforms 92 

perform by targeting the ribosomal proteins as biomarkers for the identification of clinical bacterial, 93 

fungal and yeast isolates (36). In early 2018, the Bruker MALDI Biotyper® solution received 94 

international approvals as an official method of analysis for the food industry (source from Bruker 95 

Corporation, related link https://www.bruker.com). Barcoding or molecular mass fingerprints (MFP) 96 

of biological matrices by MALDI-TOF MS is indeed a thriving approach, enabling the rapid detection 97 

of peptide/protein components that can provide comparative information. 98 

Building on the concept of this MS-based MFP approach and on the demonstrated capability of 99 

MALDI-TOF MS to decipher the molecular mechanisms of insect immunity in the Drosophila model 100 

for various infections (37-39), we performed a peptidomics/proteomics-based mass fingerprinting of 101 

honey bee hemolymph using MALDI MS to discriminate different models of bacterial infections.  102 

Relying on previously published studies (39-42), we first developed and validated an experimental 103 

model of challenged honey bees with Gram-positive and -negative bacteria (using notably a Serratia 104 

marcescens strain isolated from honey bees). Then, we assessed the usefulness of MALDI-TOF MS to 105 

fingerprint the peptides/proteins in honey bee hemolymph in order to build and validate a 106 

computational model of bacterial recognition based on the molecular signatures within the molecular 107 

mass range 2-20 kDa; a method we will refer to as BeeTyping. In addition, we determined the 108 

performance of this computational model using a training set of challenged bees. Through this work, 109 

we introduce BeeTyping as an effective method for monitoring honey bee health status by diagnosing 110 

bacterial infections in young adult honey bees.  111 

 112 
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Results & Discussion 114 

MALDI-TOF MS Biotyping successfully diagnosed a bacterial strain isolated from 115 

honey bee hemolymph. 116 

In order to generate relevant biological models of honey bee infections, we used the bacteria 117 

Micrococcus luteus, Pectobacterium carotovorum subsp. carotovorum and Serratia entomophila. M. 118 

luteus is a Gram-positive bacterial strain frequently used when monitoring insect immunity (43) and 119 

has been shown to colonize bee hives and gastrointestinal tracts of honey bees (44) while P. 120 

carotovorum subsp. carotovorum (45) and S. entomophila (Institut Pasteur, CIP102919) are two 121 

bacterial strains that trigger a systemic immune response in insects. We also performed an additional 122 

model of infection using a Serratia marcescens strain (SmBIOP160412, Lab. collection) isolated from 123 

a naturally infected honey bee collected in the field. To certify the constructed biological models of 124 

infection, the four bacterial strains were classified by MALDI MS biotyping (Figure 1). As shown, the 125 

individual MFPs of the different strains detailed below and represented by the spectral gel views 126 

passed the threshold score of identification with a significant score (reliability score ≥ 2) and 127 

successfully matched the Bruker reference strains (see Fig. 1, M. luteus ref. 1270, P. carotovorum 128 

subsp. carotovorum ref. 78398, and S. entomophila ref. 42906) of the MALDI BioTyper® database. 129 

Moreover, applied to the bacterial strain SmBIOP160412 isolated and cultured from an isolate 130 

obtained from a naturally infected honey bee, MALDI MS biotyping demonstrated for the first time to 131 

our knowledge, its ability to characterize a field bacterial infection in Apis mellifera. This identified 132 

bacterial strain, namely S. marcescens, is known to be a widespread pathogen of adult honey bees 133 

(46), and a virulent opportunist, taking advantage of disturbed microbiota to develop in honey bee guts 134 

after exposure to the pesticide glyphosate (47). 135 

MALDI-TOF MS BeeTyping as a new approach to discriminate Gram-positive and 136 

-negative biological models of infection directly from honey bee hemolymph 137 

A set of 64 MALDI MS spectra was recorded from individual hemolymph samples. These spectra 138 

were obtained from 22 control honey bees and from 23 and 19 honey bees individually infected with 139 

the Gram-positive M. luteus or the Gram-negative P. carotovorum subsp. carotovorum, respectively. 140 

An averaged spectrum, containing 110 MALDI MS ion peaks (MFP, Table S1), was built for each of 141 

the three biological models (Figure 2A). Statistical analysis based on Principal Component Analysis 142 

(PCA) and performed on these MFPs clearly segregated the three biological models (Figure 2B). As 143 

shown by the PCA plot score, the individual spectra were clustered in accordance with their 144 

corresponding models and were segregated based on their mass fingerprints. The unsupervised 145 

hierarchical clustering of hemolymph samples, classified almost all of the individual MFPs with 146 

respect to their corresponding biological models (Figure 2C). Out of 64 normalized spectra used to 147 

build the clustering dendrogram, four and three recorded mismatched spectra were observed, 148 
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corresponding to the lowest (70%) and highest (95%) limits of explained variance, respectively. The 149 

mismatched spectra were further identified within the representation of the PCA plot score of the 150 

hemolymph samples (Figure 2B, arrows). At the limit of explained variance of 70%, the four spectra 151 

included one spectrum from the control condition and one from the M. luteus infection model, both 152 

classified under the P. carotovorum subsp. carotovorum model, and two of this latter model, 153 

mismatched to the control model (see asterisks in Fig. 2C). Regarding the three mismatched spectra 154 

observed at 95% of the explained variance, one was from the M. luteus model and classified under the 155 

