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Abstract

Tumor-targeting bacteria elicit anticancer effects by infiltrating hypoxic re-
gions, releasing toxic agents and inducing immune responses. Although cur-
rent research has largely focused on the influence of chemical and immuno-
logical aspects on the mechanisms of bacterial therapy, the impact of physical
effects is still elusive. Here, we propose a mathematical model for the anti-
tumor activity of bacteria in avascular tumors that takes into account the
relevant chemo-mechanical effects. We consider a time-dependent adminis-
tration of bacteria and analyze the impact of bacterial chemotaxis and killing
rate. We show that active bacterial migration towards tumor hypoxic regions
provides optimal infiltration and that high killing rates combined with high
chemotactic values provide the smallest tumor volumes at the end of the
treatment. We highlight the emergence of steady states in which a small
population of bacteria is able to constrain tumor growth. Finally, we show
that bacteria treatment works best in the case of tumors with high cellular
proliferation and low oxygen consumption.
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1. Introduction1

Cancers display huge variability between different patients and even in2

the same patient. Nonetheless, cancer cells share a finite set of hallmarks3

such as sustained proliferation, invasion and metabolic reprogramming, which4

shape their behavior in solid tumors (Hanahan and Weinberg, 2011). Among5

other hallmarks, tumor cells are known to recruit new blood vessels to sus-6

tain their proliferation, in a process known as tumor angiogenesis (Folkman,7

1971). This neovasculature is generally altered in terms of architecture and8

morphology of the vessels, leading to poor perfusion of certain areas of the9

tumor (Carmeliet and Jain, 2000). Hypoxic regions are thus created and10

maintained during tumor development, concurring to the progression of can-11

cer cells towards malignant phenotypes (Vaupel and Mayer, 2007). More-12

over, low nutrient levels can lead to cell quiescence, a situation in which13

tumor cells delay metabolic activities and become less sensitive to standard14

chemotherapies (Challapalli et al., 2017). Such hypo-perfused areas are gen-15

erally associated with poor patient outcome but, on the other hand, could16

be exploited for tumor targeting (Wilson and Hay, 2011). The same hypoxic17

areas provide indeed a niche for bacteria to colonize the tumor and exert a18

therapeutic action (Forbes, 2010; Zhou et al., 2018). The use of bacteria for19

cancer therapy dates back hundreds of years, with doctors reporting tumor20

regression in several patients (Kramer et al., 2018). However, such treatments21

also caused some fatalities and the limited understanding of the therapeutic22

mechanisms of action shifted research efforts towards other strategies - es-23

pecially radiotherapy (Kramer et al., 2018). In the last few years the use of24

live bacteria for cancer treatment has regained interest, and several bacterial25

strains have been tested in animal models and even advanced to clinical tri-26

als (Torres et al., 2018). Nevertheless, clinical development of such therapies27

is still facing significant issues due to infection-associated toxicities and in-28

complete knowledge of infection dynamics (Kramer et al., 2018; Zhou et al.,29

2018). As much research was focused on the immune responses after bac-30

teria administration, a clear picture of the interaction between cancer and31

bacterial cells is still lacking.32

Mathematical modeling emerges as a promising candidate to assist the33

understanding of bacterial therapy mechanism of action in cancer. Mathe-34

matical models have been applied in the context of cancer to elucidate its35

progression and treatment (Byrne, 2010; Altrock et al., 2015). Recent exam-36

ples combining experimental and modeling work in bacterial therapies are37
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given in (Kasinskas and Forbes, 2006; Jean et al., 2014; Hatzikirou et al.,38

