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Abstract 

Cytochrome P450 2D6 (CYP2D6) is a highly polymorphic gene whose protein product 

metabolizes more than 20% of clinically used drugs.  Genetic variations in CYP2D6 are 

responsible for interindividual heterogeneity in drug response that can lead to drug toxicity and 

ineffective treatment, making CYP2D6 one of the most important pharmacogenes.  Prediction of 

CYP2D6 phenotype relies on curation of literature-derived functional studies to assign a 

functional status to CYP2D6 haplotypes.  As the number of large-scale sequencing efforts 

grows, new haplotypes continue to be discovered, and assignment of function is challenging to 

maintain.  To address this challenge, we have trained a deep learning model to predict 

functional status of CYP2D6 haplotypes, called Hubble.2D6.  We find that Hubble.2D6 predicts 

CYP2D6 haplotype functional status with 88% accuracy in a held out test set and explains a 

significant amount of the variability in in vitro functional data.  Hubble.2D6 may be a useful tool 

for assigning function to haplotypes with uncurated function, which may be used for screening 

individuals who are at risk of being poor metabolizers. 

Introduction  

Cytochrome P450 family 2, subfamily D, polypeptide 6 (CYP2D6), is one of the most important 

pharmacogenes. The protein, a hepatic enzyme, metabolizes more than 20% of clinically used 

drugs including antidepressants, antipsychotics, opioids, antiemetics, antiarrhythmics, β-
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blockers, and cancer chemotherapeutics1–3. In the UK Biobank 11% of participants are on a 

drug with an FDA label indicating actionable or informative CYP2D6 pharmacogenetics4.  

CYP2D6 is highly polymorphic, making it challenging to address clinically5,6. More than 140 

haplotypes comprised of single nucleotide variants (SNVs), insertions and deletions (INDELs), 

and structural variants (SVs) have been discovered and catalogued in the Pharmacogene 

Variation Consortium (PharmVar; www.pharmvar.org), many of which are known to alter 

enzymatic activity and protein expression levels7,8.  Individuals can be grouped by their CYP2D6 

metabolic function and are typically classified into one of four metabolizer (or phenotype) 

groups: normal (NM), intermediate (IM), poor (PM), and ultrarapid metabolizers (UM).  

Phenotype frequencies vary widely among global populations with PMs ranging from 0.5% to 

5.4%, IMs ranging from 2.8% to 11%, and UMs ranging from 1.4% to 21.2%9.  

Despite its highly polymorphic nature, CYP2D6 is one of the most clinically actionable 

pharmacogenes. A standardized method to translate CYP2D6 genotype has been 

recommended by the Clinical Pharmacogenomics Implementation Consortium (CPIC)10. Clinical 

guidelines providing dosage recommendations for different phenotype groups have been 

published by CPIC for drugs metabolized by CYP2D6, including opioids, selective serotonin 

reuptake inhibitors, tricyclic antidepressants, the attention-deficit/hyperactivity disorder drug 

atomoxetine, the estrogen receptor modulator tamoxifen, among others11–15
. Following the 

guidelines for these drugs could improve patient outcomes by decreasing adverse effects or 

increasing efficacy16. It has even been suggested that pharmacogenetics-guided opioid therapy 

could be part of a solution for combating the opioid epidemic17.  A major insurance company 

recently announced coverage of CYP2D6 genotype among other genes for improved selection 

of antidepressants, marking a major advancement in the incorporation of pharmacogenomics in 

patient care18.   
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Pharmacogenetic dosing guidelines presume that the clinician has access to the patient’s 

CYP2D6 genotype and that the resulting phenotype can be predicted with accuracy. The 

system used to translate CYP2D6 genotype into phenotype is known as the activity score (AS) 

system, which has been widely adopted and is utilized by CPIC10,19.  CYP2D6 haplotypes are 

named using the star allele nomenclature curated by PharmVar, which defines the core variants 

for each star allele6–8.  Core variants are typically coding variants, but can also be functionally 

important variants such as splice junction variants.  The AS works by first assigning a value to 

each star allele (0 for no function alleles, 0.25 or 0.5 for decreased function alleles, and 1 for 

normal function alleles; gene duplications receive double the value of their single counterpart), 

then summing the values assigned to each allele. The resulting AS for the person’s pair of 

haplotypes (or diplotype) is used to determine the CYP2D6 phenotype, which can then be used 

to inform treatment decisions10.  