P. carotovorum subsp. carotovorum model and two, from the P. carotovorum subsp. carotovorum 156 

model, classified under the control model (see asterisks in Fig. 2C). 157 

In order to assess the relationship between the MALDI-TOF MS MFPs of the biological models and 158 

the honey bee’s immune status, we correlated these MFPs with each of the four antimicrobial peptides 159 

(AMP) defined  from Apis mellifera (48): Apidaecin 1A (41) at m/z 2,107), Hymenoptaecin (49) at m/z 160 

10,270, Abaecin (50) at m/z 3,878 and Defensin 1A (40) at m/z 5,519 (Figure 3). As shown, per-peak 161 

fingerprint correlations with the antimicrobial peptides (AMPs) were scored based on the molecular 162 

ion peak area and represented as heat maps through a colored scale intensity ranging from low 163 

(minimum score of -1, in red) to high correlation (maximum score of 1, in green). Reported in relation 164 

to the MFPs, four clades (A, B, C and D) described the positive and negative correlations of the MFPs 165 

with each of the four AMPs (see Table S1) and segregated the three biological models (non-166 

experimentally infected as a control condition, P. carotovorum subsp. carotovorum. model and M. 167 

luteus model, see Fig. 3). 168 

Regarding the control condition, the four AMPs were found to be positively correlated with the 169 

molecular ion markers of the hemolymph MFPs of clades A, C and D and negatively correlated with 170 

markers of clade B. In the P. carotovorum subsp. carotovorum model, the same four AMPs were 171 

positively correlated with the MFPs of clades B and C and negatively with clade A and D markers, 172 

except for Hymenoptaecin, which exhibited positive and negative correlations with clade D. In the M. 173 

luteus model of infection, each of the AMPs was predominantly positively correlated with the 174 

molecular clades A and B, and negatively with clades C and D. These correlations show 175 

complementary molecular signatures in the three experimental models. Discrete dynamic molecular 176 

patterns are modulated and correlated to the immune status of the bees, allowing us to discriminate 177 

infected from non-infected bees and the type of infection  178 

Machine-learning as the first reported computational model to recognize and 179 

classify experimentally infected honey bees based on hemolymph MFPs 180 

Because the proteomic mass spectra of hemolymph samples reflect the immune status of 181 

the honey bees, our next goal was to predict honey bee health status based on the bee 182 

MALDI-TOF MS MFPs. For that purpose, we decided to build a molecular model based 183 

on the MFPs of hemolymph samples, by using a machine-learning algorithm, the 184 
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Genetic Algorithm (GA). The GA classifier generated a set of discriminating peaks that 185 

recognized and classified hemolymph according to the biological model (honey bees 186 

challenged with P. carotovorum carotovorum or M. luteus and non-experimentally 187 

infected honey bees). These discriminating peaks form a barcode model and define the 188 

strength of this model through its recognition capability. The performance of the 189 

classifier barcode model was evaluated through internal cross validation by iterative 190 

reclassification of a set of spectra equal to half of the total number of spectra included 191 

in the model. For each of the ten iterations performed, a new set of spectra was chosen 192 

randomly through an automated internal process. 193 

In an initial approach, we restricted our experimental infection to M. luteus as the Gram-positive strain 194 

and to P. carotovorum subsp. carotovorum. While this is, to our knowledge, the first time such a 195 

computational model has been applied to the classification of bacterial-infected honey bees, machine-196 

learning algorithms have been used previously in other biological subjects. For example, MALDI MS 197 

has been successfully used to build a proteomic mass spectra database of different honeys and their 198 

MFPs to identify their geographical origin (51). As another example of application, an experimental 199 

model of male chicken fertility was designed to perform on-cell direct proteomic fingerprinting by 200 

MALDI MS and demonstrated the capability of the GA classifier to build a predictive model to 201 

classify chicken sperm fertility (52). 202 

In the present study, using GA, based on the individual hemolymph spectra of a cohort of 22 controls 203 

and 23 honey bees challenged with M. luteus or 20 honey bees challenged with P. carotovorum subsp. 204 

carotovorum, we identified a set of nine best m/z molecular ions based on their capability to 205 

discriminate the three biological models from each other (Figure 4). Further tests of recognition 206 

capability and cross validation of the GA model were assessed by using the MFPs from the same 207 

sample cohort. Considering the standard deviation and the 95% confidence interval of these nine 208 

molecular ions, weight indexes were calculated to rank the nine molecular signatures from the most 209 

discriminant molecular ion (m/z 3,348.17, weight of 6.24) to the least discriminant one (m/z 5,603.01, 210 

weight of 1.97). Moreover, we rated the accuracy of the GA classifier model following two distinct 211 

data processings. On the one hand, the classifier calculated the recognition capability by matching the 212 

