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Abstract 22 

Aim 23 

Species distribution models are used across evolution, ecology, conservation, 24 

and epidemiology to make critical decisions and study biological phenomena, 25 

often in cases where experimental approaches are intractable.  Choices regarding 26 

optimal models, methods, and data are typically made based on discrimination 27 

accuracy: a model’s ability to predict subsets of species occurrence data that 28 

were withheld during model construction. However, empirical applications of 29 

these models often involve making biological inferences based on continuous 30 

estimates of relative habitat suitability as a function of environmental predictor 31 

variables.  We term the reliability of these biological inferences “functional 32 

accuracy.”  We explore the link between discrimination accuracy and functional 33 

accuracy. 34 

 35 

Methods 36 

Using a simulation approach we investigate whether models that make good 37 

predictions of species distributions correctly infer the underlying relationship 38 

between environmental predictors and the suitability of habitat. 39 

 40 

Results 41 

We demonstrate that discrimination accuracy is only informative when models 42 

are simple and similar in structure to the true niche, or when data partitioning is 43 

geographically structured.  However, the utility of discrimination accuracy for 44 

selecting models with high functional accuracy was low in all cases.   45 

 46 
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Main conclusions 47 

These results suggest that many empirical studies and decisions are based on 48 

criteria that are unrelated to models’ usefulness for their intended purpose. We 49 

argue that empirical modeling studies need to place significantly more emphasis 50 

on biological insight into the plausibility of models, and that the current 51 

approach of maximizing discrimination accuracy at the expense of other 52 

considerations is detrimental to both the empirical and methodological 53 

literature in this active field.  Finally, we argue that future development of the 54 

field must include an increased emphasis on simulation; methodological studies 55 

based on ability to predict withheld occurrence data may be largely 56 

uninformative about best practices for applications where interpretation of 57 

models relies on estimating ecological processes, and will unduly penalize more 58 

biologically informative modeling approaches.   59 
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 60 

Species distribution models (SDM, alternatively environmental niche 61 

models or ENM) use data on species occurrences in conjunction with 62 

environmental data to generate statistical models of species’ ecological 63 

tolerances, environmental limits, and potential to occupy different geographic 64 

areas.  These methods have been used since the 1920s (Cook 1925, Sutherst 65 

2014), but recent years have seen rapid growth in the number of studies 66 

employing SDM in fields including ecology, conservation biology, evolutionary 67 

biology, and epidemiology (Peterson, Soberón et al. 2011, Coro, Pagano et al. 68 

2013, Allen and Lendemer 2016, Gutierrez-Tapia and Palma 2016, Lezama 69 

Ochoa, Murua et al. 2016, Raghavan, Goodin et al. 2016, Guisan, Thuiller et al. 70 

2017). The primary appeal of SDMs is their tractability; estimating 71 

environmental tolerances experimentally is expensive and time-consuming at 72 

best, and impractical for many species.  In contrast, SDMs can be constructed 73 

with minimal investment of resources, using freely available data and software 74 

(Hijmans, Cameron et al. 2005, Phillips, Anderson et al. 2006, Thuiller, 75 

Lafourcade et al. 2009, Hijmans, Phillips et al. 2012, Kriticos, Webber et al. 2012).  76 

For many species of conservation concern, they are one of the only tractable 77 

means of estimating habitat suitability, often in cases where stakeholders need 78 

these estimates urgently (Keith, Mahony et al. 2014, Warren, Wright et al. 2014).   79 

SDM construction involves many decisions which may affect model 80 

predictions.  These include choice of modeling algorithm, required sample size, 81 

optimal model complexity, choice of study area from which data are drawn, the 82 

exclusion of outliers, and selection of environmental predictors, among others 83 

(Guisan, Graham et al. 2007, Wisz, Hijmans et al. 2008, Acevedo, Jimenez-84 
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Valverde et al. 2012, Domisch, Kuemmerlen et al. 2013, Boria, Olson et al. 2014, 85 

Varela, Anderson et al. 2014, Garcia-Callejas and Araujo 2016, Soley-Guardia, 86 

Gutierrez et al. 2016, van Proosdij, Sosef et al. 2016).  The literature surrounding 87 

these decisions is large and growing rapidly, as is the suite of associated software 88 

tools.  Decisions about how best to model species are typically made using 89 

metrics that test discrimination accuracy on subsets of species occurrence data 90 

that have been withheld during model construction (Elith, Graham et al. 2006, 91 

Radosavljevic and Anderson 2014). However, the binary prediction of withheld 92 

occurrence data is rarely the intended application of SDMs; they are more 93 

frequently used to make continuous estimates of habitat suitability, and to make 94 

predictions outside of the training conditions both in space and in time.  These 95 

applications often implicitly assume that there is biological meaning to the 96 

continuous suitability scores produced by the model, or to the functional 97 

relationship between environmental gradients and habitat suitability.  However, 98 

it is often not clear which (if any) measurable biological phenomena should be 99 

correlated with suitability estimates from SDMs.  Many of the measurable 100 

phenomena that are potentially related to suitability (e.g., population density 101 

(Carrascal, Aragon et al. 2015), upper limit of local abundance (VanDerWal, Shoo 102 

et al. 2009, Gomes, IJff et al. 2018)) have not been quantified in detail for many 103 

real species and as such are unavailable for model validation.   104 

This impracticality of studying environmental suitability experimentally 105 

makes it difficult to measure the ability of SDMs to correctly make continuous 106 

estimates of habitat suitability.  As such, modeling decisions are typically 107 

predicated on an assumed relationship between a model’s ability to make 108 

continuous estimates of relative habitat suitability (hereafter referred to as 109 
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“functional accuracy”) and its ability to predict withheld occurrence data 110 

(discrimination accuracy).  This assumption has been questioned before (Lobo, 111 

Jimenez-Valverde et al. 2008), but its importance and validity for SDM studies is 112 

largely untested.   113 

Discrimination accuracy is known to be a potentially misleading measure 114 

for many applications; it is known to be a poor indicator of model calibration 115 