The scores used for a CYP2D6 haplotype’s contribution to an individual’s AS rely heavily on the 

manual curation of star allele function through a review of the literature. Most often, in vitro 

experiments and in vivo phenotype measures are used to make a determination of star allele 

function.  Even where in vitro functional studies exist, however, it can be difficult to assess 

haplotype function due to variability between expression systems and substrates. 

The current reliance on manual curation for scoring of CYP2D6 haplotypes limits the ultimate 

utility of CYP2D6 phenotype prediction for pharmacogenetic guidance of treatment decisions.  It 

is estimated that individuals carrying CYP2D6 haplotypes with an unknown, uncertain, or 

uncurated function (herein referred to collectively as uncurated) range from 2 to 9%, with a 

study of the UK Biobank finding that 8% of individuals carry haplotypes of uncurated function4,20. 

Individuals carrying a haplotype with uncurated function cannot be assigned to a distinct 

metabolizer group using the AS and are instead labeled as “Indeterminate”. Therefore, for these 

patients, pharmacogenomic-guided therapy for drugs metabolized by CYP2D6 (e.g. CPIC 
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dosing guidelines) cannot be used.  In fact, there are currently over 70 star alleles in PharmVar 

with unknown, uncertain, or uncurated function.  Additionally, the extent of the true population 

level variation in CYP2D6 is likely far greater than that which can be explained by existing star 

alleles.  In gnomAD, a large aggregate database of genomes, 544 nonsynonymous SNVs and 

INDELs are identified in CYP2D6, and only 98 of those are included in existing star alleles in 

PharmVar21.  Further work is required, however, to determine whether these SNVs can truly be 

ascribed to CYP2D6 or whether they are misaligned from CYP2D7, a highly homologous 

pseudogene of CYP2D6. 

With the ever-increasing amount of sequencing data being generated, the number of novel 

haplotypes of CYP2D6 keeps increasing making it even more difficult to generate functional 

data that fulfil the criteria for function assignment recently described by CPIC22.  The current 

framework of manual curation of literature in order to assign function to newly discovered star 

alleles will be challenged to keep up with the rate at which star alleles are discovered, since 

there will be a lag between the discovery of the star alleles and the generation of functional data 

for rare alleles.  

Methods for predicting variant deleteriousness in silico are abundant, but these methods are 

often developed to be of general purpose genome-wide and are not gene locus specific. Even 

when gene-specific methods exist, these methods are focused on the prediction of the impact of 

single variants, rather than the prediction of the impact of a combination of variants. There are 

existing methods that can predict function for pairs of variants23, but CYP2D6 star alleles can 

have as many as ten core variants (e.g. CYP2D6*57).  To predict function of CYP2D6 

haplotypes in silico, a purpose-built tool is needed.  Tools have been developed to assign 

CYP2D6 star alleles to sequence data, but these tools do not predict star allele function24,25. 
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The rise of big data and machine learning, in particular deep learning, has revolutionized 

computer vision and is being successfully applied to applications in genetics26.  Deep learning 

presents an attractive solution for making functional predictions about variation in highly 

polymorphic genes, like CYP2D6.  However, deep learning algorithms require massive amounts 

of data to be used effectively and using deep learning to address all problems in genetics is not 

straightforward.  Many domains in genetics are data limited and therefore challenging to 

address with complex algorithms.  Data scarcity has been addressed in computer vision through 

the use of transfer learning, where a neural network is pretrained on a large corpus of data, then 

adapted to a new domain by transferring the coefficients learned by the network to a new 

network.  This is particularly useful in cases where there are spatial or sequential motifs that are 

shared between the source and target tasks.  A neural network can be pretrained using real 

data from a related task, or simulated data labeled using an existing knowledge source. 

Neural networks offer flexibility in the way data is represented.  For computer vision tasks, data 

is represented using three stacked matrices, or channels, representing the RGB channels used 

to color pixels.  Genetic data is represented using a one-hot encoded 4xN matrix, where there 

are four channels for each of the possible nucleotides and N represents the sequence length.  It 

is possible to include additional information about each position in the sequence by adding 

additional channels to this input matrix.  This flexibility allows us to include variant annotation 

information, such as whether a variant is in a coding region or whether it is predicted to be 

deleterious.  A functional representation of genetic variants such as this may provide context for 

observed variants that the neural network can use to reason about newly observed variants. 