2017; Suh et al., 2018), featuring in vitro as well in vivo experiments.39

Here we describe a mathematical model for bacteria-based cancer ther-40

apy within avascular tumors, focusing on the influence of physical effects on41

therapy outcomes. Such effects are present in every biological system but are42

often concealed by the complexity of the interactions between molecular and43

cellular players. Here we show through a simple mathematical model that44

these effects take an important part in bacterial therapies and are able to45

influence their outcomes. The model is formulated in the context of mixture46

theory, a framework with a long history of applications to biological prob-47

lems - see for example Ambrosi and Preziosi (2002); Breward et al. (2001,48

2002, 2003); Byrne and Preziosi (2003); Chaplain et al. (2006); Preziosi and49

Tosin (2009) and the recent reviews of Siddique et al. (2017); Pesavento50

et al. (2017). Our aim is to evaluate the impact of bacterial chemotaxis51

and anti-tumor activity on cancer cells, using spheroids as a prototype of52

avascular tumors. We consider bacterial administration after full formation53

of the spheroid, when hypoxic areas are present. We describe the effects of54

the treatment on the behavior of the spheroid constituents, e.g. tumor cells55

and bacteria volume fractions, at different time points and over the spheroid56

radius.57

The remainder of the paper is organized as follows. In Section 2 we58

describe the mathematical model and its derivation. In Section 3 we present59

model results, analyzing the impact of different model parameters. Finally,60

in Section 4 we discuss the biological implications of the results and suggest61

new research directions.62

2. Materials and Methods63

We propose a mathematical model describing the impact of bacterial64

cells on tumor spheroid growth. The model is based on mixture theory, a65

continuum theory that allows to describe the chemo-mechanical interactions66

between different tissue components. We follow the approach discussed in67

Preziosi (2003); Byrne (2012) and, specifically, adapt the derivation in Boemo68

and Byrne (2019) to our problem. In the following we present the final form of69

the equations, leaving the full derivation in the Supplementary Information.70

We describe the tumor as being composed of three main constituents71

(or phases in the language of mixture theory): tumor cells (TCs), bacteria72

and extracellular material. The variables referring to these quantities will73
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be identified by the indexes c, b and f, respectively. We also consider the74

presence of a nutrient, i.e. oxygen, diffusing over the spheroid domain. The75

model equations are derived by applying conservation of mass and linear76

momentum to each phase, and enforcing the saturation constraint (i.e. all77

the space in the spheroid is occupied by the phases, there are no voids). Then,78

we close the model by imposing suitable constitutive assumptions regarding79

the material properties of the phases and their interaction terms.80

2.1. Model equations81

In the following we will be interested in the case of tumor spheroids, for82

which the assumption of spherical symmetry applies. The problem reduces83

to the set of Partial Differential Equations (PDEs):84

∂φc

∂t
=

1

r2
∂

∂r

{
r2
[
Dc (1− φc)

∂φc

∂r
−Dbφc

∂φb

∂r
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]}
+ Sc, (1)
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∂
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r2
[
Db (1− φb)

∂φb

∂r
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(2)

∂n

∂t
=

1

r2
∂

∂r

(
r2Dn

∂n

∂r

)
+ Sn. (3)

Here, φc, φc and n are the tumor cell and bacteria volume fractions and85

normalized nutrient concentration, respectively. These quantities depend on86

the radial coordinate r ∈ [0, R] and time t ∈ [0, tf ]. In addition, Di are87

the phases motility coefficients (i=c,b), Dn the nutrient diffusion coefficient,88

and χ the bacterial chemotactic coefficient. The mass exchange terms Si89

(i=c,b,n), regulating the transfer of mass between the different components,90

will be detailed in the next subsection. Note that we do not solve explicitly91

for φf (i.e. the volume fraction of extracellular material) since this quantity92

can be obtained as φf = 1 − φc − φb due to the saturation constraint (see93

the Supplementary Information). We model growth of the spheroid as a free-94

boundary problem, in which the outer tumor radius r = R(t) moves with the95

same velocity as the TC phase,96

dR

dt
= vc(R, t) = Db

∂φb

∂r
+Dc

(
1− 1

φc

)
∂φc

∂r
+ χφb

∂n

∂r

∣∣∣∣
r=R

. (4)

Finally, we define a set of boundary and initial conditions to close the differ-
ential problem in equations (1)-(3). Due to the problem symmetry no-flow
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boundary conditions are enforced at the spheroid center, whereas we fix the
values of TC volume fraction, bacterial volume fraction and normalized nu-
trient concentration on the spheroid boundary:

∂rφc = ∂rφb = ∂rn = 0, r = 0 (5)

φc = φc0, φb = φb0, n = 1, r = R(t). (6)

