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ABSTRACT 

A continuous model for entrainment of the circadian clock responding to light/dark cycles is analytically 

studied. The circadian rhythm is entrained to light/dark cycles in a certain range of periods including the 

24	hour period. Entrainment ranges vary among organisms; plants show much larger ranges than 

mammals. To analyze entrainment manners, we exploit a simplified model in which the angular velocity 

of the circadian rhythm is modulated by a sinusoidal function of phase difference between the circadian 

rhythm and reference phases. This model contains only one parameter called entrainment strength	(𝐾). 

For light and dark states, we set two reference phases. Using this model, we characterized the entrainment 

manners of circadian rhythms under non-24	hour light/dark cycles. The conditions of the 𝐾 value for the 

entrainment were analytically calculated and a phase diagram showing entrainment/non-entrainment 

boundaries was drawn. In the diagram we found a region where disordered orbitals emerge. Then, critical 

values for the entrainment and the disordered irregular motion of the oscillation were derived. Simulation 

results near a critical value were comparable with the experimental results of the entrainment manners of 

plant circadian rhythms, suggesting the compatibility of self-oscillation and a strong light/dark response 

in plants. The diagram clearly represents an overview of the relationship between entrainment strengths 

and entrainment manners of circadian rhythms in general, and enables us to uniformly compare strengths 

of periodic stimuli in the environment and degrees of responsiveness for the stimuli among various 

circadian rhythms. 
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Introduction 

Most organisms including plants, animals, and even bacteria have circadian rhythms to adapt to their 

environments with day-night cycles. Circadian systems exhibit self-oscillatory properties with an ability 

to synchronize to the cyclic environments. Appropriate synchronization of circadian systems is essential 

for their functions. These biological oscillation systems have been studied from various aspects: 

molecular, physiological, and mathematical ones (1-5).  

The modern mathematical treatment of synchronization phenomena was initiated in the studies 

by Arthur Winfree (6,7). Following these, Yoshiki Kuramoto built a theoretical milestone in the field 

(8,9). Various phase related phenomena converged and were connected in the world of statistical 

mechanics through the Kuramoto model, including reduction theory. Following this, theoretical works on 

synchronization phenomena have utilized the framework of the Kuramoto model for its strengths in 

generality and applicability. On the other hand, more concrete models have been demanded in order to 

deeply understand complex synchronization behaviors and to unpack biochemical reaction mechanisms. 

Entrainment (synchronization) phenomena of circadian rhythms have been mathematically analyzed 

through two fundamental tools: the discrete model and the continuous model (1). The discrete model is 

based on the phase-shift as a response to pulse-like stimuli. This model has been successfully applied to 

phase shifts of circadian rhythms induced by periodic pulses such as skeleton photoperiods. However, the 

natural light/dark cycles are complete photoperiods that are unlike the simple pulse-like stimuli of lights. 

The continuous model is based on the modulation of a free-running period (FRP). The idea of this model 

seems to be more suitable for the entrainment of circadian rhythms in light/dark conditions. To assess 

capabilities of entrainment to complete photoperiods, non-24 hour light/dark cycles (T-cycles) have been 

experimentally applied to various circadian phenomena of animals, plants, and cyanobacteria, and 

theoretical models to understand those entrainment manners have been demanded (10-15). The molecular 
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bases of circadian behaviors under T-cycles were also studied (16-18). Although continuous models 

proposed for these entrainment phenomena were numerically complicated in quantitative evaluation, 

Ermentrout and Rinzel (1984) proposed a simple continuous model to quantitatively explain the 

entrainment phenomena of firefly flashing rhythms to external periodic flashing lights (19). This model 

can be regarded as a direct application of the Kuramoto model on the experimental results, i.e., the 

external force with continuous phase modulates the angular velocity of flashing rhythms.  

Here we propose a solvable continuous model with two states of external forces to analyze the 

entrainment phenomena of circadian rhythms in light/dark conditions. Instead of supposing external 

forces with a continuous phase, we assume a switching of external forces dependent on the light/dark 

conditions. Through this model, we quantitatively evaluate the capabilities of entrainment of circadian 

rhythms to light/dark cycles with various period lengths (T -cycles). Then we show that the results of this 

model correspond to the experimental results of heterogeneous cellular circadian rhythms in the same 

plant. 

 

Model 

The Ermentrout/Rinzel model (19) for the entrainment of flashing rhythms to light/dark cycles is 

described by the following equations, 

𝑑𝜙
𝑑𝑡 = 𝜔 − 𝐾 sin (𝜙 − 𝜙/)				 [𝟏] 

𝜙/ = 𝜔4𝑡					 [𝟐] 

where 𝜙 is phase of flashing rhythms, 𝜙/ is the reference phase of external force, 𝜔 is intrinsic angular 

velocity of flashing rhythms, 𝜔4 is angular velocity of external force, and 𝐾 is entrainment strength. The 

angular velocity can be expressed as 
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𝜔4 =
2𝜋
𝑇 	 [𝟑] 

𝜔 =
2𝜋
𝐹𝑅𝑃 = 𝜔4 ⋅

𝑇
𝐹𝑅𝑃					 [𝟒] 

where 𝑇 is the period length of light/dark cycles. In this study, 𝐹𝑅𝑃 means a free-running period of a 

rhythm without any external forces (𝐾 = 0). When 𝜙/ increases at a constant velocity, which means that 

the light/dark cycles give the continuous phase as temporal information to the rhythms, an entrainment 

orbit and the range of 𝐾 for the entrainment were revealed by the ordinary differential equation (20). 