Here we present a model for predicting function of CYP2D6 haplotypes, Hubble.2D6.  

Hubble.2D6 predicts a functional phenotype of CYP2D6 haplotypes from DNA sequence data 

using a convolutional neural network (CNN).  The model predicts whether a CYP2D6 haplotype 

will have normal, decreased, or no function.  We validated our model using in vitro studies from 
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literature of 48 star alleles, of which 39 had not previously been seen by the model.  We 

generated predictions for 71 CYP2D6 star alleles that do not yet have a curated function, which 

may help in increasing the availability of CYP2D6 phenotype prediction.  We trained our model 

using transfer learning and a functional variant representation, and show that these features 

greatly improve the ability of the network to learn to predict function. 

Results 

We trained Hubble.2D6, a deep learning model that predicts star allele functional phenotype 

from DNA sequence, to classify CYP2D6 star alleles as normal, decreased, or no function (Fig. 

1).  Hubble.2D6 was trained to classify function on a set of star alleles for which a functional 

label has been assigned by curators.  We used a training set of 31 star alleles with curated 

function and a separate set of 25 star alleles with curated function for model validation.  

Hubble.2D6 correctly predicts the functional phenotype of 100% of the 31 star alleles used for 

training and 88.0% of the 25 star alleles used as a held-out validation set (Fig. 2a & b).  The 

only misclassifications among samples with curated function are two decreased function alleles 

in the test set that were predicted to be no function alleles (CYP2D6*14 & CYP2D6*72). Of the 

71 star alleles with unknown, uncertain or not yet curated function, 30 were predicted to be 

normal function, 36 decreased function, and 5 were predicted to be no function, although the 

true function of these star alleles remains uncurated (Fig. 2c).  Predictions for all investigated 

star alleles, including those with uncurated function, are provided in Supp. Table 1.  

 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted February 9, 2020. ; https://doi.org/10.1101/684357doi: bioRxiv preprint 

https://doi.org/10.1101/684357
http://creativecommons.org/licenses/by/4.0/


8

 

 

 

 

8 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted February 9, 2020. ; https://doi.org/10.1101/684357doi: bioRxiv preprint 

https://doi.org/10.1101/684357
http://creativecommons.org/licenses/by/4.0/


9 

Figure 1. Schematic overview of the Hubble.2D6 workflow.  (A) Sequences and functions for 
all existing star alleles in PharmVar were collected and divided into training and validation 
datasets.  Star alleles with uncurated function were held from training.  (B) Star allele 
sequences were annotated with functional annotations and one-hot encoded as preparation 
for input into the deep learning model.  (C) One-hot encoded sequence and annotation data 
was read into a convolutional neural network that output scores for two classes: a score 
indicating a normal functioning allele, and a score indicating a no function allele. (D) The two 
score outputs from the model were transformed into one of the three functional classes using 
cutoffs that were set to optimize sensitivity and specificity in the training data.   

  

 

Figure 2. Star allele classification results.  The figures depict performance metrics for the 
prediction of star allele function in the training and validation sets; confusion matrices for class 
prediction in training and validation are shown in (a) and (b), respectively.  (c) shows the 
frequency of predicted functions for uncurated star alleles. 

 

We evaluated our predictions with in vitro data from a study describing functional 

characterization of 46 CYP2D6 star alleles27.  Of the star alleles characterized by this study, 30 
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have a CPIC assigned functional label.  Of the 30 curated function alleles with in vitro functional 

data, 23 were held out from training to be used in the validation set for model evaluation.  For 

these 23 star alleles used for evaluation, our predicted labels explain 71% of the variance, 

approximately equal to the variance explained by the CPIC assigned labels, 71.1% (Fig. 3a and 

b).  We also assessed the function of 16 star alleles from this study that have not yet been 

assigned function by CPIC.  For these uncurated alleles, two are predicted to have no function, 

nine decreased function, and five normal function.  Our predicted labels explain 47.5% of the 

variance in the measured activity in the uncurated alleles, the mean measured in vitro activity of 

each predicted phenotype group for the uncurated alleles were significantly different as a result 

of a one-way ANOVA (P=0.014, Fig.3c and d).   