We assume a uniform initial tumor volume fraction φc0 = 0.8 across the97

spheroid (Byrne and Preziosi, 2003) and, to model bacteria administration,98

we consider a time dependent value for the bacterial volume fraction at the99

spheroid outer radius:100

φb =


0, for 0 ≤ t < t0

φb0, for t0 ≤ t < ta

0, for ta ≤ t ≤ tf ,

(7)

where φb0 is the administered volume fraction of bacteria, t0 is the time101

of administration and ta its duration. Regarding the initial conditions, we102

consider a spheroid devoid of bacteria and displaying a uniform TC volume103

fraction and nutrient concentration over its radius:104

φc(r, 0) = φc0, φb = 0, n = 1. (8)

Finally, we prescribe an initial spheroid radius, i.e. R(0) = 90µm. The105

equations of the model are discretized through the Finite Element Method106

and solved using the commercial software COMSOL Multiphysics (COMSOL107

AB).108

2.2. Choice of mass exchange terms109

To formulate the mass exchange terms in equations (1)-(3) we assume the110

following assumptions (see Figure 1):111

A1 TCs proliferate when oxygen is available. As soon as the latter de-112

creases below a critical threshold, they stop proliferating and start113

necrosis (Chaplain et al., 2006; Gerlee and Anderson, 2007; Agosti114

et al., 2018).115

A2 Bacteria compete with TCs for space and exert an anti-tumor effect116

by a variety of mechanisms (e.g. by realising toxins and therapeutic117

agents, or stimulating an immune response). (Forbes, 2010; Osswald118

et al., 2015; Torres et al., 2018; Zhou et al., 2018).119
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Figure 1: Schematic of the interactions between tumor cells (c), bacteria (b) and oxygen
(n). The arrows are drawn according to the biological hypotheses detailed in the main
text.

A3 Bacteria die when oxygen is above a critical threshold and thrive in120

hypoxic conditions (anaerobic bacteria) (Toley and Forbes, 2011; Phai-121

boun et al., 2015; Osswald et al., 2015).122

A4 TCs consume oxygen provided by the culture medium (Matzavinos123

et al., 2009; Grimes et al., 2014).124

The resulting mass exchange terms read:

Sc = γcφc
φf

φf0

H
(
n

ncr

− 1

)
− δcφcH

(
1− n

ncr

)
− κφcφb, (9)

Sb = γbφb
φf

φf0

H
(

1− n

ncr

)
− δbφbH

(
n

ncr

− 1

)
, (10)

Sn = −δnφcn. (11)

Here γi and δi are the proliferation and death rate of the i-th phase respec-125

tively (i = c, b), whereas δn is the oxygen consumption rate. In addition, φf0126

is the initial volume fraction of extracellular material and we indicate with127

H (·) a smooth version of the step function, and with ncr the critical oxygen128

value below which hypoxic conditions develop. Finally, we do not consider a129

specific form for the anti-tumor effect of bacteria and introduce an effective130

TC killing rate κ in the equation for Sc.131
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Parameter Value Description Reference
Dc 0.5 mm2d−1 TC motility coefficient (Colombo et al., 2015)
γc 0.48 d−1 TC proliferation rate (PBCF, 2012)
δc 0.5 d−1 TC death rate (Mart́ınez-González et al., 2012)
Db 0.05 mm2d−1 Bacterial motility coefficient (Toley and Forbes, 2011)
γb 15 d−1 Bacterial proliferation rate (Gibson et al., 2018)
δb 0.24 d−1 Bacterial death rate (Phaiboun et al., 2015)
Dn 100 mm2d−1 Oxygen diffusion coefficient (Matzavinos et al., 2009)
δn 8640 d−1 Oxygen consumption rate (Colombo et al., 2015)
χ [0, 0.864] mm2d−1 Bacterial chemotactic coefficient estimated
κ [0, 5] d−1 Bacterial killing rate model specific
ncr 0.58 Critical oxygen concentration calibrated

Table 1: Summary of the parameter values considered in the model simulations.