When applying this model to the entrainment of circadian oscillations under light/dark cycles (𝜙 is phase 

of circadian oscillations, 𝜔 is intrinsic angular velocity of circadian oscillations), the assumption of 

"continuous phase information of the environmental cycles from 0 to 2𝜋" sounds to be unlikely. There 

are only two states: light and dark. As a simple assumption, we introduce two-state reference phases in 

our model. 

𝜙/ = ?
𝜙/@ =

		𝜋		
2 ……Blight: 0 ≤ 𝑡I <

1
2L

𝜙/M =
−𝜋
2 ……Bdark:

1
2 ≤ 𝑡I < 1L

	 [𝟓] 

where 𝜙/@	(	M	) expresses the state of 𝜙/ in light (dark), and 𝑡I expresses the fractional part of 𝑡 (e.g. 

when 𝑡 = 3.7 days, 𝑡I = 0.7 days). In Eq. 3, we normalize 𝜔4 as 2𝜋 and light/dark period lengths (𝑇) 

as 1 day. Then, Eq. 4 is modified as 

𝜔 = 2𝜋 ⋅
𝑇
𝐹𝑅𝑃 = 2𝜋𝑅					 [𝟔] 

where 𝑅 is the ratio of a light/dark period length to a free-running period. Eq. 1 is individually integrated 

under the assumption of Eq. 5 and roughly divided into two cases.  
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Case 1. 0 ≤ 𝐾 ≤ 𝜔 

𝜙(𝑡) =

⎩
⎪
⎪
⎨

⎪
⎪
⎧
2 arctan \]

𝜔 + 𝐾
𝜔 −𝐾 tan\arctan _

]
𝜔 − 𝐾
𝜔 +𝐾 tan

𝜙(𝑡`)
2 a +

√𝜔c − 𝐾c

2 	(𝑡 − 𝑡`)dd……(light)

2 arctan \]
𝜔 − 𝐾
𝜔 +𝐾 tan\arctan _

]𝜔 + 𝐾
𝜔 −𝐾 tan

𝜙(𝑡`)
2 a +

√𝜔c − 𝐾c

2 	(𝑡 − 𝑡`)dd……(dark)

	[𝟕] 

Case 2. 𝐾 > 𝜔 

𝑡 − 𝑡` =

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧

1
√𝐾c − 𝜔c

log h
h
itan𝜙(𝑡)2 + j𝐾 +𝜔𝐾 −𝜔kitan

𝜙(𝑡`)
2 − j𝐾 +𝜔𝐾 −𝜔k

itan𝜙(𝑡`)2 + j𝐾 +𝜔𝐾 −𝜔kitan
𝜙(𝑡)
2 − j𝐾 +𝜔𝐾 −𝜔k

h
h…… (light)

1
√𝐾c − 𝜔c

log h
h
itan𝜙(𝑡)2 +j𝐾 −𝜔𝐾 +𝜔kitan

𝜙(𝑡`)
2 − j𝐾 −𝜔𝐾 +𝜔k

itan𝜙(𝑡`)2 +j𝐾 −𝜔𝐾 +𝜔kitan
𝜙(𝑡)
2 − j𝐾 −𝜔𝐾 +𝜔k

h
h…… (dark)

	 [𝟖] 

Strictly, 𝜙(t) with 𝐾 = 𝜔 is calculated by the limit value of Eq. 7. See Appendix A for explicit 

description. 

 

Results and Discussion 

We simulated various trajectories of 𝜙(𝑡) of circadian oscillations in light/dark cycles by changing the 

parameters (𝐾, 𝑅) of our model. Then each trajectory is categorized into four types of oscillation 

characteristics: free-running, non-entrainment without phase jump, non-entrainment with phase jump, and 

entrainment (Fig. 1, phase jump means that Mn
Mo

 becomes negative and a kind of reverse motion of 

circadian oscillation occurs). 

𝐾p means the critical value of 𝐾 at which transition from "non-entrainment" to "entrainment" 

occurs. Behaviors of circadian oscillations are determined by (𝐾, 𝑅), where 𝑅 = cq
r

 from Eq. 6. Under 

any conditions of 𝑅, the circadian oscillations are entrained to light/dark cycles when the 𝐾 value is 

large enough. We analyzed relationships between (𝐾, 𝑅) and oscillation behaviors, then we classified 𝑅 
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into three types according to the manners of change in oscillation behaviors with increasing 𝐾 (Figs. 2, 

3). For the classification, we set two criteria: entrainment by increasing/decreasing of period lengths of 

circadian oscillation, and occurrence/non-occurrence of “non-entrainment with phase jump.” When the 

𝐹𝑅𝑃 of circadian oscillation is shorter than the periods of light/dark cycles (𝑇), namely 𝑅 > 1, the 

circadian oscillation can be entrained by increasing its period length. In this condition, we did not find 

phase jump of oscillation in any simulations. When 𝑅 < 1, the circadian oscillation can be entrained by 

decreasing its period length. Under this condition, we found phase jump of oscillation in some 

simulations. Phase jump occurred only when 𝑅 was smaller than 𝑅p. 𝑅p is explained in the section 

below. 