 

 

Figure 3. Prediction of star allele function with in vitro data.  The figures summarize the 
distribution of metabolic activity measured in vitro for star alleles whose function was 
predicted by Hubble. The distribution of functional activity is shown in A and B for star alleles 
with curated function. (a) star alleles included in the training process are depicted with a 
triangle, and those held for testing are depicted with a circle.  Error bars depict the standard 
error of the measured function.  The outer edge of each point indicates the true, curator-
assigned phenotype, while the inner color represents predicted function.  (b)  distribution of 
values for each predicted functional class for data shown in A. (c) star alleles without assigned 
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function status; colors represent the predicted function. (d) variance in measured activity of 
the star alleles for each predicted label for data shown in C. 

 

We interpreted the predictions made by Hubble.2D6 by calculated importance scores for each 

variant in each star allele sequence using DeepLIFT.  This allows us to see the relative 

importance of each variant to the final prediction (Fig. 4).  Additionally, we wanted to understand 

whether the model was relying on core variants shared between star alleles to make 

predictions, or whether novel variants were driving the predictions.  We found that, although 

there is some overlap in core variants between the train and test groups, most star alleles 

predicted to be of decreased or no function carried unique variants with large importance 

scores.  Importance scores for uncurated star alleles are shown in Supp. Fig. 1. 
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Figure 4.  Importance scores for core variants in each star allele used for training and test of 
Hubble.2D6.  Star alleles are along the y-axis and core variants (both amino acid changes 
and non-coding changes) are listed along the x-axis.  Each dot represents the importance of 
the core variant to the final prediction as determined by DeepLIFT.  The size of the dot 
represents the value of the importance score, with larger dots indicating variants with larger 
importance scores, typically associated with a negative impact on function.  Star alleles are 
annotated with the curated function as well as the Hubble.2D6 predicted function.  Star alleles 
are divided along the y-axis between star alleles that were included in the training data (top) 
and those used as test samples (bottom).  Star alleles are sorted by the sum of the 
importance scores, with those with the largest sums at the bottom.  Core variants are divided 
along the x-axis by those that are uniquely in either the training or test samples (right), and 
those that are shared between star alleles in train and test (left).  Core variants are sorted by 
their mean importance score across all star alleles.  Core variants are annotated with the 
deleteriousness prediction used in the functional variant representation with red indicating a 
variant predicted to be deleterious and blue indicating a variant predicted to be benign 
(described in Methods). 
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We evaluated the contribution of transfer learning and using a functional variant representation 

by training three new models: two leaving out a single component (one without transfer learning, 

one without the functional variant representation), and one without either component.  We 

compared the classification accuracy of each of these models to the full model that was trained 

with both components (Fig. 5).  We found that the test accuracy was 28% when excluding both 

components, 40% for excluding only transfer learning, and 44% excluding only the functional 

variant annotation, compared to 88% accuracy for the full model.  We evaluated each included 

annotation in the functional variant representation in a similar way.  We found that the 

annotation that most improved the classification accuracy was indicating whether a variant was 

rare in the population (68% test accuracy), followed by annotating whether a variant is predicted 

to be deleterious (52% test accuracy). 

 

Figure 5. Evaluation of the contribution of deep learning model components.  The figure 
depicts the training and test classification for models trained under various constraints.  Under 
“Component evaluation”, we test the contribution of transfer learning and the inclusion of 
annotations in the variant encoding.  Each were tested individually, together, and one model 

13 

g, 
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was built with neither component.  Under “Annotation evaluation” we depict in classification 
accuracy for models trained with a single added annotation.  Each point represents the 
accuracy of a model trained using transfer learning with a one-hot encoding of the nucleotide 
sequence, but only the specified annotation was included in the encoding of the variant.  The 
full model contains all listed annotations together. 

 

Discussion 

Here we present Hubble.2D6, a model for predicting functional phenotypes of CYP2D6 star 

alleles.  Given a star allele sequence, Hubble.2D6 classifies the haplotype as a normal, 

decreased, or no function.  Hubble.2D6 has 88.0% accuracy on a held-out validation set  of 

existing haplotypes with curated function.  Additionally, we find that in star alleles with uncurated 

function, the functional predictions from Hubble.2D6 explain a significant amount of the variance 

in in vitro functional measurements, indicating that the Hubble.2D6 assigned labels correlate 

with actual function.   