2.3. Model parametrization132

The parameters used in the model simulations are reported in Table 1. In133

the following we will compare model results with a set of published experi-134

ments on the U87 glioma cell line. We take the TC proliferation rate from the135

available data provided from the Bioresource Core Facility of the Physical136

Sciences-Oncology Center (PBCF, 2012), whereas we select the TC death137

rate in accordance to the estimate in (Kolokotroni et al., 2011; Mart́ınez-138

González et al., 2012). The work in (Toley and Forbes, 2011) provides a139

value for the bacterial motility coefficient and proliferation rate in in vitro140

cellular aggregates. Regarding bacterial proliferation, (Gibson et al., 2018)141

supply a similar value through an analysis of bacterial doubling times. We142

estimate the bacterial death rate from (Phaiboun et al., 2015), in which cel-143

lular death dynamics are quantified under starvation at different bacteria144

densities. Finally, we use the values in (Schaller and Meyer-Hermann, 2005;145

Matzavinos et al., 2009; Grimes et al., 2014; Colombo et al., 2015; Alfonso146

et al., 2016) for the oxygen diffusion coefficient and consumption rate in tu-147

mor tissues. When carrying out the simulations, we vary the chemotactic148

coefficient in the interval [0, 8.64 × 10−1] mm2d−1. Since it was not possible149

to find in the literature an estimate for the chemotactic coefficient of bacteria150

in tissues, we considered the value of χ in bacterial solutions (Ford et al.,151

1991; Lewus and Ford, 2001) and divided it for the ratio between the motil-152

ity coefficient in solution and in tissue - about 100, (Ford et al., 1991; Lewus153

and Ford, 2001). Since we do not consider a specific mechanism for the anti-154

tumor activity of bacteria, we select the killing rate κ to be in the interval155

[0, 5] d−1, i.e. spanning characteristic times between several days and a few156
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Figure 2: Calibration of the model on tumor spheroid data. A Comparison between model
results and experimental data for the spheroid growth curve. The experimental points are
taken from (Mascheroni et al., 2016) and represent the growth of U87 spheroids. Dots are
mean values and bars standard deviation of the measurements. Tumor volume fraction
(B) and oxygen concentration (C) at different times of spheroid growth. The dashed line
in the last plot displays the critical oxygen concentration.

hours. Finally, we fit the parameter for the critical oxygen concentration157

from the above mentioned experiments. The value that we found is similar158

to the one reported in (Gerlee and Anderson, 2007; Agosti et al., 2018).159

3. Results160

3.1. Model calibration on spheroid experiments161

We start the analysis by considering the growth of a spheroid suspended162

in culture medium, in the absence of bacteria. We compare the results of the163

model with the data for radial growth of U87 tumor spheroids available from164

Mascheroni et al. (2016). We use the model to fit the critical oxygen concen-165

tration parameter ncr, keeping all the other quantities as defined in Table 1.166

Figure 2 shows a good agreement between the model and the experiments,167

over all the growth curve. The model is able to reproduce the two phases168

of spheroid growth usually described in the literature (Conger and Ziskin,169

1983; Sutherland, 1988; Vinci et al., 2012). The spheroid radius (see Figure170

2A) displays a first stage of rapid increase, followed by a saturation phase.171

This behavior is detailed in Figures 2B,C, showing the evolution of the tu-172

mor volume fraction and oxygen concentration over the spheroid radius at173

different time points. The tumor volume fraction, i.e. φc, increases over the174

spheroid at early time points (Figure 2B). Then, as TCs consume oxygen to175

proliferate, its concentration decreases in the centre of the aggregate (Figure176
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2C). When the oxygen level drops below the critical threshold ncr (dashed177

line in Figure 2C), TCs stop proliferating and die. This results in a decrease178

of φc in the spheroid core, displayed at longer times in Figure 2B. Close to179

saturation, the amount of cells that proliferate is balanced by the number180

of cells that die, turning into extracellular material. Therefore, even if cell181