 

Critical values of 𝐾 

 We analytically calculated values of 𝐾p. 𝐾p was defined as the critical value of 𝐾 at which transition 

from “non-entrainment” to “entrainment” occurs. When 𝑅 = 1, circadian oscillation is always entrained 

and 𝐾p becomes 0. For 𝑅 > 1, the entrainment trajectory with 𝐾 = 𝐾p includes the following points 

(See Appendix B): 

s𝑡I, 𝜙t = u0,
𝜋
2v , B

1
2 ,
3𝜋
2 L [𝟗] 

From the formula of 𝜙 in 0 < 𝐾 < 𝜔 Eq. 7 and the boundary conditions Eq. 9, we obtained an equation 

for 𝐾p and 𝜔 as, 

1
4
j𝜔c − 𝐾pc = 2 arctan _]

𝜔 + 𝐾p
𝜔 − 𝐾p

a [𝟏𝟎] 

𝐾p as a solution for Eq. 10 exists when 0 < 𝐾 < 𝜔 with any 𝑅 > 1. 

For 𝑅 < 1, the entrainment trajectory with 𝐾 = 𝐾p includes the following points (See Appendix B): 

s𝑡I, 𝜙t = u0,
−𝜋
2 v , B

1
2 ,
𝜋
2L [𝟏𝟏] 
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For the range of 𝑅p ≤ 𝑅 ≤ 1, 𝐾p is found in 0 ≤ 𝐾 ≤ 𝜔. From the formula of 𝜙 in 0 ≤ 𝐾 ≤ 𝜔 Eq. 7 

and the boundary conditions Eq. 11, the following equation for 𝐾p and 𝜔 is obtained: 

1
4
j𝜔c − 𝐾pc = 2 arctan _]

𝜔 − 𝐾p
𝜔 + 𝐾p

a [𝟏𝟐] 

For the range of 𝑅 < 𝑅p(< 1), 𝐾p is found in 𝐾 > 𝜔. From the formula of 𝜙 in 𝐾 > 𝜔 Eq. 8 and the 

boundary conditions Eq. 11, the following equation for 𝐾p and 𝜔 is obtained: 

1
4
j𝐾pc − 𝜔c =log

yz𝐾p + 𝜔 + z𝐾p − 𝜔y
yz𝐾p + 𝜔 − z𝐾p − 𝜔y

	 [𝟏𝟑] 

 

Entrainment limits 

To calculate 𝑅p, we analyzed the range of 𝑅 which had 𝐾p with Eq. 12, and set a function 𝑓(𝐾): 

𝑓(𝐾) = 2 arctan _]
𝜔 − 𝐾
𝜔 +𝐾a−

1
4
j𝜔c − 𝐾pc	 [𝟏𝟒] 

The domain of this function is defined as 0 ≤ 𝐾 ≤ 𝜔, and this function denotes a line from 𝑓(0) =

|
}
(2𝜋 − 𝜔) > 0 to 𝑓(𝜔) = 0. 

As shown in Fig. 4, the form of 𝑓(𝐾) was classified into two types depending on 𝜔. When 

𝜔 ≥ 4, 𝐾p exists in the range of 0 ≤ 𝐾 ≤ 𝜔 (Fig. 4A). This condition is derived from the following 

equation to find a local minimum of 𝑓(𝐾): 

𝑑𝑓(𝐾)
𝑑𝐾 =

1

1 + 𝜔 − 𝐾𝜔 + 𝐾
× (−1 +

𝐾
4)((𝜔 + 𝐾)

�|c(𝜔 − 𝐾)�
|
c + (𝜔 + 𝐾)�

�
c(𝜔 − 𝐾)

|
c) = 0	 [𝟏𝟓] 

This equation has a solution of 𝐾 = 4. Therefore 𝜔 should be larger than or equal to 4 for existence of 

𝐾p in the range of 0 ≤ 𝐾 ≤ 𝜔. When 𝜔 < 4, 𝐾p does not exist in the range of 0 ≤ 𝐾 ≤ 𝜔 (Fig. 4B). 

Since 𝜔 = 2𝜋𝑅 is yielded from Eq. 6, 𝜔 ≥ 4 means 

𝑅 ≥
2
𝜋 = 𝑅p	 [𝟏𝟔] 

The relationship 𝑅 = �
���

 leads, 
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𝑇p =
2
𝜋 ⋅ 𝐹𝑅𝑃	 [𝟏𝟕] 

where circadian oscillation (𝑇 ≥ 𝑇p) is entrained in the range of 0 ≤ 𝐾 ≤ 𝜔. On the other hand, circadian 

oscillation (𝑇 < 𝑇p) is entrained in the range of 𝐾 > 𝜔 with the condition of Eq. 13. 