MALDI MS spectra described above against their respective biological models. Therefore, we were 213 

able to re-assign hemolymph spectra derived from the control and the M. luteus biological models 214 

(score of recognition 100%) and for the P. carotovorum subsp. carotovorum model (score of 93.75%). 215 

Overall, performance recognition of the classifier reached 97.92%. On the other hand, internal cross 216 

validation scores were calculated for each biological model. To perform this cross validation, the same 217 

individual hemolymph spectra from each biological model were randomized and reassessed for 218 

successful matching in a batch mode of analysis by the classifier using solely the set of the nine 219 

molecular ion markers. The cross validations of the classifier were at 91.51%, 94.40% and 89.87% for 220 
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the control, M. luteus and P. carotovorum subsp. carotovorum biological models, respectively, giving 221 

an overall validation of 91.93% (see Fig. 4).  222 

A new set made of 26, 10 and 35 MALDI MS spectra of hemolymph from control, M. luteus and P. 223 

carotovorum subsp. carotovorum biological models respectively was submitted for the to the GA 224 

classifier and classified individually (Table 1 and Table S2). Among the 26 control spectra, 16 were 225 

correctly classified, three were classified in P. carotovorum subsp. carotovorum and three in M. luteus 226 

models. Four spectra were found as invalid spectra because of the recalibration step. This result was 227 

caused by weaker intensities of the molecular fingerprints causing the ion mass recalibration to fail. 228 

Regarding the M. luteus infectious model, 10 spectra were subjected to the classifier. Seven were 229 

correctly classified, two were considered as control and one as belonging to the P. carotovorum subsp. 230 

carotovorum model. No spectrum was deemed invalid. Considering the P. carotovorum subsp. 231 

carotovorum biological model of infection, from the 37 spectra, 13 were correctly classified, one 232 

matched to the control, three to the M. luteus biological models and 20 to the invalid spectra category. 233 

These 20 spectra were qualified as invalid due to noisy mass spectra (intensities of the nine peaks not 234 

sufficient to pass the classification) or to a failure in properly calibrating the mass spectra. Given these 235 

results, we calculated the performance of the classifier for each of the biological model (see details in 236 

Table 2). The GA algorithm achieved 80 % to 90 % accuracy discriminating thus the three biological 237 

models. The sensitivity (true positive) and the specificity (true negative) of the GA classifier model 238 

were calculated for the three biological models. The model scored at least 70% of sensitivity and at 239 

least 84 % of specificity. As detailed in the Table 2, the highest sensitivity was observed for the P. 240 

carotovorum subsp. carotovorum model (76.47 %) and the highest specificity for the control model 241 

(95.16 %). Based on the sensitivity and the specificity, we calculated the informedness indexes and the 242 

positive-negative stratum-specific likelihood ratio (abbreviated +LR, -LR) which inform about how 243 

predictive the classifier model is and its performance as a diagnostic tool respectively. As reported in 244 

the Table 2, the three biological models scored indexes within the range [-1 ;1] with -1 as incorrect 245 

model predictions, 1 as maximum of correct predictions). The calculated informedness indexes for the 246 

control, the P. carotovorum subsp. carotovorum scoring 0.68 and 0.64 respectively and for the M. 247 

luteus (0.55) demonstrated the model was a good predictor. Regarding +LR and -LR, both parameters 248 

were calculated. The +LR, which required scores over 1 to be significant were found equal to 15.02; 249 

4.55 and 6.12 for the control, the M. luteus and the P. carotovorum subsp. carotovorum models 250 

respectively (Table 2). This result demonstrated a good probability that our GA model classified 251 

positively the spectra against the biological models. The -LR, which required scores as close as 252 

possible to 0 to be significant were found equal to 0.28; 0.35 and 0.27 for the control, the M. luteus 253 

and the P. carotovorum subsp. carotovorum models respectively (Table 2). This result demonstrated 254 

the weak probability to missclassify the cohort of hemolymph spectra through the GA classifier. In 255 

addition, we determined the false discovery rate (q-value) and the false positive rate (p-value) for each 256 

of the three biological models. The lowest q-value was of 0.158 and concerned the control model 257 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 2, 2019. ; https://doi.org/10.1101/683607doi: bioRxiv preprint 

https://doi.org/10.1101/683607


9 

 

while P. carotovorum subsp. carotovorum and M. luteus models harbored highest values (0.235 and 258 

0.461 respectively) denoting a better capability of the classifier to classify unkown spectra within the 259 

control model followed by the P. carotovorum subsp. carotovorum and M. luteus models respectively. 260 

Regarding the p-values, the control model harbored 0.0484 while P. carotovorum subsp. carotovorum 261 

and M. luteus models scored 0.125 and 0.154. Based on this statistical parameter, the classifier shares 262 

the same conclusion as obtained with the q-values regarding the algorithm’s performance to classify 263 

properly the spectra. 264 

 265 

To summarize, the computational model significantly discriminated control from 266 

infected honey bees and M. luteus from P. carotovorum subsp. carotovorum infection as well 267 

on the basis of the hemolymph mass fingerprints.  268 

 269 

MALDI-TOF MS BeeTyping as an effective molecular method to discriminate 270 

honey bees infected with different Serratia  species 271 

We assessed the performance of MALDI BeeTyping to discriminate infection at the 272 

species level, in particular between two Serratia  species: S. marcescens isolated from a 273 

naturally infected honey bee (SmBIOP160412, Lab. collection) and a reference strain of 274 