growth continues to take place in the outer rim of the spheroid, it is not182

enough to advance the spheroid front, which reaches a steady state. These183

results match qualitatively what is observed in the experimental (Landry184

et al., 1982; Montel et al., 2011; Grimes et al., 2014; Sarkar et al., 2018)185

and modeling (Ward and King, 1999; Byrne and Preziosi, 2003; Ambrosi and186

Mollica, 2004; Schaller and Meyer-Hermann, 2005; Mascheroni et al., 2016;187

Boemo and Byrne, 2019) literature for tumor spheroids and will serve as a188

basis for the discussion in the next sections.189

3.2. Administration of bacteria leads to tumor remission but not eradication190

Figure 3 shows the influence of bacterial therapy on tumor spheroid com-191

position for an example case. We evaluate the effects of adding bacteria to192

the culture medium after the spheroid is fully formed, i.e. when hypoxic193

regions have developed. In particular, we select an administration time of194

t0 = 26d and a treatment duration of ta = 2d. We consider an interme-195

diate value for both the bacterial chemotactic coefficient and killing rate196

(χ = 0.432mm2d−1, κ = 2.5d−1). As shown by the low TC volume fraction197

in Figure 3A at later times, bacteria administration leads to spheroids less198

populated by TCs. This space is occupied by bacteria (Figure 3B), which199

thrive in the hypoxic region located in the spheroid core. After bacterial ther-200

apy the spheroid shrinks and is less populated by cancer cells. This leads201

to higher values of oxygen concentration at the center of the aggregate, as202

displayed in Figure 3C. Finally, Figure 3D shows the evolution of TC (Vc)203

and bacteria (Vb) volumes over time. These quantities are calculated as204

Vi =

∫
Vsf

φi dV, (12)

where the integral is performed over the spheroid volume Vsf (i=c,b). At early205

time points, Vc is in a phase of fast growth, since the nutrient is available206

throughout the spheroid and no bacteria are present. After administration,207

there is a fast increase of bacteria volume together with a rapid decrease of208

TC volume. At later time points the system evolves toward a steady state in209
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Figure 3: Model results for bacteria administration to tumor spheroids. Spatio-temporal
evolution of tumor (A) and bacteria (B) volume fractions and oxygen concentration (C).
D Temporal evolution of tumor and bacteria volumes in the spheroid.

which both bacteria and TCs coexist in the tumor aggregate. Even though210

the TCs are not completely removed, the spheroid persists in an equilibrium211

state, where an asymptotic size is kept for long times.212

3.3. High chemotaxis allows for maximal reduction of tumor size213

We investigated the impact of different bacterial chemotactic and anti-214

tumor strengths on spheroid composition at the end of the simulations, i.e.215

at day 50 (Figure 4). We found that the highest reduction in tumor volume is216

obtained for the highest values of the chemotactic coefficient and killing rate,217

as shown in Figure 4A. On the other hand, highly chemotactic bacteria with-218

out an anti-tumor activity lead to the highest tumor volume. Interestingly,219

the tumor is never completely eradicated over all the explored parameter220

sequence. A similar result is obtained for the bacteria volume at the end of221

the simulations (Figure 4). Here, no matter the strength of chemotaxis or222

anti-tumor activity, bacterial cells are always present in the final spheroid223
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(A) and bacteria (B) volumes at the end of the simulations (day 50). Temporal evolution
of tumor and bacteria volumes for a high chemotactic coefficient and a low (Case 1, C)
and high (Case 2, D) killing rate.

volume. High bacterial volumes are present for high chemotactic coefficients,224

whereas high killing rates lead to small bacterial volumes independent of the225

chemotactic strength. Indeed, even though the tumor volume considerably226

varies over the chemotactic space for high killing rates, the bacterial volume227

is almost independent of this quantity (see Figure S1 in the Supplementary).228

Finally, Figures 4C and 4D show the temporal variation of tumor and bac-229

terial volumes for two extreme cases occurring for high chemotaxis and low230

(Case 1) or high (Case 2) killing rate. The first plot shows that after the231

administration of bacteria the tumor volume is reduced, even in the absence232

of anti-tumor activity. The two populations in the spheroid reach an equi-233

librium at later times, with bacteria representing a significant portion of the234

spheroid. In the second case, the high anti-tumor activity of the bacteria235

is responsible for a sharp decrease of the tumor population, leading also to236

oscillations in the TC volume. Although bacteria now constitute a small237

part of the overall spheroid volume, they are still able to keep the tumor size238