(Reineking and Schröder 2006, Jimenez-Valverde, Acevedo et al. 2013), and may 116 

even be negatively correlated with calibration and functional accuracy under 117 

some conditions (Murphy and Winkler 1992).  This general statistical problem 118 

may be exacerbated by attributes of the SDM process in a number of ways.  First, 119 

spatial autocorrelation present in species distributions and in the environment 120 

can generate spurious correlations that a model might treat as biological truth, 121 

resulting in models that produce high discrimination accuracy even when 122 

occurrence data is random (Raes and ter Steege 2007) or the predictors are 123 

biologically meaningless (Bahn and McGill 2007, Bahn and McGill 2013, 124 

Fourcade, Besnard et al. 2018).  Second, there are phenomena other than the 125 

suitability of habitat that shape species distributions (e.g., historical 126 

biogeography, dispersal, biotic interactions, Figure 1) (Soberon and Peterson 127 

2005, Kearney 2006, Anderson 2012, Warren 2012, Warren 2013, Warren, 128 

Cardillo et al. 2014).  Although it is possible to include these processes as 129 

predictors for SDMs, this is not often done in practice.  Failure to explicitly 130 

consider these processes introduces spurious correlations between species 131 

occurrences and the environment into the estimate of the environmental niche. 132 

Similarly, the collection of occurrence data often shows spatial biases 133 

(Figure 1, panel F), which may be correlated with spatially autocorrelated 134 
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predictors (Phillips, Dudik et al. 2009).   All of these phenomena can lead to poor 135 

niche estimates (Figure 2) that still have high discrimination accuracy in 136 

geographic space.  Since these non-target phenomena are shared between 137 

training and test data, a model that parameterizes the environmental correlates 138 

of these processes may have higher discrimination accuracy than a model that 139 

accurately estimates the species’ environmental tolerances, and yet may produce 140 

pathological behavior in applications where model transferability or continuous 141 

estimates of habitat suitability are desired (Lobo, Jimenez-Valverde et al. 2008, 142 

Veloz 2009, Radosavljevic and Anderson 2014, Torres, Sutton et al. 2015, Huang 143 

and Frimpong 2016).   144 

A further issue with discrimination accuracy is the lack of true absence 145 

data.  One of the primary reasons that SDM methods are so tractable is that they 146 

can be used without true absence data, which is often difficult and expensive to 147 

obtain.  SDMs deal with the lack of true absences by sampling “pseudoabsence” 148 

or “background” points which are ideally intended to represent the set of 149 

environmental conditions that are potentially accessible to the species.  This 150 

requires users to make decisions about the size of the appropriate study area for 151 

background samples (Acevedo, Jimenez-Valverde et al. 2012), as well as the 152 

nature of sampling (e.g., random points or points from closely related species 153 

(Phillips, Dudik et al. 2009)).  These decisions are often somewhat arbitrary (e.g., 154 

background areas chosen using political boundaries or poorly-justified 155 

assumptions about dispersal), and can affect both the inferred model (Acevedo, 156 

Jimenez-Valverde et al. 2012) and the performance of metrics used to evaluate 157 

models (Acevedo, Jimenez-Valverde et al. 2012, Hijmans 2012, Jimenez-Valverde, 158 

Acevedo et al. 2013).  The lack of real absence data results in models that are 159 
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incapable of accurately predicting prevalence, and that incorrectly treat some 160 

suitable conditions as unsuitable. 161 

Finally, the usefulness of discrimination accuracy as a criterion for 162 

selecting SDMs may also be negatively impacted by model complexity.  163 

Discrimination accuracy only measures whether a model assigns higher 164 

suitability values to presence points than it does to background or absence 165 

points, and highly flexible algorithms may produce a broad range of marginal 166 

suitability functions that have similar, or even identical, discrimination accuracy 167 

(Figure 3).  This phenomenon is likely compounded by the frequent use of large 168 

numbers of predictors that are highly collinear; as the number of predictors and 169 

the complexity of marginal suitability functions increase, the number of potential 170 

models with similar discrimination accuracy grows very rapidly.   171 

Although many of these problems with discrimination accuracy have been 172 

noted before, the utility of discrimination metrics for SDM studies has not been 173 

examined in a system where the true niche and habitat suitability are known.  As 174 

a result, we have little information on how useful these metrics are for empirical 175 

studies where the goal is to estimate the relative suitability of habitat, despite 176 

the ubiquity of discrimination metrics in SDM model selection.   177 

Here we adopt a simulation approach to explore the relationship between 178 

discrimination and functional accuracy using virtual species for which the true 179 

niche is known.  We build models using a number of different algorithms, study 180 

area sizes, and methods of partitioning training and test data.  However, these 181 

simulations are not intended to represent all possible modeling approaches.  The 182 

goal of these simulations is not to determine which method produces the best 183 

niche or distribution estimates, but rather to evaluate commonly used methods 184 
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for model selection across a broad range of models in a system where we know 185 

the underlying true habitat suitability. 186 

 187 

MethodsTo examine how model selection was affected by modeling 188 

algorithm, sampling bias, and non-target spatial phenomena, we conducted four 189 

sets of simulation experiments: 190 

1. High complexity:  Artificial niches were generated using three 191 

randomly chosen variables and models were constructed using all 192 

nineteen bioclimatic variables.  Background data were drawn from 193 

100 km circular buffers around occurrence points. 194 

2. Geographic partitioning: Same conditions as (1) but presence and 195 

background points for each species were split into four quadrants 196 

using ENMEval (Muscarella, Galante et al. 2014).   Presence and 197 

background data from one randomly selected quadrant were withheld 198 

for model evaluation. 199 

3. Large background: Same conditions as (1), but background data were 200 

drawn from 1000 km circular buffers around occurrence points. 201 

4. Low complexity:  Niches were based on two randomly chosen 202 

variables and models were built using those two variables plus two 203 

more chosen at random.   204 

 205 

All analyses used CliMond data for 19 bioclimatic variables typically 206 

employed in SDM studies (Nix 1986)_ENREF_1, including data for the present 207 

and for 24 combinations of future emissions scenario (A1B and A2), year (2030, 208 