Figure 5 shows a diagram of entrainment transition manners with 𝑅 and 𝐾. Large 𝐾 values 

result in entrainment of circadian rhythms under light/dark cycles (the region indicated with green). As 

the difference between 𝐹𝑅𝑃 and 𝑇 becomes smaller, 𝐾p values become smaller. “Phase jump” (Fig. 1C) 

occurs in a non-entrainment region with 𝑅 < c
q
 and 𝜔 < 𝐾 < 𝐾p (the region indicated with blue). In the 

other non-entrainment regions (the regions indicated with red), phase jump does not occur. Because the 

phase jump means a kind of reverse motion of circadian rhythm, biological relevance for these phase 

motions seems to be unlikely. The point (c
q
, 4) defines entrainment manners because three different 

entrainment manners occur around this point. We calculate the 𝑇p value for the circadian rhythm with 

𝐹𝑅𝑃 = 24	h. 

𝑇 ≥
2
𝜋 ⋅ 24 ≃ 15.3	h = 𝑇p	 [𝟏𝟖] 

Conversely, for the entrainment in the range of 0 ≤ 𝐾 ≤ 𝜔 under the condition of 𝑇 = 24 h, period 

lengths of circadian oscillations are required to be shorter than the following maximum free-running 

period (𝐹𝑅𝑃p) 

𝐹𝑅𝑃 ≤
𝜋
2 ⋅ 24 ≃ 37.7	h = 𝐹𝑅𝑃p	 [𝟏𝟗] 

 

Asymmetrical light/dark durations 

As a basic setting of our modeling, we have used the light/dark cycles with the same durations of light 

and dark. If light/dark cycles have uneven ratios of light/dark durations, equations for 𝐾p are not 

expressed by simple equations such as Eq. 12. However, the range of 𝜔 for entrainment with 0 ≤ 𝐾 ≤ 𝜔 

can be rewritten (See Appendix C), 
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𝜙/ = ?
𝜙/@ =

		𝜋		
2 ……slight: 0 ≤ 𝑡I < 𝑝t

𝜙/M =
−𝜋
2 ……sdark: 𝑝 ≤ 𝑡I < 1t

	 [𝟐𝟎] 

where light duration : dark duration = 𝑝 ∶ (1 − 𝑝). The condition defining existence of 𝐾p in 0 ≤ 𝐾 ≤

𝜔 is  

𝜔 ≥
2

z𝑝(1 − 𝑝)
	 [𝟐𝟏] 

This equation is equivalent to 𝑅� =
|

qz�(|��)
, and it means 

𝑇 ≥
𝐹𝑅𝑃

𝜋z𝑝(1 − 𝑝)
= 𝑇p(𝑝) [𝟐𝟐] 

𝐹𝑅𝑃 ≤ 𝑇 ⋅ 𝜋z𝑝(1 − 𝑝) = 𝐹𝑅𝑃p(𝑝) [𝟐𝟑] 

For example, 𝑇 = 24 h and (light duration) : (dark duration) = 8: 16, 𝐹𝑅𝑃p(𝑝) ≃ 35.5 h.  A larger 

deviation of 𝑝 from 0.5 results in shorter 𝐹𝑅𝑃p(𝑝). Eq. 22 indicates that this model has a limitation of 

the deviation of 𝑝 for application to circadian rhythms whose 𝐹𝑅𝑃p are longer than 𝑇. This limitation 

(𝑝p) is calculated as 

𝜋z𝑝p(1 − 𝑝p) = 1	 [𝟐𝟒] 

therefore, 

𝑝p =
1
2 ±

]1
4 −

1
𝜋c = 0.5 ± 0.39	 [𝟐𝟓] 

is yielded. If the ratios of light duration are shorter than 0.11 or longer than 0.89, this model is incapable 

of applying to circadian rhythms with 𝐹𝑅𝑃 > 𝑇. Discrete models of phase response would be suitable. 

 

Comparison with previous experimental results 

Capabilities of entrainment of circadian rhythms of various organisms to non-24 hour light/dark cycles 

(𝑇-cycles) have been reported. Plants show an entrainment range between 15 and 35	hours, while 

mammals show much narrower ranges (10, 13). The lower limit of entrainment ranges of plants is 

comparable to the 𝑇p value of 15.3	hours that was calculated by Eq. 18 for the circadian rhythm with 
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𝐹𝑅𝑃 = 24 h. Circadian systems of plants showing the lower limit of approximately 15	hours	are likely 

to have strong coupling between the light/dark signals and circadian oscillations. Circadian systems with 

strong coupling may contain the cellular circadian clock with a cell-autonomous light/dark signaling 

pathway from photoreceptors. In fact, circadian oscillation and its light input system are basically cell-

autonomous in plants (11, 21). Okada et al. (2017) revealed heterogeneous entrainment behaviors 

between individual cellular clocks in Lemna gibba plants under 𝑇-cycles (11). In these experiments, 

almost all cellular rhythms of AtCCA1::LUC were entrained under 𝑇 = 24	h, 20	h, while 54% of 

cellular rhythms in the same plant body were not entrained under 𝑇 = 16	h. Under 𝑇 = 12	h, few 

cellular rhythms were entrained. These heterogeneous entrainment manners appeared to reflect cell-

autonomous properties of circadian systems with light inputs in plants. In contrast to plants, limited cells 

or tissues carry light perception systems in mammals (2). In our model, narrower entrainment ranges of 

mammalian circadian systems than those of plants (10) lead to much smaller 𝐾 values. This may be 

caused by non-cell-autonomous properties for light inputs in mammalian circadian systems and relatively 

strong intercellular couplings of circadian oscillations at a tissue level. 

