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Abstract 
 
Childhood acute lymphoblastic leukemia (cALL) is the most common pediatric cancer. It is 

characterized by bone marrow lymphoid precursors that acquire genetic alterations, resulting in 

disrupted maturation and uncontrollable proliferation. More than a dozen molecular subtypes of 

variable severity can be used to classify cALL cases. Modern therapy protocols currently cure 85-90% 

of cases, but other patients are refractory or will relapse and eventually succumb to their disease. To 

better understand these difficult cases, we investigated the nature and extent of intra-individual 

transcriptional heterogeneity of cALL at the cellular level by sequencing the transcriptomes of 39,375 

individual cells in eight patients (six pre-B and two pre-T) and three healthy pediatric controls. We 

observed intra-individual transcriptional clusters in five out of the eight patients. Using pseudotime 

maturation trajectories of healthy B and T cells, we obtained the predicted developmental state of each 

leukemia cell and observed distribution shifts within patients. We showed that the predicted 

developmental states of these cancer cells are inversely correlated with ribosomal protein expression 

levels, which could be a common contributor to intra-individual heterogeneity in cALL patients. 

 
Introduction 
 
Childhood acute lymphoblastic leukemia (cALL) is the most frequent pediatric cancer, accounting for 

~25% of all pediatric tumors. This cancer is characterized by bone marrow lymphoid precursors that 

acquire sequential genetic alterations, resulting in disrupted maturation and uncontrollable 

proliferation.  Precursor B cell ALL (pre-B ALL) represent ~85% of cases and precursor T cell ALL 

(pre-T ALL) ~15%, which can be further subdivided into more than a dozen molecular subtypes. The 

high hyper diploid cases (HHD) and those harboring the t(12;21) [ETV6/RUNX1] rearrangement 
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represent about ~60% of pre-B cALL cases and are associated with a good prognosis1,2. Other less 

frequent (< 10%) subtypes, such as MLL-rearranged, t(9;22) [BCR/ABL1] or pre-T are associated with 

intermediate to poor outcomes1,2. Five-year event-free survival rates have seen remarkable progress 

since the 1960s and are now up to ~85-90% thanks to patient risk stratification and effective treatment 

combinations3. Despite this therapeutic success refractory and relapsing cALL still represents one of 

the most frequent cause of death by disease in pediatrics4. The disease follows a two-hit model starting 

with initiating genetic lesions in lymphoid progenitors (genomic translocations, copy number 

alterations, point mutations) occurring in utero or very early in life and subsequent secondary genetic 

lesions driving the leukemogenesis3.  

 

Somatic mutations at diagnosis arise in many genes involved in multiple biological pathways such as B 

cell development (e.g. PAX5, IZKF1), signaling (e.g. RAS, NRAS, CRLF2) epigenetic regulation (e.g. 

CREBBP, KMT2D) and cell cycling (e.g. CDKN2A)5. This led to the proposition of clonal evolution 

characterized by a branching model in which leukemic subclones acquire sequential genetic alterations 

conveying fitness advantages5. In a significant number of relapse cases, ancestral minor subclones 

present at diagnosis become resistant and positively selected under treatment5,6. Next-generation 

sequencing (NGS) has recently provided meaningful insights toward the characterization of somatic 

events providing selective advantages to tumor cells. Mutations in RAS pathway genes have been 

associated with early relapse and chemoresistance in cALL whereas mutations in the cytosolic 5'-

nucleotidase II gene (NT5C2) were shown to be involved in resistance to treatment7,8. A study on the 

rise and fall of subclones revealed that the majority of patients harbor at least one genetic subclone at 

diagnosis and three quarters of relapse cases were from resistant minor ancestral subclones5. Another 

study found the presence of at least two distinct genetic subclones in five out of six patients using 

targeted single-cell DNA sequencing9. In this context, we reported different clonal dynamics between 

early (during treatment) and late (>36 months after diagnostic) bone marrow relapse events and showed 

variable clonal origin in late relapse events10.  