S. entomophila (see dendrogram, Figure 1). We found that the MFPs of the hemolymph 275 

samples collected from honey bees infected by S. entomophila  and S. marcescens 276 

presented significant molecular differences (Figure 5A).  277 

Moreover, by using the two best discriminant molecular ions (m/z 12,752.8 and m/z 278 

7,186.95), revealed by the PCA analysis, we could differentiate the hemolymph spectra 279 

of bees infected either with S. entomophila or S. marcescens SmBIOP160412. In 280 

contrast, the two weaker discriminant markers m/z 1,996.14 and m/z  6,113.68 failed to 281 

discriminate the two types of spectra resulting from the two Serratia species (Figure 282 

5B). 283 

To further evaluate and rank the measured ion markers within the MFPs based on their 284 

capability to discriminate the two Serratia  species, we performed a receiver operating 285 

curve (ROC) analysis to highlight eight m/z ion markers (12,752.8; 7,186.95; 7,688.27; 286 

10,269.8 (Hymenoptaecin); 5,057.69; 5,160.28) with AUC scores between 0.8 and 1 in 287 

sensitivity (Figure 5C). The Apidaecin, Abaecin and Defensin were also checked for 288 

their capability to discriminate the two Serratia  species (Figure S1). Based on the ROC 289 

test, Abaecin and Defensin were also capable to discriminate, to some extent, the two 290 

Serratia species (see Figure S1) (AUC of 0.739 and 0.639, respectively). However, like 291 

the two markers m/z 1,996.14 and 6,613.68, Apidaecin (AUC=0.520) revealed to be a  292 

poor discriminant (Figure 5D). Hence, based on these results, it  seems possible to 293 
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discriminate infection by S. marcescens from S. entomophila  in honey bees using 294 

computational modelling. To our knowledge, this is the first report on the feasibility of 295 

using MALDI MS as an MFP-based method capable of discriminating hemolymph 296 

molecular response to systemic infections induced by two different bacterial species of 297 

the same genus. S.  marcescens is known to be a commensal bacterium present in lo w 298 

abundance in the gut of honey bees. By studying the pathogenicity of different strains 299 

of S. marcescens through two routes of in vivo  exposure (oral and direct injection into 300 

the hemolymph), Raymann et al (46) found that expression of the four honey bee AMPs 301 

Abaecin, Defensin, Hymenoptaecin and Apidaecin did not differ between infected and 302 

non-experimentally infected control honey bees. These results support the idea that 303 

markers other than AMPs need to be identified and monitored to efficiently 304 

discriminate bacterial infections in honey bee hemolymph. As we demonstrated, the 305 

correlation of the molecular fingerprints and the AMPs in hemolymph allowed us to 306 

discriminate the three different models. In order to determine how specific were the 307 

nine markers of the classifier to the control, M. luteus and P. carotovorum subsp. 308 

carotovorum biological models, we tested the classification of the hemolymph mass fingerprints of 309 

honey bees infected using the two Serratia strains. We submitted 13 MALDI mass fingerprints of 310 

hemolymph from infected bees with S. entomophila to the classifier. One was classified as control, 311 

seven as fitting with the P. carotovorum subsp. carotovorum model, and one fitting with the M. 312 

luteus model. The classifier excluded four hemolymphs’ fingerprints because of noisy 313 

spectra signal or invalid mass recalibration. We also submitted 19 MALDI mass fingerprint 314 

of hemolymph from infected bees with S. marcescens to the classifier, which identified two as control, 315 

five as fitting with the P. carotovorum subsp. carotovorum model, and four fitting with the M. luteus 316 

model. The classifier excluded eight hemolymphs’ fingerprints for the same reasons as 317 

above. Interestingly, the majority of the classified spectra from both, the S. 318 

entomophila and S. marcescens models matched with the P. carotovorum subsp. 319 

carotovorum model. It is particularly interesting as these three bacteria are Gram-negative. 320 

Nevertheless, some spectra matched against the control and the M. luteus  models. Taking 321 

altogether, these results suggest that the BeeTyping approach generates specific  322 

molecular barcodes defined accordingly to biological models. 323 

 324 

 325 

Conclusion 326 

Along with most relevant, technically feasible and primary observation-based health status 327 

indicators highlighted by EFSA’s HEALTHY-B, MALDI-MS BeeTyping, a method derived 328 
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from the biotyping approach used routinely in clinical microbiology, analyze the downstream 329 

responses to stressors through the matured effector molecules circulating in the hemolymph. 330 

These effectors include the products of selected immune genes (i.e. genes coding for 331 

Apidaecin, Defensin, Hymenoptaecin, and Abaecin) and other molecular mass fingerprints of 332 

stress that we are under characterization through a proteomic approach. Our approach of 333 