It should be noted that the heterogeneous entrainment manners around the entrainment limit of 

cellular rhythms observed in plants are qualitatively represented in the present numerical results where 𝐾 

is slightly less than 𝐾p in Fig. 3. Some portions of circadian behaviors both in experiments (around 𝑇 =

16	h) and in our model (around 𝐾p) showed non-entrainment fluctuations with successive long and short 

periods (11). Furthermore, the ensemble ratios of entrainment and non-entrainment cells of Lemna gibba 

in 𝑇 = 12	h, 16	h, 20	h, 24	h (11) seemed comparable with the theoretical calculations from our model 

based on experimentally-yielded FRP distributions of constant light (or dark) conditions (Fig. 6). FRPs of 

cellular circadian rhythms were 23.6	h	 ± 2.3	h under the constant light, and 30.1	h	 ± 2.0	h under the 

constant dark (11). In our model, circadian rhythms showing the light 𝐹𝑅𝑃 distribution are almost 

completely entrained under 𝑇 = 24	h, 20	h, and partly entrained under 𝑇 = 16	h	(15%). Under 𝑇 =
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12	h, none of the cellular rhythms are entrained. Circadian rhythms showing the dark 𝐹𝑅𝑃 distribution 

are almost completely entrained under 𝑇 = 24	h and partly entrained under 𝑇 = 20	h	(21%). Under 

𝑇 = 16	h, 12	h, none of the cellular rhythms are entrained. Interestingly, under each 𝑇 value, the 

proportion of non-entrainment cells in experiments is a value between those calculated from our model 

with the light 𝐹𝑅𝑃 distribution and the dark 𝐹𝑅𝑃 distribution. Thus, these predictions of our continuous 

phase oscillator model in the conditions around 𝐾p	meet the entrainment manners of plant circadian 

rhythms.  

 

Correspondence of our continuous model with discrete models 

In most discrete models of circadian rhythms, PRC (Phase Response Curve) is used for grasping 

behaviors of the response function to light stimulus (1,2,7). In PRC, phases of circadian oscillations are 

on the x axis and phase shifts are on the y axis. Because in our model phase does not shift discretely, 𝛥 Mn
Mo

 

(shift of Mn
Mo

) should be on the y axis instead of phase shift. Then 𝛥 Mn
Mo

 with light pulses in our model is 

calculated as 

𝛥
𝑑𝜙
𝑑𝑡 =

(𝜔 + 𝐾 cos 𝜙) − (𝜔 − 𝐾cos𝜙) 

							= 2𝐾 cos 𝜙	 [𝟐𝟔] 

Thus in our model, phase shift by light stimulus of a short duration qualitatively follows a sinusoidal 

PRC. Our model may fit well with those circadian oscillations that can show a sinusoidal PRC for a light 

pulse. The form of phase response curve for a circadian oscillation is dependent on the strength of the 

light stimulus (1). The entrainment capability of a circadian oscillation to light/dark cycles is also 

dependent on the light intensity (22). In our model, such degrees of difference between light and dark 

states reflect the entrainment strength, 𝐾, larger degrees of difference result in larger 𝐾 values. In this 

paper, we have simply denoted “light/dark cycles”, but our model can be applied to entrainment manners 

in any cyclic environment such as temperature cycles or feeding cycles. Entrainment manners of a 
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circadian oscillation under a cyclic environment can be characterized by the 𝐾p value that is obtained by 

the shorter limitation of the entrainment range of 𝑇-cycles. By analyzing 𝐾p values, entrainment 

capabilities of any circadian oscillations under various cyclic environments could be deeply understood. 
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Appendices 

A. Description of 𝝓(𝒕) 

In this model, we set time scale as 𝑇 = 1.0 day for calculation and normalize the angular velocity of 

circadian oscillations as 𝜔 = �
���

⋅ 2𝜋. Thus, different light/dark period lengths result in different time 

scales of day and hour. 