 

Genetic alterations of subclones can provide information on the perturbed functions of genes and their 

corresponding pathways but the transcriptional impacts of these alterations in cALL are unknown as 

intra-individual transcriptional heterogeneity is not well characterized. Additionally, subclonal 

epigenetic modifications could cause changes in gene expression that cannot be captured by looking at 

genetic alterations only. Transcriptional changes at the single cell level can be assessed using recent 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 27, 2019. ; https://doi.org/10.1101/683854doi: bioRxiv preprint 

https://doi.org/10.1101/683854
http://creativecommons.org/licenses/by-nc-nd/4.0/


3 
 

single cell technologies that enable the epigenetic profiling of thousands of single cells, including 

droplet-based whole transcriptome profiling (scRNA-seq)11. Profiling the transcriptomes of single cells 

in both diagnosis and relapse samples could help identify expression signatures of relapsing subclones 

in hematological cancers12. The prognostic value of scRNA-seq was previously demonstrated in a 

single cell gene expression study that assessed the transcriptional heterogeneity of patients initially 

assigned to a unique subtype that were further classified into additional subgroups with distinct 

survival13.  In this study we sought to uncover the extent and nature of transcriptional heterogeneity in 

cALL patients at diagnosis, identify distinct subpopulations of cancer cells and uncover deregulated 

genes and pathways. These intra-individual transcriptional differences have not been characterized and 

could provide information on the impact of genetic or epigenetic alterations on the expression programs 

of these cells and help us gain additional knowledge on the mechanisms of disease development and 

relapse. 

 
Results 
 
We generated single cell gene expression data from 39,375 pediatric bone marrow mononuclear cells 

(BMMCs) from eight cALL patients of common subtypes: 4 ETV6-RUNX1, 2 High Hyper Diploid 

(HHD) and 2 pre-T (> 50% blasts) and 3 healthy donors (Table 1). We assessed the quality of our data 

in healthy pediatric BMMCs with available data in healthy adult BMMCs (10X Genomics, Methods). 

We recovered the expected cell types using known cell surface marker genes (Figure 1A-D). In healthy 

cells, the predicted cell cycle phases showed a higher proportion of cycling cells in B cells and 

Immature erythrocytes than in other cell types (Figure 1E). By combining healthy pediatric BMMCs 

with cALL cells (n=38,922 after quality control), we observed distinct clusters of healthy and cancer 

cells (Figure 2A). Healthy clusters were determined using both healthy cell cluster assignment (Supp. 

Figure 1A) and expression of cell surface marker genes. Between 2 and 60% of cALL cells per sample 

clustered with healthy pediatric BMMCs of different cell types (Figure 2C, Supp. Figure 1B). These 

cells likely represent non-cancerous cells normally found in samples of variable tumor purity (due to 

disease severity or technical variability), rather than lineage switching cancer cells or cancer cells 

having healthy-like transcriptional profiles. When looking at the predicted cell cycle phases of cALL 

cells, we observed a continuous spectrum of phases G1→S→G2/M on the UMAP representation 

(Figure 2B). For six out of eight patients, cells were mostly in the G1 phase (Figure 2D). Many 

methods can correct for different sources of transcriptional variation14,15, however regressing out the 

cell cycle phase in our data failed to completely remove this effect as we could still observe clusters of 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 27, 2019. ; https://doi.org/10.1101/683854doi: bioRxiv preprint 

https://doi.org/10.1101/683854
http://creativecommons.org/licenses/by-nc-nd/4.0/


4 
 

cells in cycling phases on UMAP (Supp. Figure 1C).  Thus, in further analysis, we decided to reduce 

the expression variability by keeping cancer cells that did not cluster with healthy cells (remaining 

n=25,788; ~79.5%) and that were in G1 phase only (remaining n=16,731; ~51.6%; Figure 3A). We 

looked at the transcriptional profiles of these cancer cells using non-supervised hierarchical clustering 

of the hundred most variable genes. We observed two distinct clusters of pre-B and pre-T cells as 

shown by the expression of the CD79A/B and CD3D surface markers (Figure 2E, Supp. Figure 1 D-F). 

We also noticed transcriptional differences between pre-B subtypes (e.g. RAG1 over expressed in 

ETV6-RUNX1 samples) and individuals (e.g. TCL1B over expressed in samples 

ETV6.RUNX1.3/ETV6.RUNX1.4 and CD1E over expressed in sample PRE-T.1). These transcriptional 

profiles corroborate expected cell surface marker expression for these types of cells and indicate good 

quality of the single cell expression data. 