Predictions of star allele function in silico, such as the ones output by Hubble.2D6, can be 

utilized in several applications in the current pharmacogenomic landscape.  Functional 

predictions could serve as an additional source of evidence when assigning function to star 

alleles.  In cases where in vitro data is limited or variable, predicted phenotypes from 

Hubble.2D6 may be used to guide functional assignment decisions, analogous to a computer-

aided decision tool.  High throughput assays to generate in vitro activity data for large numbers 

of variants have been suggested for pharmacogenomic applications but have yet to be run 

comprehensively28.  Since Hubble.2D6 takes as input the full coding and non-coding sequence 

of the CYP2D6 locus, any variant or combination of variants can be rapidly assessed.   

Ultimately, functional predictions are anticipated to be part of the clinical prediction of haplotype 

function in the absence of other data.  Currently, if a clinician encounters a patient with a 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted February 9, 2020. ; https://doi.org/10.1101/684357doi: bioRxiv preprint 

https://doi.org/10.1101/684357
http://creativecommons.org/licenses/by/4.0/


15 

haplotype of uncertain, unknown or uncurated function in a patient, his/her metabolizer status 

cannot be predicted. Considering the number of star alleles in one of these categories, as many 

as 8% of patients will not receive a phenotype assignment.  Rather than proceed without 

pharmacogenetic guidance, a phenotype may be predicted using Hubble.2D6.  For example, 

the patient may be more closely followed, or drug level monitoring employed following the 

initiation of drug therapy, or a drug from a different class selected as a precaution to avoid 

adverse effects.  Such a scenario may be preferable opposed to proceeding blindly without any 

indication of the patient’s metabolizer status.  As we strive to make personalized predictions of 

drug response a reality for every patient, it is important to be able to provide accurate predicted 

phenotypes for as many patients as possible.   

There are four haplotypes with uncurated function-carrying variants that would likely obliterate 

function.  Star alleles CYP2D6*81, CYP2D6*120, and CYP2D6*129 carry nonsense mutations, 

and CYP2D6*124 has a frameshift insertion. Of these four alleles, only one was predicted to be 

a no function allele (CYP2D6*120), and the other three were predicted to have decreased 

function, rather than no function.  A prediction of “no function” would be more intuitive, as these 

types of variants are well known to lead to a non-functional protein. The model importance 

scores show that the model heavily weighted the variant leading to a premature stop in 

CYP2D6*120, however, the presumably loss-of-function variants in the other star alleles 

received considerably lower importance scores (Supp. Fig. 1).  Each of the four loss-of-function 

variants is predicted to be deleterious by LOFTEE29.  It seems that the model treats newly seen 

variants conservatively and outputs a prediction of decreased function rather than no function.  

Although this is an important distinction, providing an indication that the allele will metabolize 

drugs abnormally may still be beneficial. More training data with more varied examples of loss-

of-function variants may improve future versions of the model.   
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An important contribution of this work is the finding that deep learning models can be trained for 

small-scale problems in genetics.  The highly polymorphic nature of CYP2D6 makes it an 

attractive application for deep learning, but the limited number of haplotypes with known 

function to use as training data limits our ability to train large models effectively.  We show that 

through the use of both transfer learning and the inclusion of variant annotations we can train a 

model to predict haplotype function with high accuracy.  The intuition that motivates this is that, 

first, by pretraining the model on simulated and real data it has learned weights for motifs 

related to commonly observed variants.  This prevents the model from having to learn all motifs 

from scratch during the training phase.  Second, by including variant annotations in the variant 

encoding the model has been provided with additional useful information.  With enough data a 

model may be able to learn that a certain nucleotide change would be likely to be deleterious, 

but in a space where data is scarce it may be better to provide the model with that information 

upfront.  As we can see from the variant importance scores in Fig. 4 many of the variants with 

large importance scores are unique to a single star allele, so it is important for the model to 

learn the principles that lead to a functional change rather than nucleotide motifs alone.  We 

show that by combining these two methods the result is a more accurate predictor than either 

method alone. 