2050, 2070, 2080, 2090, and 2100), and climate model (CSIRO-Mk3.0 and 209 
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MIROC-H) (Kriticos, Webber et al. 2012).  Simulations and analyses were 210 

restricted to Australia, including Tasmania.   211 

Simulated niches were created using the generateRandomSp function in 212 

the virtualspecies R package (Leroy, Meynard et al. 2015).  Simulated species 213 

with fewer than 400 suitable grid cells in the initial presence/absence raster 214 

showed a strong tendency to produce models that showed no suitable habitat on 215 

future climate scenarios, rendering comparisons that were uninformative for 216 

model selection.  As a result, these simulations were discarded. 217 

To simulate the effects of non-target spatial processes (e.g., historical 218 

biogeography, biotic interactions, dispersal limitation), the initial 219 

presence/absence raster from virtualspecies was converted to point data, which 220 

was partitioned into allopatric regions using k-means clustering.  Solutions 221 

ranging from 2 to 10 clusters were considered, and an algorithm was used to 222 

maximize the minimum distance between clusters.  One region was assigned at 223 

random to be the range of the species, and converted back into a raster.  We 224 

recorded the total proportion of suitable cells that fell within this range, to 225 

measure the extent to which species distributions departed from the distribution 226 

of available suitable habitat across the entire study area.   227 

Spatial sampling bias was modeled using data from 5,969,252 collection 228 

records for 28,286 Australian plant species.  These records were harvested from 229 

GBIF (GBIF.org 2015) using the rgbif (Chamberlain, Boettiger et al. 2013) 230 

package, and converted to a raster representing the number of observations per 231 

grid cell at the same extent and resolution as the environmental data.  All values 232 

were then divided by the maximum cell value, resulting in a range of sampling 233 

intensity from 0 to 1.    234 
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Species occurrence data was sampled from a raster with values in each 235 

grid cell x calculated as: 236 

 237 

𝑝(𝑥) = (1 − 𝑔𝑏)𝑠(𝑥)𝑟(𝑥) + 𝑔𝑏𝑏(𝑥)𝑠(𝑥)𝑟(𝑥) 238 

 239 

Where probability of sampling is a function of p(x), gb  is a parameter that 240 

controls the magnitude of spatial sampling bias, b(x) is the relative strength of 241 

spatial sampling bias in cell x, s(x) is the suitability of habitat in the grid cell, and 242 

r(x) is a binary variable taking the value 1 inside the species range and 0 243 

everywhere else.  For each species, we drew 100 simulated occurrence points by 244 

selecting grid cells at random and sampling occurrences as a Bernoulli trial with 245 

probability of success equal to p(x).  Presence points were drawn with 246 

replacement so that we could study the effects of sampling bias.  We simulated 247 

data across eleven levels of spatial sampling bias, with the bias strength 248 

parameter ranging from 0 to 1 in increments of 0.1.  We performed 20 249 

simulations for each of the 11 levels of spatial sampling bias.  Each of the four 250 

simulation conditions (experiments 1-4, above) therefore consisted of 220 251 

simulations, for a total of 880 total simulated species across all experiments. 252 

As noted in a recent review (Meynard, Leroy et al. 2019), simulation 253 

studies need to choose both the simulated niches and sampling regimes that are 254 

appropriate for the question involved.  Since our goal here is to test which 255 

metrics select models that accurately estimate the niche, it was essential for us to 256 

generate data that would be capable of producing accurate niche estimates in 257 

ideal conditions.  Due to these concerns we chose not to apply a threshold  258 

minimum suitability score below which the organism could not possibly occur; 259 
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the application of such a threshold would truncate the response functions we are 260 

trying to estimate (Meynard, Leroy et al. 2019), resulting in lower expected 261 

functional accuracy.  Additionally, prior work with virtual species has 262 

demonstrated that the application of thresholds results in discrimination 263 

accuracy metrics that are overly optimistic (Meynard and Kaplan 2013).  264 

We built models using seven algorithms; Bioclim, Domain, generalized 265 

linear models (GLM), generalized additive models (GAM), Maxent, random 266 

forests, and boosted regression trees.  Models were built using the dismo R 267 

package (Hijmans, Phillips et al. 2012) and Maxent (Phillips, Anderson et al. 268 

2006).  This resulted in 6160 inferred models, seven for each of the 880 269 

simulated niches.  Algorithm settings were left at their default values.  For each 270 

model, 25 occurrence points were withheld from model construction and used 271 

for model evaluation.   Each model’s discrimination accuracy was evaluated 272 

using three statistics: the area under the receiver operating characteristic curve 273 

(AUC) (Fielding and Bell 1997), the true skill statistic (TSS) (Allouche, Tsoar et al. 274 

2006), and Cohen’s kappa (Cohen 1960).  While AUC can be calculated using 275 

continuous suitability scores, TSS and kappa require binary predictions of 276 

presence and absence, so the values for these models that were used in model 277 

assessment corresponded to their maximum value across all potential 278 

thresholds, i.e., the best possible performance of a thresholded model (Fielding 279 

and Bell 1997).   280 

Models were projected onto the current distribution of the environmental 281 

variables used for model construction.  Models were also projected onto the 24 282 

future climate scenarios.  We used the simulated niche from the virtualspecies 283 

object to project the true suitability of habitat across those same set of future 284 
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environments, to assess whether discrimination accuracy is a useful predictor of 285 

models’ ability to extrapolate to new environmental conditions.  To measure 286 

functional accuracy, we compared geographic projections of habitat suitability 287 

from the true niche and the inferred models using Spearman rank correlation. 288 

Correlations between projected and true suitability scores for the present and 289 

for future climate scenarios were measured separately within the species range 290 

(areas where r(x) = 1) and across the entire study area (Australia and Tasmania).  291 