 
Intra-individual transcriptional heterogeneity 
 
We assessed the intra-individual transcriptional heterogeneity by identifying expression profile 

signatures unique to subsets of cancer cells within a sample. These intra-individual transcriptional 

differences could highlight deregulated genes in potentially resistant subclones or reveal epigenetic 

changes driven by subclonal genetic alterations. We applied a strategy that would return the most 

representative clustering solution over a range of clustering resolutions. Multiple clustering solutions 

were generated over a range of parameters and pairwise Adjusted Rand Index (ARI) values were 

computed (Figure 3B). We retained the clustering solution that had the highest mean ARI and identified 

at least two clusters in six samples, but no intra-individual transcriptional clusters for samples 

ETV6.RUNX1.4 and PRE-T.2 (Figure 3C). Transcriptional differences between subsets of cell within a 

sample require enough cells (>100) to be properly powered for differential expression analyses16. Thus, 

we discarded clusters with less than 10% of total cells for samples ETV6.RUNX1.3 and HHD.2 

(remaining n=16,162). This filtering steps resulted in 5 samples with two transcriptional clusters with 

proportions of cells ranging from ~25 to 50% (Figure 3D). We performed intra-individual differential 

gene expression analyses for the two subsets of cells within these 5 samples. Genes related to B and T 

cell maturation (e.g. CD37, CD79B, JCHAIN, IGLL1, VPREB3, CD52), ribosomal protein genes (RPS-

*, RPL-*) and cancer/stress genes (e.g. PRAME, ARHGDIB, FOS, JUN) (Figure 3E, Supp. Table 3) 

were within the most significantly deregulated genes between clusters in those samples. Gene ontology 

analyses on the five differential expression gene lists led to a more general understanding of the 

modulated biological pathways within each sample (Supp. Table 4). The samples were then clustered 
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based on the top ten most significantly enriched biological pathways. We observed two distinct 

clusters: one cluster of ETV6-RUNX1 samples showing modulated pathways in B cell 

activation/differentiation, cell proliferation/death and regulation of expression and metabolic processes 

and another cluster of HHD and pre-T samples showing modulated pathways in translation initiation 

and protein synthesis (Figure 3F). These results demonstrate that we can detect distinct sources of 

transcriptional variation between subsets of cells within a sample. 

 

Developmental states and ribosomal protein gene expression 
 
To address whether the observed intra-individual transcriptional variability could be linked to the 

maturation and differentiation states of the cancer cells, we implemented two developmental state 

classifiers based on the expression profiles of healthy B and T cells.  We assigned pseudotime values of 

0 to 1 along the maturation spectrum from stem-like to mature developmental states (Figure 4A). The 

performances of the classifiers were assessed on healthy cells using cross-validation and showed good 

predictive performance using average Root Mean Squared Error (RMSE) (Figure 4B). Final classifiers 

were trained on all healthy B and T cells and then used to obtain the predicted developmental states of 

every cancer cell. We observed statistically significant shifts in developmental pseudotime distributions 

within samples (Figure 4C). The most significant shifts were found within HHD and PRE-T samples, 

while less pronounced shifts were observed within ETV6-RUNX1 samples. These findings correlate 

with differential expression results that revealed modulated expression of ribosomal protein genes in 

HHD and PRE-T samples (Supp. Table 3). An inverse relationship between maturation states of normal 

hematopoietic cells and ribosomal protein (RP) expression levels was previously reported in a zebrafish 

single cell RNA-seq study17. We observed the same relationship for cALL cancer cells in all samples 

exhibiting intra-individual transcriptional clusters where subsets of cells with higher pseudotime had 

lower ribosomal protein expression levels (Figure 4D). This trend was clearer in samples having strong 

(e.g. HHD.1) vs weak (e.g. ETV6.RUNX1.2) shifts in pseudotime (Figure 4E). Ordering cells by RP 

expression revealed a gradient of expression that was correlated to clusters having similar behavior 

(Figure 4F). These findings suggest that developmental states and RP expression could contribute to the 

intra-individual transcriptional heterogeneity observed in some cALL patients. 