MFPs by MALDI-MS BeeTyping, is a cutting-edge analytic method that may complement 334 

and address some limitations issued of the HEALTHY-B toolbox by establishing robust, 335 

effective, sensitive and a comprehensive technology for profiling and deciphering, at the 336 

individual level, the honeybee health parameters including its immunity stage with regards to 337 

bacterial stressors. Moreover, as a robust and sensitive molecular approach, MALDI BeeTyping has 338 

several advantages over other molecular biology techniques and visual observations, such as (i) the 339 

use of a drop of hemolymph allowing to keep the rest of the body for complementary molecular 340 

measurements such as PCR, (ii) a very simple and fast sample preparation, (iii) a short processing time 341 

(data acquisition and processing), (iv) low consumable costs, and (v) a user friendly workflow that can 342 

be standardized and automated for cost-effective high throughput use. We believe that future 343 

developments of MALDI BeeTyping could improve monitoring of honey bee health upon 344 

exposure to other biotic or abiotic stressors, the quality control and the origin traceability of 345 

apiary products based on molecular markers fingerprinting. Based on specific proteomics 346 

signatures, MALDI BeeTyping could bring out a novel analytical tool for early diagnosis of 347 

honey bees parasited with Nosema species, Varroa destructor and infected or not with 348 

deformed wing virus or acute bee paralysis virus. We aim at developing the BeeTyping 349 

strategy for early diagnosis of honey bees health disorders. 350 

  351 
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Material & Methods 352 

The BeeTyping strategy relies on a workflow divided into four major steps summarized 353 

in Table S2 and described in this section. 354 

Biological models 355 

Bacterial strains 356 

To generate biological models of infection, we used the Gram-negative strains 357 

Pectobacterium carotovorum subsp.  carotovorum  15 (formerly Erwinia  carotovora  358 

carotovora  15 CFBP2141, generous gift from Bruno Lemaitre, EPFL Switzerland), 359 

Serratia entomophila (Institut Pasteur, CIP102919) and a Serratia marcescens strain 360 

(SmBIOP160412, our laboratory collection) isolated within the haemocoel from a 361 

naturally infected  Apis mellifera  honey bee collected in the field, and the Gram-positive 362 

Micrococcus luteus (ATCC 4698). Bacteria were cultured in Luria Bertani (LB) medium 363 

overnight at 32°C. 364 

Bacterial strain identification by MALDI biotyping 365 

The Pectobacterium carotovorum subsp. carotovorum, Serratia marcescens, S. entomophila and 366 

Micrococcus luteus strains were identified following Bruker’s recommendations. Briefly,  367 

one isolated colony of bacteria was spread onto a MALDI plate dedicated for 368 

microorganism identifications (MALDI Biotarget 48 polished steel) and mixed with 369 

1µ L of Alpha-Cyano-4-hydroxycinnamic acid (4-HCCA) MALDI matrix. Spectra were 370 

recorded using the MALDI-TOF MS AutoFlex III instrument and the associated materials, 371 

chemicals and software package used for MALDI biotyping were all from Bruker Daltonik 372 

(Germany) using the standard method (pre-processing step for which the lower mass 373 

was set at 2,000, with a resolution of 5, and a compressing factor of 1). The smoothing 374 

frame size was 20Da and the search window was 10Da with three runs for the baseline 375 

subtraction. For the peak-picking, the maximum number of peaks was set at 200, with a 376 

threshold of 0.0045. The method of peak-picking was based on peak fitting using the 377 

Gauss profile. The recorded spectra were matched against the dedicated database MBT 378 

Compass 4.1, build 70. The obtained gel spectra for the identified bacteria and their 379 

corresponding dendrograms were built  under MBT Compass Explorer 4.1 using the 380 

standard method of identification. For external calibration of the mass spectrometer, a 381 

mix of 1µ L of bacterial test standard proteins (BTS) covering the entire mass range 382 

(m/z 2,000-20,000) of the acquisition method was analyzed using the same protocol. 383 

Experimental infection of the honey bees 384 

Experimental infections were performed on newly-emerged honey bee workers (less 385 

than 12h old). To design the computational analyses, a training set of spectra was built  386 
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using non experimentally infected (unpicked control) bees and bees infected with either 387 

Pectobacterium carotovorum subsp. carotovorum 15 ,  M. luteus, S. entomophila  or the 388 

isolated Serratia  marcescens SmBIOP160412 strain. Infections were performed by 389 

pricking honey bees individually in the anterior lateral thorax (spiracle) using a fine 390 

needle (Fine Science Tools, Germany) dipped into a freshly concentrated culture pellet  391 

of live bacteria. All honey bees (experimentally infected and controls) were placed for 392 

24h at room temperature in dedicated small cages and fed ad libitum  with sugar syrup 393 

(Invertbee from SARL Isnard, France) containing fructose (36%), dextrose (30%), 394 

saccharose (31%), maltose (1.5%) and other sugars (1.5%). Hemolymph was collected 395 

from the dorsal side of the abdomen, using pulled glass capillaries (Sutter Instrument 396 