Spearman rank correlation was chosen as a measure of functional accuracy for 292 

this study due to the structural differences between models produced by 293 

different algorithms, and in consideration of how SDMs are often applied; any 294 

two models that assign identical rankings to a set of habitat patches are 295 

effectively interchangeable for applications where models are thresholded, or 296 

where suitability scores are used to prioritize one habitat patch over another. 297 

Rank correlation will reflect this when models produce similar rankings of 298 

relative habitat suitability (e.g., ρ = 1 when predictions made from one model are 299 

a monotonically increasing function of predictions made from another model).  300 

In contrast, Pearson product moment correlation will only assign a value of 1 if 301 

the relationship between suitability scores for the two models is linear, which 302 

may serve to exaggerate differences that are not relevant to many empirical 303 

studies.  In order to test the sensitivity of our results to this choice, we also 304 

conducted a separate set of analyses using Pearson product moment correlation 305 

as a measure of functional accuracy (Appendix S4), but results from these 306 

analyses were effectively the same as those seen in tables 1 and 2. 307 

We choose to focus on functional accuracy here instead of calibration for 308 

several reasons; first, the application of SDMs more often relies on the relative 309 
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suitability of habitat than estimating the exact probability of observing a species 310 

in a particular place, and functional accuracy more directly estimates this aspect 311 

of model behavior.  Second, it is already known that discrimination accuracy may 312 

be poorly correlated to calibration even when the model gets the relative 313 

ranking of habitat right.  For example, if the estimated suitability of habitat is a 314 

transformation of the true suitability of habitat that preserves relative rankings 315 

but not the magnitude of differences in suitability scores (Reineking and 316 

Schröder 2006), both discrimination and functional accuracy would be high, but 317 

calibration would be poor.  Finally, the link between discrimination accuracy and 318 

calibration is known to be severely affected by prevalence (Reineking and 319 

Schröder 2006, Elith and Graham 2009), but the link between discrimination 320 

accuracy and functional accuracy as measured here would not be so affected. 321 

To summarise the relationships between discrimination and functional 322 

accuracy for all algorithms considered together (Table 1 and Appendix S3 and 323 

S4), we used generalized linear mixed models, and evaluated correlations using 324 

McFadden’s pseudo-r2 (McFadden 1974).  For the remainder of the regressions, 325 

we used linear models and the standard coefficient of determination, r2.  We 326 

applied Bonferroni corrections to compensate for problems arising from 327 

multiple testing.  For these purposes we defined four families of test that we 328 

consider independently.  Those examining the relationship between 329 

discrimination and functional accuracy at each combination of algorithm and 330 

complexity level (Tables 1 and 2, n = 12 comparisons per set), and the 331 

remainder, which are intended primarily to examine which factors impact 332 

overall model quality and as a check to establish that expected relationships 333 

between metrics are seen in the simulation results (Appendix S3, n = 11).    334 
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Based on results from experiments 1-4,  we performed a fifth set of 335 

simulation experiments to examine more thoroughly the effects of niche 336 

complexity and the number of predictor variables on the relationship between 337 

discrimination and functional accuracy (Figure 4).  Due to the computational 338 

intensity of some SDM algorithms, we restricted analyses to a simpler set of 339 

conditions for these simulations.  Presence data was generated with no non-340 

target spatial biological processes and no spatial sampling bias, so occurrence 341 

points were sampled across the entirety of the suitable habitat. We restricted the 342 

modeling process to GLM and Maxent, and only used AUC for evaluating 343 

predictions on randomly withheld test data.  Simulated niches were built using a 344 

number of environmental variables ranging between 1 and 19, and models were 345 

inferred with between 1 and 19 variables (2 to 19 for Maxent, due to issues with 346 

the software implementation), subject to the constraint that variables that were 347 

included within the species’ niche were selected first during model construction.  348 

For each combination of number of niche axes and environmental predictors, we 349 

performed 300 separate simulations, resulting in 108,300 total simulations per 350 

modeling method.  For each simulation we recorded the test AUC and the rank 351 

correlation between the inferred and true suitability of habitat.  For each 352 

combination of number of niche axes and predictors, we then measured the rank 353 

correlation between discrimination accuracy and functional accuracy across the 354 

set of 300 models.  This resulted in a metric ranging from 1, where test AUC was 355 

a perfect indicator of functional accuracy, to -1, where test AUC was negatively 356 

associated with functional accuracy.  We fit a linear model to these results which 357 

included the number of variables used for the simulated niche, the number of 358 

variables used for model construction, and an interaction term. 359 
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 360 

Results 361 

 Regression outputs for experiments 1-4 are summarized in tables 1 362 

(algorithms pooled) and 2 (algorithms analyzed separately), and also in 363 

appendices S3, S4, and S5.  TSS, kappa, and AUC were all highly correlated with 364 

each other, so we will not discuss them separately.  We found that discrimination 365 

accuracy on training and test data were correlated, and that functional accuracy 366 

in the training region was correlated with functional accuracy outside the 367 

training region.  This indicates that models that perform well at discrimination 368 

accuracy tend to do so regardless of whether it is measured on training or test 369 

data, and the same is true of models that perform well at functional accuracy.  370 