 
Genetic alterations and transcriptional variability 
 
To uncover genetic alterations that could be linked to intra-individual transcriptional heterogeneity, we 

first looked whether large cluster specific copy number variants (CNVs) could be linked to 
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transcriptional clusters. We generated thirty equal size ‘metacells’ for each cluster to reduce noise and 

called copy number events using healthy pediatric BMMCs as controls. We recovered most copy 

number events seen with exome sequencing data and identified cluster specific copy number events 

(Figure 5A, Supp. Figure 3). We observed cluster specific copy number gains on chromosomes 21 and 

22 in sample ETV6.RUNX1.1 and deletions of chromosome 5 and the p arm of chromosome 12 in 

sample ETV6.RUNX1.2. Subclonal copy number depth ratios were also seen for some these alterations 

using exome data (Supp. Figure 4). We did not observe large cluster specific copy number events for 

HHD or pre-T samples. We then looked whether there was a correlation between the presence of 

genetic subclones and intra-individual transcriptional clusters. We used somatic mutations from 

matched normal and tumor exome data (Supp. Table 5) and found no major differences in both the 

number of mutations and genomic locations between samples (except for sample ETV6.RUNX1.1 that 

had less mutations) (Figure 5B, C). We identified known cALL mutations in signaling proto-oncogenes 

(ABL1, ROS1, NOTCH1), cell cycle/epigenetic regulators (CREBBP, CDKN2A) and noticed few 

overlapping non-synonymous exonic mutations between samples (Figure 5D). We used all sufficiently 

covered (> 100X) somatic mutations to generate genetic evolution models and at least one minor 

genetic subclone was predicted for each sample, with ETV6.RUNX1.2 having two minor subclones 

(Supp. Figure 2). We therefore did not observe a correlation between the presence of genetic subclones 

and observed intra-individual transcriptional heterogeneity, however minor subclones were at the lower 

end of the allele frequency spectrum and could reflect the neutral evolution frequency tail in some 

cases18. Finally, we looked at somatic mutations at the single cell level using all somatic mutations and 

retrieved allele calls of individual cells using single cell RNA-seq read alignment files. Around 25% of 

mutations (n=668) were covered in at least one cell and ~6.7% (n=185) of them had at least one cell 

having the mutated allele (Figure 5E). A Fisher’s exact test was run on mutations having at least > 0.1% 

of cells per sample with the mutated allele (n=31) to identify overrepresented mutations in intra-

individual transcriptional clusters. We found somatic mutations in three genes with p-values < 0.1 for 

samples  ETV6.RUNX1.2 and PRE-T2 (intron of C20orf194, 3’ UTR of SH3 domain containing gene 

SH3D21 and exon of pyridoxal kinase gene PDXK), indicating a slight enrichment of the mutated allele 

in a transcriptional cluster (Supp. Table 5). Overall very few somatic mutations were fulfilling the 

criteria for statistical testing and many mutations had a low number of observations contributing to 

underinflation of p-values and non-significance of all mutations after multiple testing correction 

(Figure 5F, Supp. Table 5).  Thus, it is still possible that other subclonal somatic mutations could be 

enriched in specific transcriptional clusters but were not possible to detect using this approach. Overall 
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these results suggest that there is some limited evidence linking genetic alterations detected from bulk 

exome data to intra-individual transcriptional heterogeneity in these samples. 

 
 
Discussion 
 
We applied a single cell expression strategy to uncover major sources of intra-individual transcriptional 

heterogeneity in childhood ALL. To our knowledge this is the first study on intra-individual 

transcriptional heterogeneity in cALL patients using single cell gene expression.  Our study found two 

notable patterns at diagnosis: first, we found transcriptional heterogeneity associated to the predicted 

developmental state of leukemia cells which was inversely correlated with the expression of ribosomal 

protein genes. This observation was more obvious in HHD and pre-T samples but was also seen in in 

ETV6-RUNX1 samples, indicating a possible subtype specificity. The disrupted products of the fusion 

between the ETV6 and RUNX1 transcription factors, involved in B cell maturation, could result in an 

overall lower maturation potential of the leukemia cells. Second, we observed transcriptional 

heterogeneity linked to gene expression and metabolic regulation, B cell activation and cell 

proliferation/death in ETV6-RUNX1 samples. We found significant joint over expression of the JUN 

and FOS proto oncogenes in a cluster of cells for sample ETV6.RUNX1.2, suggesting deregulation in 

stress/cancer genes.  