Case 1. 𝐾 < 𝜔 and when 0 ≤ 𝑡`I < 𝑡I <
|
c
 

𝑑𝜙
𝑑𝑡 = 𝜔 − 𝐾 sin (𝜙 − 𝜙/)|n��qc

 

⇔� 𝑑𝑡
o

o�
= �

1
𝜔 + 𝐾 cos 𝜙 𝑑𝜙

n(o)

n(o�)
 

=
2

𝜔 − 𝐾�
𝑑𝑢

𝑢c + 𝜔 + 𝐾𝜔 − 𝐾

���n(o)

���n(o�)
 

=
2

√𝜔c − 𝐾c
�

𝑑𝑣
𝑣c + 1

jr� r¡ ���n(o)

jr� r¡ ���n(o�)
 

=
2

√𝜔c − 𝐾c
(arctan (]

𝜔 − 𝐾
𝜔 + 𝐾 tan

𝜙(𝑡)
2 ) −arctan (]

𝜔 − 𝐾
𝜔 + 𝐾 tan

𝜙(𝑡`)
2 )) 

⇔arctan (]
𝜔 − 𝐾
𝜔 + 𝐾 tan

𝜙(𝑡)
2 ) =arctan (]

𝜔 − 𝐾
𝜔 + 𝐾 tan

𝜙(𝑡`)
2 ) +

√𝜔c − 𝐾c

2 (𝑡 − 𝑡`) 

⇔ 𝜙(𝑡) = 2 arctan

⎝

⎜
⎛]𝜔 +𝐾

𝜔 −𝐾 tan \arctan _
]
𝜔 − 𝐾
𝜔 +𝐾 tan

𝜙(𝑡`)
2 a +

√𝜔c − 𝐾c

2
(𝑡 − 𝑡`)d

⎠

⎟
⎞

[𝟐𝟕] 

as well, when |
c
≤ 𝑡`I < 𝑡I < 1 

𝑑𝜙
𝑑𝑡 = 𝜔 − 𝐾 sin (𝜙 − 𝜙/)|n���qc

 

⇔� 𝑑𝑡
o

o�
= �

1
𝜔 − 𝐾 cos 𝜙 𝑑𝜙

n(o)

n(o�)
 

⇔ 𝑡 = 𝑡` +
2

√𝜔c − 𝐾c
(arctan (]

𝜔 + 𝐾
𝜔 − 𝐾 tan

𝜙(𝑡)
2 ) −arctan (]

𝜔 + 𝐾
𝜔 − 𝐾 tan

𝜙(𝑡`)
2 )) 

⇔arctan (]
𝜔 + 𝐾
𝜔 − 𝐾 tan

𝜙(𝑡)
2 ) =arctan (]

𝜔 + 𝐾
𝜔 − 𝐾 tan

𝜙(𝑡`)
2 ) +

√𝜔c − 𝐾c

2 (𝑡 − 𝑡`) 
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⇔ 𝜙(𝑡) = 2 arctan

⎝

⎜
⎛]

𝜔 −𝐾
𝜔 +𝐾 tan \arctan _

]𝜔 + 𝐾
𝜔 −𝐾 tan

𝜙(𝑡`)
2 a +

√𝜔c − 𝐾c

2
(𝑡 − 𝑡`)d

⎠

⎟
⎞

[𝟐𝟖] 

Case 2. 𝐾 > 𝜔 and when 0 ≤ 𝑡`I < 𝑡I <
|
c
 

𝑡 − 𝑡` = �
1

𝜔 + 𝐾(1 − 𝑢
c

1 + 𝑢c)

2𝑑𝑢
1 + 𝑢c

���n(o)c

���n(o�)c

 

=
−1

𝐾 −𝜔� (
j𝐾 −𝜔𝐾 +𝜔

𝑢 −j𝐾 +𝜔𝐾 −𝜔

−
j𝐾 −𝜔𝐾 +𝜔

𝑢 + j𝐾 +𝜔𝐾 −𝜔

)𝑑𝑢
���n(o)c

���n(o�)c

 

=
1

√𝐾c − 𝜔c
log h

h
itan 𝜙(𝑡)2 + j𝐾 +𝜔𝐾 −𝜔kitan

𝜙(𝑡`)
2 − j𝐾 +𝜔𝐾 −𝜔k

itan 𝜙(𝑡`)2 + j𝐾 +𝜔𝐾 −𝜔kitan
𝜙(𝑡)
2 − j𝐾 +𝜔𝐾 −𝜔k

h
h [𝟐𝟗] 

as well, when |
c
≤ 𝑡`I < 𝑡I < 1 

𝑡 − 𝑡` =
1

√𝐾c − 𝜔c
log h

h
itan 𝜙(𝑡)2 + j𝐾 +𝜔𝐾 −𝜔kitan

𝜙(𝑡`)
2 − j𝐾 +𝜔𝐾 −𝜔k

itan 𝜙(𝑡`)2 + j𝐾 +𝜔𝐾 −𝜔kitan
𝜙(𝑡)
2 − j𝐾 +𝜔𝐾 −𝜔k

h
h [𝟑𝟎] 

Case 3. 𝐾 = 𝜔 and when 0 ≤ 𝑡`I < 𝑡I <
|
c
 

𝑡 − 𝑡` =
1
𝜔�

1

1 + (1 − 𝑢
c

1 + 𝑢c)

2𝑑𝑢
1 + 𝑢c

���n(o)c

���n(o�)c

 

=
1
𝜔� 𝑑𝑢

���n(o)c

���n(o�)c

 