Functional accuracy was generally fairly good; a majority of models produced 371 

estimates of habitat suitability that were positively correlated with the true 372 

suitability of habitat, whether measured in the training region (73.8%), or 373 

projected to the continental scale (80.8%).  However, models performed 374 

somewhat worse when projected into future climate scenarios (65.7% were 375 

positively correlated with true suitability within the species range, 71.0% at the 376 

continental scale).   377 

When all algorithms were analyzed together in a single GLM, 378 

discrimination accuracy was a very poor predictor of functional accuracy in all 379 

cases (Table 1).  Although 31/48 regressions were statistically significant, five 380 

were negative correlations, and none had an r2 value greater than 0.2.  This 381 

indicates poor performance of discrimination accuracy at selecting models when 382 

comparing between algorithms.   383 
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Results of regressions conducted for each algorithm separately are 384 

presented in Table2.  For all experiments, we find that discrimination accuracy is 385 

uninformative or actively misleading about models’ functional accuracy in a 386 

majority of cases (significant positive correlations were seen for less than half of 387 

comparisons in any simulation experiment).  A majority of these correlations 388 

were also quite weak; the average r2 value was 0.08 (range -.15 to .26).  This 389 

indicates poor performance of discrimination accuracy at selecting models with 390 

high functional accuracy even when comparing models that were built using the 391 

same methods.  Discrimination accuracy had no negative correlations with 392 

functional accuracy when test data were chosen based on a geographic partition 393 

of the species’ range, but was still a poor predictor of functional accuracy 394 

(average r2 = 0.12).  395 

We note an interesting phenomenon here with respect to the size of the 396 

buffer regions used to draw background data for model fitting and evaluation; 397 

the models built using the largest (1000 km) buffers around occurrence points 398 

performed very well, with the highest levels of functional accuracy and 399 

discrimination accuracy (Appendix S5).  These differences were most prominent 400 

for discrimination accuracy, reinforcing previous findings showing that 401 

discrimination accuracy is sensitive to study area (Lobo, Jimenez-Valverde et al. 402 

2008).  Some previous studies have suggested the models perform best when 403 

constructed using fairly small study regions, however those studies have largely 404 

assessed model quality via discrimination accuracy within the species’ native 405 

range (Acevedo, Jimenez-Valverde et al. 2012, Zhu, Rédei et al. 2014).  These 406 

results indicate that the relationship between study area size and model 407 
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performance may be more complex than previously reported, and optimal 408 

choices may depend on the applications for which models are designed. 409 

Our fifth experiment examined the effects of complexity across a broader 410 

range of complexity values, and found that the ability of AUC to select GLM 411 

models with high functional accuracy was negatively correlated with the 412 

complexity of the simulated niche and the number of predictor variables.  For 413 

Maxent models the relationship between discrimination accuracy and functional 414 

accuracy (Figure 4) was positively but weakly correlated (r2 = .09) with the 415 

number of variables in the true niche, but uncorrelated with the number of 416 

variables included in the modeling process.  417 

 418 

Discussion 419 

 SDM methods are used for many applications in which niche estimates 420 

are needed but experimental approaches are impractical.  Results for 421 

experiments 1-4 demonstrate that many of these models can provide useful 422 

estimates of the relative suitability of habitat, the ability of species to invade new 423 

areas, and the effects of climate change. However, one of the key steps in any 424 

modeling study is the identification of which models from a candidate set 425 

perform well and which perform poorly.  Our results indicate that the most 426 

widely used methods for selecting models are largely uninformative for studies 427 

where the goal is to make continuous estimates of habitat suitability, or to 428 

estimate the species’ response to an environmental gradient.  When algorithms 429 

were analyzed separately, 15/149 statistically significant correlations between 430 

discrimination and functional accuracy were negative.  In these cases 431 

discrimination metrics were not just uninformative, but in fact positively 432 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 27, 2019. ; https://doi.org/10.1101/684399doi: bioRxiv preprint 

https://doi.org/10.1101/684399
http://creativecommons.org/licenses/by/4.0/


 19 

misleading for applications where the goal of SDM is to predict the relative 433 

suitability of habitat.   434 

 In our fifth experiment we examined the effects of niche and model 435 

complexity for GLM models across a broader set of conditions, and found that 436 

discrimination accuracy predicts functional accuracy only when both the niche 437 

and the environmental space it is being modeled in are far simpler than those 438 

seen typically in the empirical literature (Figure 4).  Even at low levels of 439 

complexity, the relationship between discrimination and functional accuracy for 440 

GLM is fairly weak (Spearman rank correlation = 0.31 for a single niche axis and 441 

predictor variable), and declines rapidly as models become more complex, 442 

becoming minimally informative as models approach levels of complexity that 443 

are often seen in the empirical literature.   444 

For Maxent models the number of predictors used to model the niche had 445 

no effect on the utility of discrimination accuracy for model selection, but there 446 

was a weak positive effect of the number of variables used to simulate the true 447 

niche (β = .006, p < .05).  We hypothesize that the lack of effect of the number of 448 

predictors for Maxent is due to its ability to automatically penalize 449 

overparameterization; many of the predictors supplied to the algorithm may 450 

ultimately have little or no weight in the model.  We also note that the most 451 

reliable correlations between discrimination accuracy and functional accuracy 452 

seen in our simulation results were for Maxent models (Table 2), as would be 453 

expected if model complexity and number of predictors were partly responsible 454 

for driving the poor performance of discrimination accuracy.    455 

 Discrimination accuracy was generally a better predictor of functional 456 

accuracy for GLM, GAM, and Maxent models than for the other methods of model 457 
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construction explored in this study.  This is likely due to the internal structure of 458 

these models.  The simulation approach taken here uses a logistic function to 459 

generate sampling probabilities based on a simulated niche, which is composed 460 

of smooth (linear or quadratic) responses to a set of environmental variables.   461 

As such, the function underlying habitat suitability lies within the set of functions 462 

that may be exactly estimated by GLM, GAM, or Maxent, so that estimation of 463 

simulated niches is considerably more tractable for those methods.  We 464 

therefore caution users to refrain from interpreting these results as an 465 

endorsement of any particular method when constructing SDMs using empirical 466 

data.  Rather, we suggest that these results indicate that choice of modeling 467 

methods should ideally include intuition or data regarding the potential 468 

functional relationship between the environmental predictors and the suitability 469 

of habitat.  If the functional relationships that may be estimated by an algorithm 470 

differ significantly from the true functional relationship, discrimination accuracy 471 

is largely uninformative or misleading about models’ ability to predict habitat 472 

suitability.  This does not necessarily imply that models built using different 473 

functional shapes from the true niche are poor estimates of habitat suitability; 474 

rather it indicates that discrimination accuracy is uninformative for selecting 475 

models with high functional accuracy under these conditions. 476 

Our results clearly indicate that most empirical studies using SDM 477 

methods should ideally not rely solely on prediction of withheld occurrence data 478 

to assess model quality. However, they also indicate a much more systemic 479 

problem for the SDM literature: decades of methodological work in this field 480 

have resulted in a set of widely-adopted “best practices”, but a great majority of 481 

these studies have focused on optimizing models’ discrimination accuracy on 482 
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withheld occurrence data from real species distributions (Guisan, Graham et al. 483 