 

To further understand this transcriptional variability within samples, we sought to determine if genetic 

alterations could explain these intra-individual transcriptional clusters. We found no correlation 

between the number of predicted genetic subclones in a given sample and the presence of intra-

individual transcriptional clusters. Indeed, all samples were predicted to have two or more genetic 

subclones, but not all were found to have intra-individual transcriptional clusters. This could be 

explained in part by our clustering procedure relying on the ‘most representative’ solution and not 

returning all major transcriptional clusters. Another explanation could be false positive predictions of 

genetic subclones triggered by the density of mutations found at the lower allele frequency spectrum 

and arising from neutral tumor evolution. The low number of somatic mutations in pediatric cancers19, 

coupled with limited coverage of the exome (versus whole-genome) and lower sequencing depth 

(~200-300X) compared to targeted sequencing (~1000-1500X) could have contributed to the problem. 

We then looked for somatic mutation allele enrichment in specific transcriptional clusters by assigning 

allele calls to each cell using the single cell RNA-seq read alignment files. Since very few mutations 

had enough coverage and alternate allele calls to be tested for statistical significance, we failed to 
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report strong evidence of mutant allele enrichment. These results could be explained by the limited 

expression levels of genes in each cell and the uneven coverage over genes inherent to the 3’ single cell 

library protocol. We further called copy number variants (CNVs) in each sample to detect events 

present specific to some transcriptional clusters and found a few large gain and loss events in subsets of 

cells of ETV6-RUNX1 samples. Given the high number of genes in these regions, the transcriptional 

impacts of these copy number alterations remain unknown. Taken together, we found some limited 

evidence of subclonal genetic alterations that were linked to intra-individual transcriptional 

heterogeneity in cALL samples. As discussed, this could be explained by the resolution of the 

sequencing data.  Generating single cell DNA sequencing data of a targeted set of mutations on these 

same samples could possibly allow additional discoveries. Relative to this, recent approaches 

combining scRNA and scDNA data better assigned genetic to transcriptional subclones20. Subclonal 

genetic events altering expression could also be more prevalent in samples where the main source of 

transcriptional heterogeneity is not related to the predicted developmental state, since maturation 

potential could be a clonal feature inherent to all cells.  

 

Questions remain about the clinical significance of intra-individual transcriptional heterogeneity in 

cALL. It is unclear whether subsets of cells at various developmental stages or with variable levels of 

maturation potential have any fitness advantages during treatment. A previous study looked at the 

relapse potential of cALL patients at diagnosis using mass cytometry, assigned each individual cancer 

cell to the closest B cell maturation state and found no correlation between the fraction of cells in a 

given state and relapse potential21. Subsets of cells having deregulated expression of oncogenes (e.g. 

sample ETV6.RUNX1.2) or genes involved in treatment resistance could be more susceptible to clonal 

selection. Correcting for developmental state heterogeneity might uncover other subsets of cells having 

additional relevant transcriptional signatures. Although no patients in our study have relapsed, future 

single cell studies using matched diagnosis/relapse should provide valuable information on clonal 

dynamics. Single cell expression data of matched cells should help identify genes and cell surface 

markers that gain or lose expression in resistant cells and provide insights to guide clinical 

interventions.  

 
Methods 
 
Samples 
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Study subjects were diagnosed in the Division of Hematology-Oncology at the Sainte-Justine Hospital 

(Montreal, Canada) and part of the Quebec childhood ALL cohort (QcALL)22. Our study cohort 

consisted of 6 pre-B and of 2 pre-T cALL patients (8 males) with a mean age at diagnosis of 5.8 years 

and a mean blast percentage of 82% (Table 1). All patients were treated under DFCI protocols. Control 

subjects were patients for whom the diagnosis of ALL was not confirmed after bone marrow puncture 

(3 males) and with a mean age of 2.7 years (Table 1). Tumoral DNA specimens were collected from 

bone marrow mononuclear cells (BMMCs) at initial diagnosis and paired normal DNA specimens were 

collected from peripheral blood or bone marrow samples without blast cells. All samples were isolated 

using a Ficoll-Paque gradient fragmentation, washed in PBS and DNA was extracted using the Gentra 

Puregene Blood Kit from QIAGEN according to manufacturer protocol. For single cells, bone marrow 

mononuclear cells were cryopreserved in FBS with 10% DMSO. The Sainte-Justine Institutional 

Review Board approved the research protocols, and informed consents were obtained from all 

participating individuals and/or their parents. 