=
1
𝜔 (tan

𝜙(𝑡)
2 −tan

𝜙(𝑡`)
2 ) 

tan
𝜙(𝑡)
2 =tan

𝜙(𝑡`)
2 + 𝜔(𝑡 − 𝑡`) [𝟑𝟏] 

as well, when |
c
≤ 𝑡`I < 𝑡I < 1 

 

tan i
𝜙(𝑡)
2 −

𝜋
2k =tan i

𝜙(𝑡`)
2 −

𝜋
2k + 𝜔

(𝑡 − 𝑡`) [𝟑𝟐] 
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B. Calculation of the conditions of 𝑲𝒄 orbitals 

Here, we describe how to calculate Eq. 9 and Eq. 11, which are the conditions for 𝐾 having the critical 

value of 𝐾p. Here we define the length of one cycle of 𝜙		under light/dark cycles as 𝑇n, and also define 

the phase reference as 𝑡ª	(𝜙(𝑡ª)=0). 𝑡ªI is the fractional part of 𝑡ª. From Eq. 27-32, 𝑇n is a function of 

𝐾, 𝑅 and 𝑡ªI. If 𝐹𝑅𝑃 < 𝑇 and 𝐾 < 𝐾p, then 𝑇n is smaller than 1 whatever value 𝑡ªI has. The 

maximum value of 𝑇n approaches 1 by increasing 𝐾 to 𝐾p. When 𝐾 reaches 𝐾p, the maximum value 

of 𝑇n becomes equal to 1. Furthermore, by denoting the 𝑛th 𝑡ªI as 𝑡¬ªI and the 𝑛th 𝑇n as 𝑇¬n, the 

following equation is derived. 

𝑡¬¡|ªI = mods𝑡¬ªI + 𝑇¬n, 1.0t [𝟑𝟑] 

Once 𝑇¬n becomes equal to 1 at 𝑛th, 

𝑡¬¡|ªI = mod(𝑡¬ªI + 1.0,1.0)	 

								= mod(𝑡¬ªI, 1.0)	 

								= 𝑡¬ªI	 [𝟑𝟒] 

In 𝐹𝑅𝑃 < 𝑇, Max(𝑇n) becomes equal to 𝑇(= 1.0), when 𝐾 reaches a critical value (𝐾p). Then, once 

𝑇¬n takes the Max(𝑇n)	(= 𝑇), 𝑇n is locked at 𝑇 from Eq. 34. Here we define 𝜙®
¯
 as 𝜙(𝑡I =

|
c
) and 𝜙| 

as 𝜙(𝑡I = 1). At 𝐾 = 𝐾p, from the symmetry of our model, 𝜙|	becomes 𝜙®
¯
+ 𝜋. Then 𝑇n can be 

expressed as 

𝑇n(𝐾 = 𝐾p) = �
1

𝜔 − 𝐾 cos 𝜙

n®
¯

`
𝑑𝜙 +

1
2 +�

1
𝜔 − 𝐾 cos 𝜙

cq

n®
¯
¡q

𝑑𝜙 

=
1
2 + �

1
𝜔 − 𝐾 cos 𝜙

n®
¯

n®
¯
�q

𝑑𝜙 [𝟑𝟓] 

Then, 

M�°in®
¯
, � ±k

Mn®
¯

= −
c ²³´n®

¯
r¯� ¯²³´¯n®

¯

	 [𝟑𝟔]  
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From this calculation, at 𝐾 = 𝐾p 

Max u𝑇n(𝐾 = 𝐾p)v = 𝑇n B𝜙|
c
=
3𝜋
2 , 𝐾 = 𝐾pL [𝟑𝟕] 

min u𝑇n(𝐾 = 𝐾p)v = 𝑇n B𝜙|
c
=
𝜋
2 , 𝐾 = 𝐾pL [𝟑𝟖] 

From Eq. 37, the condition for 𝑀𝑎𝑥(𝑇n) = 𝑇 is equivalent to Eq. 9. When 𝐹𝑅𝑃 > 𝑇, the calculation is 

the same as mentioned above. From Eq. 38, the condition for 𝑚𝑖𝑛(𝑇n) = 𝑇 is equivalent to Eq. 11. 

 

C. Calculation of the range of 𝝎 for entrainment with 𝑲 < 𝝎 under light : dark ≠ 𝟏: 𝟏 

When 𝐾 = 𝜔, from Eq. 31 and Eq. 32, the phase of the circadian oscillation is described as 

𝜙(𝑡) =

⎩
⎪
⎨

⎪
⎧ 2arctan ¾tan

𝜙(𝑡`)
2 + 𝜔(𝑡 − 𝑡`)¿……(light)

2 arctan¾tan i
𝜙(𝑡`)
2 −

𝜋
2k + 𝜔

(𝑡 − 𝑡`)¿ + 𝜋……(dark)
	 [𝟑𝟗] 

Here, we define 𝜙� as 𝜙�(𝑡I = 𝑝) and 𝜙| as 𝜙|(𝑡I = 1), respectively. From Eq. 39, 

𝜙� = 2 arctan Btan
𝜙`
2 + 𝜔𝑝L [𝟒𝟎] 

𝜙| = 2 arctan ¾tan B
𝜙�
2 −

𝜋
2L + 𝜔

(1 − 𝑝)¿ + 𝜋 

For entrainment, 𝜙| should be equivalent to 𝜙` + 2𝜋.  