under control.239

3.4. Highly proliferating and low oxygen consuming tumors are mostly bene-240

fited from bacterial therapy241

The results obtained in the previous subsection are insensitive of the242

administration time t0, the duration of the administration ta and the ad-243

ministered bacteria volume fraction φb0, even for large variations of these244

parameters (see Supplementary Figures S2-S4). This made us investigate245
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Figure 5: Impact of tumor proliferation rate on tumor and bacteria volumes at the end of
the simulations (day 50). Relative tumor volume change and relative bacteria volume for
low (A, D), nominal (B, E) and high (C, F) tumor cell proliferation rate.

whether the steady states reached at the end of the simulations and dis-246

played in Figure 4 were therefore a function of the mechanisms regulating247

the tumor/bacteria dynamics. To check this hypothesis we simulated the be-248

havior of TCs with a lower or higher proliferation and oxygen consumption249

rates with respect of the one shown in Figure 4. We report our findings in250

Figures 5 and 6. We considered a variation of ±50% with respect to the251

nominal value of the parameters in Table 1, and labeled the cases using the252

plus or minus in the superscript accordingly. All the other parameters keep253

the nominal values. We evaluated the spheroid response in terms of relative254

tumor reduction by introducing the quantity:255

∆Vc =
V0 − Vc
V0

, (13)

where Vc is the final tumor volume and V0 the tumor volume at the time of256

bacteria administration. We also analyzed the relative bacteria volume at257

the end of the simulation, plotting the ratio of bacteria volume Vb to the258

total spheroid volume Vt.259
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Figure 6: Impact of tumor oxygen consumption rate on tumor and bacteria volumes at
the end of the simulations (day 50). Relative tumor volume change and relative bacteria
volume for low (A, D), nominal (B, E) and high (C, F) tumor cell proliferation rate.

Tumors in which cells proliferate at a higher rate display the highest tu-260

mor reductions (Figure 5A-C). This is particularly true for the treatment261

with bacteria characterized by high chemotaxis and killing rate. Highly pro-262

liferative tumors are the ones that also show higher colonization by bacteria,263

as displayed in Figures 5D-F. Treatments with high chemotactic bacteria264

with low killing rates provide the highest relative bacteria volumes. Low265

oxygen consumption by TCs leads to results similar to highly proliferative266

tumors (6). Again, treatment using bacteria with high chemotaxis and high267

killing rate produces the best results in terms of tumor reduction. Regard-268

ing the final bacterial content, both high and low oxygen consuming tumors269

show considerable bacteria colonization. As before, the relative bacteria vol-270

ume is higher for highly chemotactic bacteria with low anti-tumor activity.271

Even though highly proliferative and low oxygen consuming TCs originate272

the highest final spheroid volumes (Figure S5), they benefit the most from273

bacteria treatment and display the higher final bacteria content.274
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4. Discussion275

We proposed a mathematical model to study the influence of bacteria276

treatment on avascular tumor growth. We considered anaerobic bacteria277

which thrive in hypoxic environments and actively migrate towards nutrient278

deprived regions in solid tumors. The model was calibrated to reproduce279

published tumor spheroid data and then used to evaluate the impact of bac-280

teria chemotaxis and killing rate on spheroid response.281

Model results show preferential bacteria accumulation in the hypoxic282

spheroid core, with tumor cells more localized towards the external spheroid283

surface. In general, highly chemotactic bacteria possessing increased anti-284

tumor activity provide the highest tumor reduction after treatment. On the285

other hand, high chemotaxis but low anti-tumor activity lead to smaller tu-286

mor reduction but higher bacteria colonization at the end of the simulations.287

When varying the tumor parameters, we found that bacteria treatment works288

best for highly proliferative and low oxygen consuming tumors.289

For simplicity, we considered a general effective anti-tumor activity of290

TCs by bacteria without focusing on specific mechanisms, e.g. cytotoxic291

agents, prodrug-converting enzymes, etc. (Torres et al., 2018; Zhou et al.,292

2018; Kramer et al., 2018). Such treatment modalities could be incorpo-293

rated by extending the model, to provide a more accurate description of the294

therapeutic action. Moreover, we focused on tumor spheroids, an in vitro295

approximation of avascular tumors. As such, they lack all the interactions296

between the tumor and its immune environment. On the one hand, this ap-297

proach allows to investigate the mutual dynamics of bacteria and tumor cells298

without external influences, but on the other including the cross-talk between299