 
Single cell RNA sequencing and analyses 

Thawed BMMCs were loaded onto the 10X Genomics Chromium single cell platform (v2 chemistry) at 

McGill University and Genome Quebec Innovation Center. We aimed for 3,000 cells per sample and 

targeted 100,000 reads per cell by sequencing each sample on one lane of an Illumina HiSeq 4000 

high-throughput sequencer (26v98 b.p. paired-end sequencing) (Table 2). Sequencing reads were 

processed using the Cell Ranger v2.1.0 pipeline on Ensembl GRCh38.8411. BMMCs from three healthy 

pediatric controls and two publicly available healthy adult control samples (www.10Xgenomics.com) 

were analyzed jointly using the canonical correlation analysis (CCA) in Seurat v2.3.215. Genes 

expressed in at least 5 cells, cells having at least 200 genes expressed and cells having less than 8% 

mitochondrial reads were retained for the analysis.  Expression estimates of the genes were regressed 

out for number of unique molecular identifiers (nUMI), percentage of mitochondrial reads and the S 

and G2/M cell cycle scores. The thousand most variable genes were selected for each sample and 

pooled to create a unique list of genes being highly variable in at least two samples (n=883). These 

genes were kept for the CCA and the top ten canonical correlation vectors were used as input for 

UMAP v0.2.323. Cell types were identified using the expression of known cell surface marker genes 

(CD34/CD34+, CD79A/B cells, MS4A1/CD20+ B cells, CST3/Monocytes, GATA1/Immature 

Erythrocytes, HBA1/Erythrocytes, CD3D/T cells, NKG7/NK cells, MZB1/BCMA). A second analysis 

was done on cells of three healthy pediatric controls and eight cancer samples. The same cell and gene 

filters as described above were applied and a Seurat object was created by iteratively merging each 
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dataset. A principal component analysis (PCA) was run on the most variable genes (n=468) and the top 

twenty principal components were used as input for both UMAP and cluster identification using 

Louvain’s algorithm24 with a resolution of 0.1. Cells from cancer samples that did not cluster with 

control cell clusters and those that were in the G1 cell cycle phase were retained for downstream 

analyses. The most variable genes were identified in these filtered cells (n=560) and used as input for 

both PCA and UMAP. The most representative clustering solution was obtained by finding clusters 

using resolutions of 0.1 to 3.0 with a step of 0.1. For each of these 30 solutions, we computed all 

pairwise Adjusted Rand Index (ARI) values and retained the clustering solution with the highest ARI 

mean (optimal resolution=1.3). Clusters containing less than 10% of cells in a sample were discarded 

for statistical reasons. Intra-individual differential gene expression analyses were done using the MAST 

test25 (Supp. Table 3).  Gene ontology analyses were done using goseq v1.3.026 on the top hundred 

differentially expressed genes ranked by adjusted p-value. Single cell allele calls of somatic mutations 

derived from exome data were obtained using vartrix v1.1.027. Copy number profiles of intra-individual 

transcriptional clusters were obtained by generating thirty equal-sized metacells (sum of raw expression 

counts of single cells) per cluster that were used as input to infercnv v.0.99.428. Metacells of healthy 

pediatric BMMCs were used as control. Single cell RNA-seq data are available in GEO under 

GSE132509. 