Corp, Novato, California). The collected hemolymph was immediately transferred into a 397 

chilled LoBind Protein microtube (Eppendorf, Germany) pre-coated with 398 

Phenylthiourea and Phenylmethylsulfonyl fluoride (both from Sigma Aldrich, France) 399 

to prevent melanization and proteolysis, respectively. The hemolymph samples were 400 

stored at -20°C until use. 401 

 Molecular mass fingerprints by MALDI MS 402 

Data acquisition 403 

Each individual hemolymph sample was analyzed with the Bruker AutoFlex™ III. The 404 

molecular mass fingerprints (MFP) were acquired following the Bruker Biotyper® 405 

recommendations (matrix, method of sample deposition and detection) with minor 406 

adjustments. Briefly, the hemolymph samples were 10-fold diluted in acidified water 407 

(0.1% trifluoroacetic acid, Sigma Aldrich, France) and 0.5µ L of a given sample was 408 

mixed with 0.5µ L of 4-HCCA (Sigma Aldrich, France) on a MALDI MTP 384 polished  409 

ground steel plate (Bruker Daltonik). Following co-crystallization of the hemolymph 410 

spots with the matrix droplet, MALDI MS spectra were recorded in a linear positive 411 

mode and in an automatic data acquisit ion using FlexControl 4.0 software (Bruker 412 

Daltonik). The following instrument sett ings were used: 1.5kV of electric potential 413 

difference, dynamic range of detection of 600 to 18,000 Da, 69% of laser power, a 414 

global attenuator offset of 46% with 200Hz laser frequency, and 2,000 accumulated 415 

laser shots per hemolymph spectrum with a raster of random walk set to 50. The linear 416 

detector gain was setup at 1.82kV with a suppression mass gate up to m/z 600 to 417 

prevent detector saturation by clusters of the 4-HCCA matrix. The pseudo-molecular 418 

ions desorbed from the hemolymph were accelerated under 1.5kV. An external 419 

calibration of the mass spectrometer was performed using a standard mixture of 420 

peptides and proteins (Peptide Standard Calibration II and Protein Standard Calibration 421 

I, Bruker Daltonik) covering the dynamic range of analysis.  422 
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Data post-processing and statistical analyses 423 

The MALDI-MS datasets were imported into the ClinProTools™ 2.2 Software (Bruker 424 

Daltonik) for post-processing and statistical analyses. All of the recorded spectra were 425 

processed with a baseline subtraction and spectral smoothing followed by an internal 426 

recalibration step with exclusion of null and/or “non-recalibratable” spectra. The total 427 

averaged spectra were calculated based on a signal over noise ratio equal to 5 for peak-428 

picking and area calculations. The irrelevant spectra that did not pass the required 429 

signal intensity and resolution were excluded from any integration into the MALDI-MS 430 

computational model designed to match the biological models of honey bee infections. 431 

A post-processing step involving spectral normalization of all calculated peak area was 432 

performed with ClinProTools™ software prior to statistical analysis (95% confidence 433 

interval, standard deviation and Principal Component Analysis-PCA). 434 

Hierarchical Clustering, heat maps and ROC curves 435 

The total number of spectra used to design the computational models were normalized 436 

and subjected to PCA and unsupervised hierarchical clustering analysis to measure 437 

distances between spectra. This analysis was used to determine Euclidean distances 438 

(based on PCA results with a reduced dimension limited to 70% and 95% of the total 439 

explained variance). The molecular correlation between four antimicrobial peptides 440 

(AMPs) known from the honey bee [Apidaecin 1A at m/z 2,107 (Uniprot entry 441 

A0A088AIG0), Hymenoptaecin at m/z 10,270 (Uniprot entry Q10416), Abaecin at m/z  442 

3,878 (Uniprot entry P15450) and Defensin 1A at m/z 5,519 (Uniprot entry P17722)]; 443 

and mass fingerprints (MFP) of the three biological models of infection were calculated 444 

and represented with a heat map. The receiver operating characteristic (ROC) analyses 445 

were built using the ClinProTools™ program and the heat maps, using the OMICs add-446 

on module provided by the XLSTAT program (interquartile threshold value of 0.25). 447 

Computational-based algorithm & machine learning model 448 

In the scope of delivering a barcode model capable of discriminating infected from 449 

control honey bees, a training set of spectra was established by fingerprinting the 450 

corresponding hemolymph samples using MALDI MS. Series of individual spectra were 451 

recorded from 22 controls, 23 honey bees challenged with M. luteus , 20 with P. 452 

carotovorum subsp.  carotovorum  15, and an equal number of 15 spectra from bees 453 

challenged with S. entomophila and S. marcescens SmBIOP160412. Data clustering 454 

(optimal spectral separation combined with the determination of a fixed number of 455 

peaks within the training set) was performed using the Genetic Algorithm (GA) with the 456 
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ClinProTools™ software. The GA parameters were as follow: a maximum of 10 peaks 457 

harboring the greatest weight was selected and included in the model. A number of 50 458 

generations (iterative algorithm searching) was chosen to achieve this maximum of 459 

peaks. The k-nearest neighbor parameter, which is a key parameter of artificial 460 

intelligence used in supervised machine learning, was set at 3. 461 

 462 

External validation of the barcode model and classification of unknown spectra 463 