bacteria and the components of the immune system would be a fundamental300

step to address questions coming from in vivo tumors. Following (Boemo301

and Byrne, 2019), we modeled the mechanical response of cells and bacte-302

ria in the simplest way considering the phases as inviscid fluids. Although303

this description is still able to qualitatively describe the experimental re-304

sults, more detailed constitutive assumptions for the mechanical behavior of305

the phases would lead to new insights into the interactions between bacteria306

and TCs in the aggregate (Sciumè et al., 2013; Giverso et al., 2015; Ambrosi307

et al., 2017; Mascheroni et al., 2018; Fraldi and Carotenuto, 2018; Giverso308

and Preziosi, 2019). We also considered ideal spherical spheroids to reduce309

the mathematical problem to one dimension. Even if the qualitative results310

will be maintained in a three-dimensional geometry, adopting the latter will311
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be crucial to translate the model to in vivo situations.312

In this modeling approach, space competition between bacteria and tumor313

cells arises naturally from the conservation of mass and momentum imposed314

by the governing equations. As no void regions are allowed into the spheroid,315

when cells move or die one of the model components automatically fills the316

space. Bacteria and TCs compete for space in the spheroid and the expan-317

sion of the tumor becomes limited, especially when the anti-tumor activity318

of bacteria is strong. However, for increasing values of the chemotactic co-319

efficient and low values of the killing rate, bacteria localize predominantly320

in the spheroid core and displace TCs to the outer region of the spheroid.321

Both types of cell can proliferate in each of the two spheroid areas (hypoxic322

for spheroids, well-oxygenated for TCs), giving rise to high spheroid volumes323

and considerable bacteria colonization.324

As a matter of fact, chemotaxis could be a target for bacteria-based an-325

ticancer therapies and diagnostic tools. For example, TCs that become re-326

stricted to outer spheroid areas after administration of highly chemotactic327

bacteria are more oxygenated and could benefit from standard chemothera-328

peutic or radiation treatments in the context of synergistic treatments (Zhou329

et al., 2018). We highlight that this is an example showing that mathe-330

matical models could help to identify situations when TC sensitization to331

therapies might be possible - see also (Owen et al., 2004; Kim et al., 2013;332

Michor and Beal, 2015; Mascheroni et al., 2017). On the other hand, highly333

chemotactic bacteria could be used as tracers to identify necrotic regions334

in spheroid, exploiting their targeting efficiency. Moreover, the simulations335

show the existence of steady states in which a small population of bacteria336

is in dynamical equilibrium with cancer cells, leading to tumor size control337

over time. All these mechanisms arise as a pure physical effect from the com-338

petition for space between cancer and bacteria cells and could be optimized339

to obtain the highest tumor volume reduction or bacteria colonization. Cur-340

rently, even though researchers are aware of the benefits coming from active341

bacteria migration towards hypoxic regions in tumors (Forbes, 2010; Kramer342

et al., 2018), this knowledge has not been efficiently exploited in the clinical343

trials carried out so far (Torres et al., 2018).344

Finally, we point out three straightforward developments that emerge345

from the findings of this work. Firstly, our theoretical results advocate for ex-346

periments with tumor spheroids. With such a simplified experimental setup,347

several bacterial strains could be tested on different cancer cell lines to vali-348

date model findings. Secondly, one could think about extending the model to349
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consider different bacterial administration schedules. The duration of bacte-350

ria administration, the time of administration and single vs. multiple dosing351

could be investigated to determine the optimal conditions for this kind of352

treatment. Lastly, the tight coupling between the dynamics of TCs and bac-353

teria in terms of regulating their reciprocal environment could be addressed354

via mathematical models, in order to control the bacterial infection or iden-355

tify the optimal timing of the therapy.356
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