There are several limitations to our CYP2D6 predictive models. First, we do not include 

structural variation in the CYP2D6 locus in our model.  This prevents the model from being able 

to predict function of star alleles with structural variation including hybrid genes30 (e.g. CYP2D7-

2D6 or CYP2D6-2D7), gene deletions31 (e.g. CYP2D6*5), and copy number variants.  Thus, 

Hubble.2D6 does not predict increased function at this point in time.  While these are important 

types of alleles to consider, all known occurrences of hybrid genes result in a complete loss of 

function, so in silico prediction of function is not necessary, and changes in copy number are 

easily accounted for with the use of the activity score.  In the current star allele definitions, the 
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only source of increased function alleles is due to gene duplication events.  Second, since we 

only considered a narrow range of upstream and downstream sequences of CYP2D6 we have 

not captured distal effects on gene expression, such as a long-distance ‘enhancer’ SNV that has 

been described to be associated with decreased function32–34. Distal regulatory effects are not 

included by the current model, which may limit our ability to fully explain the observed variability 

in enzymatic activity using CYP2D6 sequence alone. However, these distal effects would not be 

captured by conventional in vitro expression studies either.  Third, the validation performed used 

in vitro data for only 50 star alleles, and the data was generated using one expression system in 

a single laboratory.  Substantial variance exists in measured functional activity of star alleles 

between laboratories.  Further functional assessment of star alleles compared to Hubble.2D6 

predictions could inspire greater confidence in our ability to predict function in silico. Finally, 

there may be factors impacting CYP2D6 activity outside the gene sequence, such as variation 

in other genes or whether an individual is taking CYP2D6 inhibitors such as selective serotonin 

reuptake inhibitors35,36.  These factors are not included in our model as we only focus on the 

genetic variation in the CYP2D6 locus. 

In summary, we have created a model for the prediction of metabolic activity for CYP2D6 

haplotypes from sequence data.  We find that our model has high accuracy predicting allelic 

function, and that our predicted function labels explain a significant amount of the variance 

observed in CYP2D6 metabolic activity in vitro.  This model may be useful to predict phenotype 

of patients carrying haplotypes, which are either uncurated or have unknown/uncertain function 

assignments 
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Methods 

Model Overview 

We trained a multiclass convolutional neural network (CNN) classifier to predict CYP2D6 

haplotype function from DNA sequence. The deep learning model used is a three layer CNN 

following the Basset architecture37.  The output is one of three functional statuses: “No function”, 

“Decreased function”, or “Normal function”, following the clinical function assignments provided 

by CPIC and posted by PharmVar, excluding “Increased function” (Fig. 1).  Hubble.2D6 does 

not make predictions for increased function alleles because the only increased function alleles 

identified for CYP2D6 occur as a result of gene duplications; only SNVs and small INDELs are 

considered.  Hubble.2D6 reads in a one-hot encoded matrix representing the full DNA sequence 

of the haplotype in addition to eight variant level functional annotations and outputs two scores: 

(1) the probability that the haplotype is a no function allele and (2) the probability that the 

haplotype is a normal function haplotype.  The two scores are then transformed into one of the 

three functional classes (no function, decreased function, or normal function) using cutoffs that 

are defined to maximize sensitivity and specificity of the functional predictions in the training 

data.  For example, a haplotype receiving a no function probability greater than 0.5 and a 

normal function probability less than 0.7 is classified as a decreased allele. 

Although only two scores are output they are combined to map the function to one of the three 

possible outcomes; this setup formats the prediction task as an ordinal regression problem such 

that the network can learn the ranking of the functional groups38.  The first score, the no function 

score, differentiates between no function alleles and alleles with either decreased or normal 

function.  No function alleles are indicated with a 0 as the first score while alleles with any other 

function are indicated with a 1.  Likewise, the second score, the normal score, differentiates 

between alleles with normal function and alleles with either decreased or no function.  Normal 
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function alleles have a score of 1 for the second score while others have a score of 0.  Leading 

to a scoring system where each of the three function classes can be yielded from only two 

scores.  This scoring system is superior to a classification setup that assumes class 

independence because it allows the network to learn that no function alleles are more similar to 

decreased function alleles than they are to normal function alleles, and vice versa.  

The input into the model is genetic sequence data. For each star allele the data is converted 

into a one-hot encoded matrix of DNA variation and variant-specific functional annotations for 

each position in the CYP2D6 locus (chromosome 22, 42,521,567-42,528,984, hg19). The 

interrogated region includes 2,103 bp of upstream and 934 bp of downstream sequence which 

corresponds to the region covered by the PGRNseq platform39.  We used eight variant level 

annotations that may influence gene expression or protein function to create a functional variant 

representation.  Each base in the capture window was annotated with a binarized annotation for 

the following characteristics: 

1. If the variant is in a coding region, as defined by the RefSeq (NG_047021.1)40 

2. If it is rare in the population. Defined as allele frequency among all populations in 

gnomAD < 0.05. 