 
Developmental state classifiers and ribosomal protein expression 
 
UMAP coordinates of healthy BMMCs corresponding to the developmental spectrum of B cells 

(CD34+, B cells and CD20+ B cells) and T cells (CD34+, Immature erythrocytes, T cells) were 

extracted for input to loess fits. Cells were projected onto the fit line at the closest distance.  Outlier 

cells with distances of more than three standard deviations from the mean were discarded. Cell 

distances along the fit line were calculated, scaled between 0 and 1 and set as the developmental state 

pseudotime. Normalized and scaled expression values of the most variable genes determined in the 

Seurat CCA were extracted and used as input for one-layer fifteen nodes neural networks using the R 

package nnet v7.3-12. Classifier performances on control cells were assessed using cross-validation of 

a hundred 70/30 splits and mean RMSE values were computed. Final classifiers were trained on all 

healthy cells and used to predict the developmental pseudotime of each leukemia cell. Ribosomal 

protein (RP) expression per cell was defined as the ratio of raw reads mapped to ribosomal protein 

genes (RPS-*, RPL-*; n=97) divided by the total number of raw reads per cell. 

 
Exome sequencing and analyses 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 27, 2019. ; https://doi.org/10.1101/683854doi: bioRxiv preprint 

https://doi.org/10.1101/683854
http://creativecommons.org/licenses/by-nc-nd/4.0/


11 
 

 
Exome sequencing and analyses were performed as previously described29; whole exomes were 

captured using Agilent’s SureSelect XT Clinical Research Exome kit per manufacturer’s protocol and 

librairies were sequenced on Illumina high throughput sequencers (HiSeq 2500 or 4000 in paired-end 

2x75b.p. or 2x100b.p.) targeting mean coverage of 300X for tumor and 100X for normal. Raw reads 

were aligned to the hg19 genome reference using bwa v0.7.730, duplicates were marked using Picard 

v1.107 (http://broadinstitute.github.io/picard/) and indels realigned and bases recalibrated using GATK 

v3.3.031. Somatic mutations of matched tumor/normal were obtained using mutect v1.1.632, filtered for 

the PASS flag and variant allele frequency > 0.05 (n=2748, Supp. Table 5). Variants were lifted over 

using vcf-liftover (https://github.com/liqg/vcf-liftover) for use with single cell RNA-seq data (hg19 → 

GRCh38, n=2731/2748, 99.4%). Mutations with high coverage (> 100X) were used as input to 

sciClone v1.1.033 and clonEvol v0.99.1134 to generate clonal evolution models. Copy number calls 

were obtained using sequenza v2.1.035. 
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Figure legends 
 
Figure 1. Cell types identified in healthy pediatric and adult bone marrow mononuclear cells 

(BMMCs) using single cell RNA-seq. A) UMAP representation of healthy BMMCs from three 

pediatric (PBMMC; n=6,836 cells) and two adult (ABMMC; n=3,467 cells) donors. B) Expression of 

cell surface marker genes used to assign cell types: CD79A (B cells), CST3 (Monocytes), CD3D (T 

cells) and HBA1 (Erythrocytes). C) Cell types identified in healthy pediatric and adult BMMCs. D) 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 27, 2019. ; https://doi.org/10.1101/683854doi: bioRxiv preprint 

https://doi.org/10.1101/683854
http://creativecommons.org/licenses/by-nc-nd/4.0/


12 
 

Proportion of cells of a given cell type in pediatric and adult BMMCs. E) Proportion of healthy cells in 

predicted cell cycle phases per cell type (G1, S and G2/M). 

 
Figure 2. Transcriptional landscape of cALL cancer cells. A) UMAP representation of BMMCs 

from three healthy pediatric donors (n=6,836 cells) and eight cALL patients (n=32,086 cells). B) 

UMAP representation of predicted cell cycle phases for healthy and cancer BMMCs. C) Proportion of 

cells clustering with healthy cell clusters. D) Proportion of cancer cells in predicted cell cycle phases 

(G1, S and G2/M). E) Heatmap and unsupervised clustering of normalized and scaled expression of the 

top 100 most variable genes in leukemia cells. 