In order to assess the capability of the GA classifier to recognize the infected bees from the control 464 

group, a new set of hemolymph MS spectra, never processed in the classifier model, was used to 465 

perform an external validation. This experimental set of honey bees included the three biological 466 

models; 26 controls, 37 infected honey bees with P. carotovorum subsp. carotovorum 15 and 10 with 467 

M. luteus. By submitting those hemolymph spectra to the classifier resulted in counting the correctly 468 

classified spectra, and also the mismatched and the invalid ones. In order to assess the performance of 469 

our classifier model, accuracy, sensitivity, specificity, informedness, specific-positive and negative 470 

likelihood ratios, false discovery rate (q-value) and false positive rate (p-value) were calculated. The 471 

accuracy, which informs on how efficient the model is, was calculated according to Wang et al. (53). 472 

Sensitivity scores real positive cases that are correctly predicted positive by the model and the 473 

specificity scores the opposite i.e. the real negative cases that are correctly predicted negative. 474 

Informedness scores the probability that a prediction (e.g. result of a machine-learning model to 475 

classify one condition against the others) is informed regarding to the tested condition versus odds. 476 

Informedness helps to make diagnosis decision. Sensitivity, specificity and informedness were 477 

determined as previously described (54). The specific-positive and -negative likelihood ratios 478 

(abbreviated +LR and -LR) classically used in diagnostic testing with multiple classes informs 479 

on how likely the results from the classifier model will match the condition. +LR gives the 480 

change in the odds of satisfying the condition (fitting to the biological models), given a 481 

positive test result and -LR, the change in the odds of satisfying the condition when the test 482 

comes negative. +LR ranges from zero to infinity. With +LR values between zero and one, 483 

there is a weak probability that the test matches the condition. If the ratio equals to one, then 484 

the test lacks diagnostic value and if the ratio is >1, then the test increases the probability to 485 

match correctly with the condition. Regarding -LR, the closer to zero the value is, the more 486 

informative the test is (55).  487 
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Figure legends 602 

Figure 1: Classification by MALDI-MS biotyping of Micrococcus luteus (M. l.) and Pectobacterium 603 

caratovorum subsp. caratovorum, (P. c. c.), Serratia entomophila, (S. e.) bacteria including the 604 

Serratia marcescens (S. m.) isolated from a naturally infected bee. 605 

The strains used to build the infectious model (M. l. and P. c.c.) and to assess the computational 606 

capability to discriminate proteomic fingerprints from the same bacterial species (S. m. and S. e.).  607 

were analyzed in order to confirm their identity based on their molecular profiles by matching the 608 

MALDI MS spectra (mass range m/z 2,000 to 11,000) to the reference strains of the Bruker database 609 

containing 6,903 MSP. The BioTyper parameters to validate the identifications of strains, i.e. the 610 

scores and the matching strains (references and library), were obtained for each biotyped bacterial 611 

sample in addition to the MALDI MS spectral gel-view. The dendrogram was built from the Main 612 

Spectra Projection (MSP) statistical mode of calculation, which is used to identify, analyze and 613 

classify the MALDI MS spectra. These bacteria were identified by their scores and classified 614 

according to their distance level (MSP Dendogram) in comparison to reference strains from the 615 

database MBT Compass 4.1, build 70 (M. l. IMET 11249HKJ, P. c. ssp odoriferum NB 1892 616 

PAH, S. m. 13103_1 CHB and S. e. DSM 12358T DSM). The mass spectra (m/z) were transformed 617 

into gel views where the grey scale bar and thickness of the lines refer to the m/z peak intensities. 618 

Classically, a high confidence identification is obtained with a score between 2.00 and 3.00, a low 619 

confidence identification with a score between 1.70 and 1.99 and a failed identification with a score 620 

strictly below 1.70. The mass spectra (m/z) were transformed into gel views where the grey scale bar 621 

and thickness of the lines refer to the m/z peak intensities. 622 

 623 

Figure 2: Differential PCA-based statistical analyses and hierarchical clustering of individual 624 

hemolymph samples from the biological models. 625 

Total averaged spectra were fingerprinted by MALDI MS from the infected and control individuals 626 

(A). The individual spectra were subjected to PCA analysis, which discriminated the hemolymph 627 

molecular mass fingerprints of Micrococcus luteus (M. l. in blue), Pectobacterium caratovorum subsp. 628 

carotovorum 15 (P. c. c. in green) and control (red) groups (B); arrows mark the mismatched outliers. 629 

An unsupervised hierarchical clustering based on the PCA results classified the individual spectra 630 

according to the lowest (70% left panel C) and highest (95%, right panel C) limits of explained 631 

variances. 632 

Figure 3: Heat-map of four antimicrobial peptides (AMPs) from Apis mellifera, Apidaecin 1A, 633 

Abaecin, Defensin 1A and Hymenoptaecin correlating with the MALDI MS fingerprints (102 m/z) of 634 

the hemolymph samples. 635 

Per-peak MALDI MS correlation in standard mode between the AMP molecular ions of Apidaecin 1A 636 