3. If it is deleterious. If it is a coding variant, we use an ADME optimized framework for 

predicting deleteriousness41. If it is non-coding we use a majority vote of CADD, DANN, 

and FATHMM41–44. LOFTEE predictions of deleteriousness supersede the other 

methods, if available29. 

4. If it is an INDEL of any length. INDELs are reduced to the first nucleotide and given the 

INDEL annotation, so as to keep the length of each sequence the same. 

5. If it is in a methylation mark, as defined by UCSC Genome Browser tracks 

wgEncodeHaibMethyl450Gm12878SitesRep1 and 

wgEncodeHaibMethylRrbsGm12878HaibSitesRep145,46. 
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6. If it is in a DNase hypersensitivity site. We use UCSC Genome Browser track 

wgEncodeAwgDnaseMasterSites. 

7. If it is in a transcription factor binding site. We use UCSC Genome Browser tracks 

tfbsConsSites and wgEncodeRegTfbsClusteredV3. 

8. If it is a known CYP2D6 expression quantitative trait loci (eQTL) for any tissue in gTEX 

v647.  

9. If it codes for a residue in the CYP2D6 active site where the substrate binds to the 

protein48. 

Variants are annotated using a custom pipeline that includes annovar, VEP, and a script for 

binarizing the annotations49,50.  The final dimensions of the input haplotype matrix are 7417x12 

(the length of the locus window x the nucleotide vector).  Every base in the sequence window, 

coding and non-coding, is annotated and converted into a 1x12 vector (four possible 

nucleotides, eight annotations).   

Training procedure 

The number of existing star alleles with curated function was small for typical deep learning 

applications, thus transfer learning was utilized to reduce the amount of training data required to 

create a robust model. Hubble.2D6 was trained in a stepwise process with two pre-training 

steps, first with simulated data and second with real data.  Each step in the training procedure 

used a CNN with identical number of convolutional layers and filter shapes, although the model 

output varied at each step.  This allowed the weights of the convolutional layers learned at each 

step to be transferred to the next stage in training, iteratively updating the weights with different 

datasets. 

First, a CNN classifier was trained to predict the activity score of 50,000 simulated pairs of 

haplotypes (or diplotypes), thereby creating a neural network representation of the activity score 
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(the simulation procedure is described in the following section).  We simulate diplotypes rather 

than haplotypes in order to be able to further train the model using functional activity data 

collected from liver microsomes.  In the second stage of training, a regression model was 

trained to predict measured metabolic activity of 314 liver microsome samples using 

dextromethorphan as substrate51.  The weights derived from the convolutional layers of the first 

model were transferred to the second model and the fully connected portion of the model was 

retrained using randomly initialized weights.  The input to this second model was the pair of 

haplotypes identified through sequencing of the CYP2D6 loci encoded in the same manner 

described previously (these data are described in the following section).  The final model was 

created by removing the final output layer of the network trained on the liver microsome data 

and adding a new output layer with two neurons with sigmoid activations, corresponding to the 

two outputs described previously (one representing no function status, another representing 

normal function status).  The new network was created by creating a new neural network with 

an identical architecture, except for the last layer.  Then, the weights from the pretrained 

network are copied to the new network for each layer, except for the final output layer.  The final 

layer with the two output neurons will then be trained from randomly initialized weights in a final 

training phase using the star allele haplotype sequences.  Since the liver microsome model was 

trained on pairs of haplotypes, the final model input consisted of two identical copies of the input 

haplotype matrix for star allele classification.  The network was then retrained to classify star 

allele functional status with the starting weights initialized from the liver microsome model.  Ten 

models were trained and their outputs averaged to form an ensemble.   
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Training Data 

Simulations 

Simulated diplotypes used in pre-training were created by randomly selecting a pair of CYP2D6 

star alleles with curated function (normal, decreased, or no function haplotypes) that do not 

have any structural variants and constructing haplotypes with the variants associated with the 

star alleles. Star allele definitions were downloaded from PharmVar (v4.1.1). To introduce 

additional diversity to the training data, alternate alleles (both SNVs and INDELs) were sampled 

for variant sites not associated with any star allele following a uniform distribution with the 

probability of an alternate allele occurring equal to the population level alternate allele frequency 

published in gnomAD21. It is possible that rare, deleterious variants not currently represented in 

any star allele were added during this process.  However, noisy pretraining data has been 

shown not to negatively impact the final model52.  A total of 10,000 genotypes were selected for 

each AS (0, 0.5, 1, 1.5, 2), for a total of 50,000 simulated samples used in training, and an 

additional 10,000 total genotypes to use as a test set. 