2007, Wisz, Hijmans et al. 2008, Domisch, Kuemmerlen et al. 2013, Boria, Olson 484 

et al. 2014, Radosavljevic and Anderson 2014, Moreno-Amat, Mateo et al. 2015, 485 

Garcia-Callejas and Araujo 2016, Huang and Frimpong 2016, Kuebler, 486 

Hildebrandt et al. 2016, Lopatin, Dolos et al. 2016, Rovzar, Gillespie et al. 2016, 487 

Soley-Guardia, Gutierrez et al. 2016).  Given the disconnect seen here between 488 

discrimination and functional accuracy, it is entirely possible that the “best 489 

practices” advocated in these studies have negligible, or even detrimental, effects 490 

on model quality for applications where functional accuracy is the goal.   491 

In order to accurately assess the ability of different methods to achieve 492 

useful levels of functional accuracy, we argue that the methodological literature 493 

must reevaluate its “best practices” via simulations where true habitat suitability 494 

and niche parameters are known.  While some simulation studies are already 495 

being conducted (Meynard, Leroy et al. 2019), these have typically been done in 496 

the context of optimizing discrimination accuracy, and as such may also be 497 

largely uninformative about estimating habitat suitability as a function of 498 

environmental gradients.  There are many common practices and assumptions in 499 

the field that may need to be reevaluated based on their ability to estimate 500 

habitat suitability; choice of algorithm, methods for choosing predictor variables, 501 

choice of study area, rarefaction of data, and optimal model complexity are 502 

obvious candidates.    503 

In addition, we argue that practitioners must recognize that favoring 504 

models based strictly on their spatial predictions is simply inappropriate for 505 

many applications.  In studies where the goal is to estimate the niche (i.e., 506 

maximize functional accuracy), users must become comfortable with the idea 507 
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that a biologically accurate model may produce relatively poor estimates of 508 

species’ current spatial distributions.  This is not simply a methodological point 509 

brought to light by the current simulation study; it is necessarily true given the 510 

existence of non-target phenomena that themselves have spatial structure (e.g., 511 

biotic interactions, dispersal).  This has been known for years (Jackson and 512 

Overpeck 2000, Soberon and Peterson 2005, Anderson 2012, Warren 2012, 513 

Warren 2013), yet has been largely ignored in the continued pursuit of methods 514 

that produce tighter and tighter fits to training or test data in geographic space.  515 

 Investigators familiar with SDM methods will no doubt wish to critically 516 

examine the methods used here to infer models; there are other algorithms 517 

available, and there are many modeling choices that we did not explore in great 518 

depth.  However, these criticisms are largely irrelevant to the primary results of 519 

this study; while it is certainly possible that greater effort in exploring the space 520 

of model choices might improve the accuracy of models, we note that (1) 521 

evaluation metrics on randomly withheld test data for the models generated 522 

here are not unusual for the range seen in the empirical SDM literature (e.g., 523 

Appendix S5), (2) the overall performance of SDM methods is irrelevant to 524 

whether or not discrimination accuracy is a valid indicator of functional 525 

accuracy, and (3) most SDM users’ methodological preferences are currently 526 

chosen based on studies that seek to maximize the very performance metrics 527 

that the current study demonstrates are not useful for estimating functional 528 

accuracy.   529 

We acknowledge the possibility that there is some subset of modeling 530 

approaches not addressed here for which discrimination and functional accuracy 531 

are highly correlated.  It would be both gratifying and very useful to find such a 532 
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set of conditions, and that topic deserves to be examined in great depth.  533 

However, even if such a set can be found it does not invalidate the conclusion 534 

presented here; that there is a large range of modeling algorithms and 535 

approaches for which the correlation between discrimination accuracy and 536 

functional accuracy is not strong enough to be useful in model selection for many 537 

purposes.  Similarly, we acknowledge that the disconnect between functional 538 

accuracy and discrimination seen here may be affected by sample size, but the 539 

sample sizes used here (75 training, 25 test) are not atypical for the ENM 540 

literature.   541 

In summary, we demonstrate that, under a broad range of conditions, the 542 

ability of a model to successfully predict withheld occurrence data within the 543 

training region does not reliably measure its ability to estimate the relationship 544 

between environmental gradients and habitat suitability.  Discrimination 545 

accuracy may be a reasonable metric when the goal is to guide further sampling 546 

of occurrences within a species’ current range, without regard for whether the 547 

model estimates the true environmental niche or the relative suitability of 548 

habitat well. However, this is not often the goal of empirical model construction 549 

in the SDM literature.   550 

As a result, the applied and methodological literature in this field are 551 

largely based on metrics that may be irrelevant to the intended applications of 552 

many models.  If the field is to continue to attempt to use SDMs to infer species’ 553 

responses to environmental gradients, we must develop methods for model 554 

construction and metrics for model evaluation that are more relevant to the 555 

actual goals of the modeling process.  While we find that geographically 556 

structured partitioning of test data does offer some advantages over randomly 557 
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withheld data, it is clear from this study that even those methods have very 558 

limited ability to identify models that accurately estimate the relative suitability 559 

of habitat. 560 

We would like to particularly highlight the implications of our results for 561 

the development of new methods in this field in the coming years.  Many 562 

investigators are currently developing methods that incorporate more biological 563 

and statistical realism into the SDM process, including the integration of 564 

physiological and trait data (Pollock, Kelly et al. 2018) and explicit models of bias 565 

(Robinson, Ruiz‐Gutierrez et al. 2018), dispersal (Zurell 2017), plasticity (Bush, 566 