𝜙| = 𝜙` + 2𝜋 = 2 arctan (tan (arctan (tan (
𝜙`
2 + 𝜔𝑝) −

𝜋
2) + 𝜔(1 − 𝑝)) + 𝜋 [𝟒𝟏] 

⇔ 𝜙` = 2 arctan (−
1

tan 𝜙`2 + 𝜔𝑝
+ 𝜔(1 − 𝑝)) − 𝜋 

⇔ −
1

tan 𝜙`2
= −

1

tan 𝜙`2 + 𝜔𝑝
+ 𝜔(1 − 𝑝) 

When Eq. 41 has one solution of 𝜙`, oscillations can be entrained with 𝐾 = 	𝜔. And when Eq. 41 has 

plural solutions, oscillations can be entrained in 𝐾 < 	𝜔. Therefore, if Eq. 41 has real solutions, 

oscillations can be entrained in the range of 0	 ≤ 	𝐾	 ≤ 	𝜔. Then, we set 𝑥 = tan n�
c

, and Eq. 41 becomes 

(1 − 𝑝)𝑥c + 𝜔𝑝(1 − 𝑝)𝑥 + 𝜔𝑝 = 0	 [𝟒𝟐]  

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted July 11, 2019. ; https://doi.org/10.1101/683615doi: bioRxiv preprint 

https://doi.org/10.1101/683615


 18 

For Eq. 42 to have real solutions, its discriminant (D) must be larger than or equal to zero. 

𝐷 ≥ 0 ⇔ 𝜔 ≥
2

z𝑝(1 − 𝑝)
	 [𝟒𝟑] 
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Figure Legends 

Figure 1 

Four characteristic manners of oscillation. (A) Free-running (𝐾 = 0): Circadian oscillations are not 

affected by light/dark cycles and 𝑇n equals 𝐹𝑅𝑃. (B) Non-entrainment without phase jump (𝐾 < 𝐾p and 

0 ≤ 𝐾 ≤ 𝜔): Circadian oscillations are modulated by light/dark cycles. 𝑇n changes every cycle, but any 

𝑇n does not equal 𝑇 . The angular velocities of oscillations remain positive. (C) Non-entrainment with 

phase jump (𝜔 < 𝐾 < 𝐾p): Circadian oscillations are affected by light/dark cycles and 𝑇n does not equal 

𝑇. Negative angular velocities of circadian oscillations, which can be regarded as "phase jump," are 

observed. (D) Entrainment (𝐾 ≥ 𝐾p): Circadian oscillations are entrained to light/dark cycles and 𝑇n 

equals 𝑇. Open and filled rectangles denoted above the graph represent light and dark durations, 

respectively. 

 

Figure 2 

Change in oscillation behaviors with increasing 𝐾. Graphs in panels A, B, C show oscillations in 

light/dark cycles with 𝑅 = }
�
, c
�
, |
c
, respectively. Types of behaviors are indicated by colors of lines in 

each graph. Open and filled rectangles denoted above graphs represent light and dark durations, 

respectively. 

 

Figure 3 

Scatter plots of 𝐾 and the ratio of 𝑇 to 𝑇n.		Here we define the length of one cycle of 𝜙		under 

light/dark cycles as 𝑇n. Graphs in panels A, B, C show the scatter plots for oscillations in light/dark 

cycles with 𝑅 = }
�
, c
�
, |
c
, respectively. We computed 𝑇n with increasing 𝐾 from 𝐾 = 0 to 𝐾 = 10 by 

0.01. For each 𝐾, light/dark cycles were circulated for 100 times. To reduce the influence of the initial 

phases on the plot patterns, plots of the first five light/dark cycles in each calculation are omitted. Colored 
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dotted lines (pink, orange, green, blue) in panels A, B, and C represent 𝐾 values corresponding to 

colored wave-lines in panels A, B, C in Fig. 2, respectively. 

 

Figure 4 

An existence condition of 𝐾p defined by 𝑓(𝐾). Representative graphs of 𝑓(𝐾) are shown for 𝜔 ≥ 4 

(A), 𝜔 < 4 (B). 

 

Figure 5 

Phase diagram of the entrainment manners concerning the ratio of light/dark cycle length to free-running 

period (𝑅) and the entrainment strength (𝐾). The solid lines indicate the transition line for entrainment. 

The broken line (𝐾 = 2𝜋𝑅 = 𝜔, 0 < 𝑅 < c
q
) is a boundary between the manners shown in Figs. 1 and 3.  

 

Figure 6 

The ensemble ratios of entrainment and non-entrainment cells of Lemna gibba in experiments and 

simulation. The ratios in T = 12	h, 16	h, 20	h, 24	h are replotted by the experimental results (11) (A). 

Theoretical results by use of our model based on the experimentally-yielded FRP distributions of the plant 

cells measured under the constant light (B) and under the constant dark (C). 
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