(m/z 2,107), Abaecin (m/z 3,878), Defensin 1A (m/z 5,519) and Hymenoptaecin (m/z 10,270), and the 637 

MALDI MS fingerprints of the biological model following an experimental infection with either 638 
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Micrococcus luteus (M. l.) in blue, or Pectobacterium carotovorum subs. carotovorum (P. c. c.) in 639 

green, and the control experiment (non-experimentally infected bees, in red). Each rectangle in the 640 

heat map dendrogram represents the abundance level (scale from -1 to +1 from the lowest in red to the 641 

highest in green, respectively) of the area of each AMP cross-related with each molecular ion from the 642 

fingerprint. 643 

Figure 4: Genetic Algorithm-based classifier used to discriminate non-experimentally infected 644 

(Control, red) bees from experimentally infected ones with Micrococcus luteus (M. l., in blue) or 645 

Pectobacterium carotovorum subsp. carotovorum (P. c. c., in green). 646 

Nine molecular ion peaks determined by the computational model and ranked according to their 647 

weight indexes were found as the best discriminative features of the hemolymph samples on the basis 648 

of statistical criteria (Standard deviation determined for each curve representing the molecular ions of 649 

the model and the box plots showing the first and third interquartile range with line denoting the 650 

median and whiskers encompassing 95% of the individuals). The spectral gel view represents the 651 

intensity of each of the discriminative peaks represented by their weight index and the m/z values (Da) 652 

found within the individual spectra of the biological models. 653 

Figure 5: Differential PCA-based analysis of hemolymph fingerprints following infection with two 654 

Serratia strains, Serratia marcescens (S. m.) isolated from a naturally infected Apis mellifera and S. 655 

entomophila (S. e.) and statistical relevance of predictive markers. 656 

The differential fingerprinting and PCA analysis discriminated the non-experimentally infected bees 657 

(control in black) and the experimentally infected groups (S. e. in red or S. m. in green) with n=13 bees 658 

per group (A). The detected peaks in the differential analysis with the highest and lowest discriminant 659 

scores were assessed statistically by measuring the standard deviation and the 95% confidence 660 

interval. (B). The most interesting peaks classified through the Receiver Operating Characteristics 661 

(ROC) curves are shown using the Area Under Curve (AUC) calculation (C). The biological model 662 

used as the positive class was the experimental S. m. infection and the sensibility (True Positives) and 663 

specificity (False Positives) parameters were determined for all calculated peaks. Eight markers 664 

defined by their m/z values (Da) were found as the best predictive markers (AUC>0.8) for 665 

discriminating honey bee infections (S. e. or S. m.). Conversely, the two least discriminant peaks had 666 

an irrelevant AUC ( � 0.5) with ROC curves fitting the non-discriminant line of the statistical test (D). 667 

Table 1: External validation of the genetic algorithm classifier model using a new set of hemolymph 668 

spectra.  669 

Fifty-seven hemolymph samples were collected individually from the biological models M. l., P. c. c. 670 

and control prior to being fingerprinted. The spectra were submitted to the GA-based computational 671 

model in order to assess classifier performance. 672 

  673 
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Table 2: Assessment of the Genetic Algorithm classifier performance. 674 

Based on the result of the external validation, the performance of the GA-based classifier model was 675 

assessed for each of the biological models by calculating the accuracy, the sensitivity, the specificity, 676 

the specific-positive and -negative likelihood ratios (all five expressed as percentage), informedness, 677 

p-value and q-value. 678 

 679 

Table S1:  Peak-to-peak correlation scores of the four Antimicrobial peptides (abaecin, apidaecin, 680 

defensin and hymenoptaecin) with the mass fingerprint of hemolymph across the three biological 681 

models (non-experimentally infected/control, M. l. for Micrococcus luteus infection and P. c. c. for 682 

Pectobacterium caratovorum subsp. carotovorum 15 infection) 683 

Table S2: Results for the external validation of the genetic algorithm-based classifier 684 

Figure S1: Assessment of ROC curves of Apidaecin, Abaecin and Defensin to discriminate S. 685 

marcescens- from S. entomophila-infected honey bees. 686 

Figure S2: BeeTyping workflow for machine learning data-driven analysis of honey bee infections. 687 

The methodological approach relied on four main steps addressing major tasks.  688 

Step 1: Sampling of unchallenged bees (controls) and experimental infection obtained by pricking 689 

honey bees with live strains of P. c. c. and M. l.. Step 2: Individual hemolymph collections followed 690 

by MALDI-TOF MS molecular mass fingerprinting, and strain identification by MALDI biotyping. 691 

Step 3: Multi-stage processing of MALDI MS fingerprints including recalibration, peak picking, 692 

normalization and statistical calculation of individual MS spectra through Principal Component 693 

Analysis (PCA) for revealing differential molecular patterns across infection groups. Step 4: Genetic 694 

algorithm-based computational model for recognition and classification of honey bee infection using 695 

PCA discriminant analysis. Barcodes were built following the molecular fingerprints that discriminate 696 

control bees from bees infected either with M. l. or with P. c. c.. 697 
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