Mokany et al. 2016), and evolutionary history (Smith, Godsoe et al. 2019).  In any 567 

system affected by non-target spatial phenomena, these methods will often 568 

produce poorer estimates of species’ geographic distributions precisely because 569 

they provide better estimates of the environmental niche.  We hope that the 570 

results presented here will compel the field to evaluate these new methods 571 

based on their ability to infer the biological phenomena of interest, as 572 

demonstrated using simulations or physiological data, rather than simply reject 573 

them due to poor discrimination accuracy on misleading occurrence data.  574 

We feel it is necessary to specifically address one interpretation of these 575 

results that we feel is not appropriate: the work presented here is not intended 576 

to suggest that any particular method of SDM construction is inherently better or 577 

worse than others.  While the relative performance of different methods is a very 578 

interesting question and one that deserves further exploration within a 579 

simulation framework, this study was not designed to address those questions 580 

and it would be inappropriate to interpret these results as such. We emphasize 581 

that most of the models built from these simulated species were arguably 582 
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publishable distribution estimates, and were at least somewhat useful as 583 

estimates of the species’ niche.  Rather, this study is intended to examine the 584 

performance of widely-used methods of model selection, and it is those methods 585 

that are performing poorly.  We demonstrate that we can make both good 586 

distribution estimates and good niche estimates using common methods, and in 587 

fact produced many models that are good for both purposes.  However, our 588 

results indicate that we have a difficult time distinguishing good models from 589 

bad when our goal is functional accuracy.   590 

At minimum, our results suggest that any empirical study using 591 

discrimination accuracy to assess model quality should start with two crucial 592 

steps: (1) use a minimal set of predictor variables for which there is an a priori 593 

reason to expect that they limit the suitability of habitat for the species, and (2) 594 

select algorithms capable of inferring functional responses that are plausible 595 

estimates of the underlying biology (e.g., not using a step function in situations 596 

where suitability is expected to be a continuous function of the predictor 597 

variable).  In a sense, these findings are unsurprising; they recapitulate 598 

longstanding best practices in the broader literature regarding statistical 599 

modeling (Anderson and Burnham 2004, Burnham and Anderson 2004, Gelman 600 

and Hill 2006, Zuur, Ieno et al. 2009).  However, here we show that failure to 601 

make these choices appropriately does not necessarily lead to poor predictions; 602 

instead it means that we are largely unable to distinguish good models from bad 603 

using species occurrence data.  Under these conditions any preference for a 604 

given model based on discrimination accuracy may be little better than choosing 605 

a model at random. 606 

 607 
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Table 1. Results of regressions functional accuracy on discrimination accuracy, all algorithms considered together.  Significant positive 

correlations are represented by “+” and green cell color, negative correlations by “-“ and pink cell color.  Numbers indicate r2 values for 

each regression.  Variables accompanied by (F) indicate that they were measured on models projected across 24 future climate 

scenarios.  Variables with (N) and(C) indicated models projected within the species native range or at a continental scale, respectively.  

Results are presented separately for four model sets: the “simple” set of predictors (2 variables in the true niche, 4 predictors per model, 

Independent variable Dependent variable Simple Complex Large BG Geographic 

Test AUC Spearman (N) +,.01  +,.02 +,.08 

Test AUC Spearman (C)    +,.02 

Test Max TSS Spearman (N) +,.01  +,.02 +,.07 

Test Max TSS Spearman (C)  -,.01  +,.01 
Test Max Kappa Spearman (N)  -,.01 +,.01 +,.06 

Test Max Kappa Spearman (C) -, .01 -,.01 -,.01 +,.01 

Test AUC Spearman (F, N) +,.10 +,.11 +,.11 +,.12 

Test AUC Spearman (F, C) +,.01  +,.08 +,.01 

Test Max TSS Spearman (F, N) +,.09 +,.10 +,.11 +,.12 

Test Max TSS Spearman (F, C)    +,.01 

Test Max Kappa Spearman (F, N) +,.20 +,.05 +,.11 +,.10 

Test Max Kappa Spearman (F, C)    +,.01 
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100km buffer), the “complex” set of predictors (3 variables in the true niche, 19 predictors per model, 100km buffer), the “large 

background” study region (same simulation settings as “complex” but with a 1000km buffer), and the “geographically structured” model 

set, for which models were constructed and evaluated using geographically partitioned data (same simulations settings as “complex” 

but with geographic partitioning of data instead of random holdouts). 
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Simple  Complex 

Independent variable Dependent variable  BC DM GAM GLM MX RF BRT  BC DM GAM GLM MX RF BRT 

Test AUC Spearman (N)     +,.15 +,.06 +,.05 +,.05  -,.05 -,.08  +,.06 +,.06 +,.06 +,.05 
Test AUC Spearman (C)    +,.08 +,.07     -,.10    +,.05   
Test Max TSS Spearman (N)     +,.14 +,.04    -,.04 -,.1  +,.04 +,.04 +,.04 +,.05 
Test Max TSS Spearman (C)  -,.05  +,.07 +,.07     -,.11    +,.04   
Test Max Kappa Spearman (N)     +,.11     -,.07 -,.10      
Test Max Kappa Spearman (C)  -,.06   +,.04     -,.14       
Test AUC Spearman (F, N)  +,.06  +,.17 +,.14 +,.18 +,.08 +,.15  +,.10 +,.05 +,.14 +,.06 +,.26 +,.11 +,.11 
Test AUC Spearman (F, C)    +,.09 +,.06 +,.04        +,.05   
Test Max TSS Spearman (F, N)  +,.05  +,.14 +,.14 +,.15 +,.05 +,.12  +,.09 +,.05 +,.14 +,.05 +,.23 +,.08 +,.09 
Test Max TSS Spearman (F, C)    +,.07 +,.05         +,.04   
Test Max Kappa Spearman (F, N)    +,.10 +,.10 +,.11  +,.06  +,.08 +,.04 +,.07 +,.05 +,.14   
Test Max Kappa Spearman (F, C)    +,.04             