 
Figure 3. Intra-individual transcriptional heterogeneity reveals deregulated genes and pathways 

within cALL samples. A) UMAP representation of cALL cells in G1 phase not clustering with healthy 

cell clusters (n=16,731). B) Mean Adjusted Rand Index (ARI) of clustering solutions over a range of 

resolutions (highest mean ARI at 1.3 resolution). C) Clusters of cells identified in cALL samples using 

the highest mean ARI resolution. D) Proportion of cells belonging to each intra-individual cluster after 

removing clusters having less than 10% of cells (n=16,162). E) Differentially expressed genes between 

two the clusters of cells within the HHD.1 sample (log fold-change > 0.75 = green, > 1 = orange). F) 

Heatmap and unsupervised clustering of enriched GO biological pathways obtained using the top 100 

most significant differentially expressed genes of cALL samples. 

 
Figure 4. Predicted developmental state is inversely correlated with ribosomal protein expression 

in cALL cells and is a major source of intra-individual transcriptional heterogeneity. A) Left: 

UMAP representation of the maturation spectrum of healthy pediatric and adult B cells (CD34+ → B 

cells → CD20+ B cells) used for the B cell developmental state classifier. Right: UMAP representation 

of the maturation spectrum of healthy pediatric and adult T cells (CD34+ → Immature Erythrocytes → 

T cells) used for the T cell developmental state classifier. Cells were projected onto the loess fit of the 

spectrum and assigned a pseudotime value of 0 to 1 from the first stem-like cell to the last mature cell. 

B) Observed vs predicted pseudotime of healthy B and T cells using a hundred 70/30 cross-validation 

splits; mean RMSE was computed over all splits. C) Density of predicted developmental state 

pseudotime distributions of leukemia cells per sample and intra-individual transcriptional cluster. D) 

Boxplot of ribosomal protein (RP) expression percentage in leukemia cells per sample and intra-

individual transcriptional cluster. E) Pseudotime vs ribosomal protein expression in samples showing 

strong (HHD.1) vs weak (ETV6.RUNX1.2) intra-individual pseudotime and ribosomal protein 
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expression shifts. F) Heatmap of normalized and scaled expression of ribosomal protein genes per cell 

sorted from high to low. An expression gradient correlated to cluster assignment can be observed in 

sample HHD.1 but not ETV6.RUNX1.2. 

 
Figure 5. Somatic alterations and intra-individual expression variability. A) Copy number profiles 

of samples and intra-individual transcriptional clusters using equal size metacells and healthy pediatric 

BMMCs as control cells. B) Number of somatic mutations in cALL samples. C) Genomic annotations 

of somatic mutations in cALL samples. D) Gene names and variant allele frequencies of exonic non-

synonymous somatic mutations in cALL samples. E) Number of somatic mutations used as input to 

obtain allele calls from single cell RNA-seq alignment files using vartrix (all = number of GRCh38 

mutations lifted from hg19; covered = number of mutations covered in at least one cell; with alt = 

number of mutations with at least one mutant allele call). F) QQ-plot of Fisher’s exact test p-values of 

somatic mutations tested for enrichment in intra-individual transcriptional clusters (> 0.1% of cells 

with mutant allele call, n=31 mutations). 

 
Supplementary Figure 1. A) UMAP representation of cells from three healthy pediatric (n=6,836 

cells) and eight cALL (n=32,086 cells) datasets. B) Proportion of cells clustering with healthy cell 

clusters (T + NK cells, B cells + Monocytes, Erythrocytes) per sample. C) Cell cycle phases after 

regressing out S and G2/M phase scores. D) Expression of the CD79A B cell marker gene in cancer 

cells. E) Expression of the CD3D T cell marker gene in cancer cells. F) Number of unique molecular 

indexes (nUMI) in cancer cells. 

 
Supplementary Figure 2. Predicted genetic clonal evolution models of cALL. 
 
Supplementary Figure 3. Copy number profiles of cALL samples using exome sequencing data. 
 
Supplementary Figure 4. B-allele frequency and depth ratio of cALL samples using exome 
sequencing data. 
 
Table 1. Metadata of samples used in the study. 
 
Table 2. Single cell statistics of samples used in the study. 
 
Supplementary Table 3. Intra-individual differential expression analyses results. 
 
Supplementary Table 4. Enriched biological pathways obtained from the top hundred intra-individual 

differentially expressed genes. 
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Supplementary Table 5. Somatic mutations called from matched tumor/normal whole exome data. 
 
Supplementary Table 6. Fisher’s exact test results of mutant allele enrichment in intra-individual 

transcriptional clusters. 
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