Liver Microsome Data 

Activity data were available for 314 liver microsome samples from a prior study as a second pre-

training step for Hubble.2D651. The liver microsome data was collected from two sites, 249 

samples from St. Jude’s Children’s Research Hospital (SJCRH), and 65 samples from 

University of Washington (UW). All samples were sequenced with the PGRNseq panel39. 

Metabolic activity was measured using two substrates, dextromethorphan and metoprolol, but 

only dextromethorphan activity was used for pre-training.  Star alleles and structural variants 

were called for each sample using Stargazer24. 
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Star allele data 

The sequences used to train the final model were constructed based on star allele definitions by 

PharmVar (version 4.11.1, downloaded 10/25/2019).  We selected 31 star alleles (as per the 

core allele definitions) and each of their suballeles for training.  Suballeles are versions of star 

alleles that have been identified that carry additional variants (typically non-coding variants) 

other than the core variants that define the star allele (e.g. CYP2D6*1.002).  The model was 

evaluated with 24 randomly selected star alleles.  Star alleles with no curated function (defined 

by CPIC and posted by PharmVar as “Uncertain”, “Unknown”, or “Awaits curation”) were 

excluded from the training procedure.  During the training of each model 10% of the samples 

from each functional class (no function, decreased function, and normal function) were 

randomly held out to be used to check for overfitting in the training process. 

Validation 

The model was evaluated by predicting the function of the 25 star alleles with curated function 

that were excluded from the training process.  The area under the receiver operator 

characteristic curve (AUROC) was calculated for the training and test groups for the two scores 

output by the model. In addition, the function of 71 star alleles with uncurated function was 

predicted.  

In order to further validate our model, we used in vitro data from a study27 that measured the 

activity of 46 star alleles (including wild-type) using three substrates.  Of these 46 star alleles, 

30 have curated function while 16 do not have a CPIC assigned function.  The metabolic activity 

used for each star allele was the percent activity of the reference, taking the mean activity 

across all three substrates.  We calculated the variance explained by the predicted function 

using a linear model and assessed the heterogeneity in the measured activity of each functional 

group (no function, decreased function, and normal function) using a one-way ANOVA.  This 
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was done separately for samples with curated function and those with uncurated function.  

CYP2D6*53 was excluded from this analysis because it had a 28-fold increase in in vitro 

function compared to reference, and deemed to be an extreme outlier.  Additionally, 

CYP2D6*61 and CYP2D6*63 were excluded because they are CYP2D6-CYP2D7 hybrids, a 

result of structural variation which is not included in the Hubble.2D6 framework. 

Model Interpretation 

We interpreted the model and the relative importance of the variants in each star allele for the 

predicted function using DeepLIFT from the DeepExplain package53,54.  DeepLIFT compares the 

activations of a neural network for a given sample against a reference sample, and outputs 

importance scores for each input feature. We ran DeepLIFT on each star allele sequence with a 

CYP2D6*1 reference sequence. This yielded importance scores for each variant in each star 

allele that were different from the variants in CYP2D6*1.  

Model Evaluation 

We evaluated the added components of the model (transfer learning and the functional variant 

representation) by training new models with each component removed.  Concretely, to evaluate 

the contribution of transfer learning to the final model, we trained a new model identical to the 

final model except the weights were randomly initialized rather than transferred from a 

pretrained network.  To evaluate the contribution of the functional variant representation we 

trained a new model and input only the one-hot encoding of the nucleotide sequence, no 

annotations included.  For this model weights were transferred from a pretrained network.  

Finally, we trained a third model with that did not include any variant annotations and had 

randomly initialized weights.  For each test case, we followed the same procedure to generate 

predictions as with the full model: an ensemble of seven models was trained and the average 

score for each of the two output scores taken across all seven models which was then 
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converted into a single functional class.  Classification accuracy was calculated for star alleles in 

training and test. 

We also evaluated each of the annotations included in the functional variant representation.  

This was done by again training ensemble models with transfer learning, but in this case a 

single annotation was included in addition to the one-hot encoding of the nucleotide sequence.  

This was done for each of the eight annotations included in the final model.  Again, the mean 

scores from each ensemble were taken and converted into predictions as previously described 

and then calculated classification accuracy.   
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