   

Large Background  Geographic Partitioning 

   BC DM GAM GLM MX RF BRT  BC DM GAM GLM MX RF BRT 

Test AUC Spearman (N)     +,.08 +,.08 +,.05 +,.07  +,.06 +,.02 +,.05 +,.09 +,.14 +,.07 +,.17 
Test AUC Spearman (C)      +,.17         +,.04  
Test Max TSS Spearman (N)     +,.08 +,.08 +,.05 +,.07  +,.06  +,.06 +,.09 +,.12 +,.07 +,.19 
Test Max TSS Spearman (C)  -,.04  -,.05  +,.18           
Test Max Kappa Spearman (N)     +,.05 +,.07  +,.04  +,.05   +,.09 +,.09 +,.06 +,.13 
Test Max Kappa Spearman (C)  -,.12  -,.08  +,.10 +,.07          
Test AUC Spearman (F, N)  +,.06   +,.10 +,.25 +,.16 +,.21    +,.10 +,.11 +,.16 +,.19 +,.21 
Test AUC Spearman (F, C)      +,.25           
Test Max TSS Spearman (F, N)  +,.05   +,.09 +,.26 +,.18 +,.23    +,.12 +,.12 +,.17 +,.20 +,.19 
Test Max TSS Spearman (F, C)      +,.27        +,.04   
Test Max Kappa Spearman (F, N)  +,.04   +,.06 +,.23 +,.13 +,.16    +,.10 +,.12 +,.13 +,.15 +,.15 
Test Max Kappa Spearman (F, C)      +,.17 +,.06          

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 27, 2019. ; https://doi.org/10.1101/684399doi: bioRxiv preprint 

https://doi.org/10.1101/684399
http://creativecommons.org/licenses/by/4.0/


 30 

 

 

 

 

Table 2. Relationship between discrimination accuracy and functional accuracy, methods considered separately.  Significant positive 

correlations are represented by “+” and green cell color, negative correlations by “-“ and pink cell color.  Numbers indicate r2 values for each 

regression.  Variables accompanied by (F) indicate that they were measured on models projected across 24 future climate scenarios.  Variables 

with (N) and(C) indicated models projected within the species native range or at a continental scale, respectively. Results are presented 

separately for four model sets: the “simple” set of predictors (2 variables in the true niche, 4 predictors per model, 100km buffer), the 

“complex” set of predictors (3 variables in the true niche, 19 predictors per model, 100km buffer), the “large background” study region (same 

simulation settings as “complex” but with a 1000km buffer), and the “geographically structured” model set, for which models were constructed 

and evaluated using geographically partitioned data (same simulations settings as “complex” but with geographic partitioning of data instead of 

random holdouts). 
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Figure 1.  Phenomena affecting species distributions and inference of suitability 

of habitat.  Panel A depicts the niche of a simulated species in the first two 

principal component axes of the 19 Bioclim variables for Australia.  Panel B 

represents the distribution of suitable habitat for the simulated species.  The 

available habitat present across the continent of Australia only represents a 

subset of the possible niche space (C).  The species’ current range only 

encompasses a subset of the suitable habitat (D), which further limits the 

potential distribution of data in environment space (E).  Spatial sampling bias (F, 

see methods) contributes further bias to the representation of the species both in 

environment space (G) and geographic space (H).  While the geographic 

distribution of the data (H, red points) may resemble the current range of the 

species (D), the distribution of that data in environment space (G) is a poor 

representation of the species’ true niche (A).  As a result, it may be relatively easy 

to achieve accurate predictions on randomly withheld occurrence data while still 

producing a poor estimate of the underlying biology and suitability of habitat. 
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Figure 2. Projection of modeling algorithms in environment space.  Using 100 

occurrence points for the simulated species in figure 1, we built models using the 

seven algorithms employed in this study and projected them into the same two 

dimensional principal component space.  The lowest AUC score on 20 randomly 

withheld data points belonged to random forests (AUC = 0.55), while the highest 

came from domain (AUC = 0.73).  The top left and top center panels show the 

true niche of the simulated species and the environmental distribution of the 

data, respectively. 
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Figure 3. Low information content of discrimination accuracy for inferring 

functional accuracy.  In the above plots, we have simulated 20 absence and 20 

presence points along a hypothetical environmental gradient.  The six panels 

represent six hypothetical functions that might be inferred using this data.  Each 

function assigns a higher suitability score (y axis) to all of the presence points 

than it does to any of the background or absence points.  As a result, each 

function has perfect discrimination accuracy.  All six functions are therefore 

indistinguishable from each other based on discrimination metrics (AUC, TSS, 
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Kappa), while making very different estimates of the functional relationship of 

habitat suitability to the environmental predictor variable.   

 

  

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 27, 2019. ; https://doi.org/10.1101/684399doi: bioRxiv preprint 

https://doi.org/10.1101/684399
http://creativecommons.org/licenses/by/4.0/


 36 

  

 

 

Figure 4.  Relationship between number of variables in simulated niche, number 

of variables in model, and the ability of discrimination to infer functional 

accuracy for GLM (left) and Maxent (right).  Each grid cell represents the output 

of 300 simulations.  The color of each grid cell represents the Spearman rank 

correlation between test AUC values and functional accuracy. 
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Appendix S1.  Frequency of use of model fit metrics (columns) and partitioning 

scheme for test data (rows) from a survey of 94 recent applied SDM studies.   

 

Appendix S2.  Literature review for metrics of model fit. 

 

Appendix S3.  Relationship between evaluation metrics and simulation settings, 

all algorithms considered together.  

 

Appendix S4.  Relationship between discrimination accuracy and functional 

accuracy using Pearson product moment correlations. 

 

Appendix S5.  Discrimination and functional accuracy performance for each 

simulation experiment. 

 

Data Availability: 

Sample code is available on github here: 

https://github.com/danlwarren/sim-code-Warren-et-al-2019 
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