Prenatal alcohol exposure programs offspring disease: Impacts on metabolic health and dietary preference in a rat model of acute exposure

Tam M T Nguyen¹, Sarah E Steane¹, Karen M Moritz^{1,2}, Lisa K Akison^{1,2}

¹School of Biomedical Sciences, The University of Queensland, St Lucia, QLD, Australia.

²Child Health Research Centre, The University of Queensland, South Brisbane, QLD, Australia.

Corresponding Author: Lisa Akison

Address: Child Health Research Centre, The University of Queensland, Room 408, Centre for Children's Health Research (CCHR), 62 Graham St, South Brisbane, QLD 4101, AUSTRALIA

Phone: +61 7 3069 7511 *Email:* <u>l.akison@uq.edu.au</u>

Running Title: Prenatal alcohol exposure and offspring metabolism

Key points summary

- Prenatal alcohol exposure has the potential to affect fetal development and program chronic disease in offspring.
- Previous preclinical models typically use high, chronic doses of alcohol throughout pregnancy to examine effects on offspring, particularly on the brain and behaviour.
- In this study we use a rat model of moderate, acute, prenatal alcohol exposure to determine if this can be detrimental to maintenance of glucose homeostasis in adolescent and adult offspring.
- Although female offspring were relatively unaffected, there was evidence of insulin resistance in 6-month old male offspring exposed to prenatal alcohol, suggestive of a pre-diabetic state
- This result suggests that even a relatively low-dose, acute exposure to alcohol during pregnancy can still program metabolic dysfunction in a sex-specific manner.

1 Abstract

2 Alcohol consumption is highly prevalent amongst women of reproductive age. Given that approximately 50% of pregnancies are unplanned, alcohol has the potential to affect 3 fetal development and program chronic disease in offspring. We examined the effect of 4 an acute but moderate prenatal alcohol exposure (PAE) on glucose metabolism, lipid 5 6 levels and dietary preference in adolescent and/or adult rat offspring. Pregnant Sprague-Dawley rats received an oral gavage of ethanol (1g/kg maternal body weight, n=9 dams) 7 8 or an equivalent volume of saline (control, n=8 dams) at embryonic days 13.5 and 14.5. 9 PAE resulted in a blood alcohol concentration of 0.05-0.06% 1h post-gavage in dams. 10 Fasting blood glucose concentration was not affected by PAE at any age, nor were blood glucose levels during a glucose tolerance test (GTT) (P>0.5). However, there was 11 12 evidence of insulin resistance in PAE male offspring at 6 months of age, with significantly elevated fasting plasma insulin (P = 0.001), a tendency for increased first 13 phase insulin secretion during the GTT (P = 0.06) and impaired glucose clearance 14 following an insulin challenge (P = 0.01). This was accompanied by alterations in 15 protein kinase B (AKT) signalling in adipose tissue. PAE had a tendency to reduce 16 offspring preference for a HFD, resulting in reduced calorie consumption (P = 0.04 -17 18 0.06). These data suggest that a relatively low-level, acute PAE can still program 19 metabolic dysfunction in offspring in a sex-specific manner. These results highlight that 20 alcohol consumption during pregnancy has the potential to affect the long-term health 21 of offspring.

Key words: fetal programming, glucose metabolism, insulin resistance, food preference,
 gene expression

24

4

26 Introduction

27 It is clear from both epidemiological and animal studies that early life events can impact on development and program adult disease. This is known as the developmental origins 28 29 of health and disease (DOHaD) hypothesis and incorporates perturbations throughout both fetal and early postnatal development (Barker, 2007). During pregnancy, a sub-30 optimal uterine environment can result from maternal insults such as malnutrition, 31 32 stress, obesity, and drug use. In response to a perturbation, adaptations occur in favour 33 of vital organs, such as the brain, to ensure short-term fetal survival; however, the 34 development of other organs deemed relatively unnecessary, such as the kidneys, liver and pancreas, can be compromised (Heindel & Vandenberg, 2015). This can result in 35 long-term adverse health outcomes in offspring associated with the altered function in 36 these organs. Although both clinical studies and animal models suggest that the timing 37 38 of exposure can be important, organs requiring a prolonged period of development, such 39 as the liver (Godlewski et al., 1997) and pancreas (Gittes, 2009), are particularly vulnerable to insults at multiple time-points. Therefore, metabolic dysfunction is 40 41 commonly reported in offspring from animal models of maternal malnutrition, obesity 42 and stress, as well as clinical studies with evidence of these exposures (see (Fleming et 43 al., 2018) for review). Interestingly, effects are often sex-specific, with males 44 consistently more susceptible to adverse outcomes than females (Weinberg et al., 2008; 45 Sundrani et al., 2017). 46 One maternal perturbation receiving increasing attention is prenatal alcohol exposure

47 (PAE). Despite health authorities advising against alcohol consumption while pregnant

48 or planning a pregnancy (World Health Organisation, 2004; National Health and

49 Medical Research Council, 2009), a recent systematic review and meta-analysis

so estimated the global rate of alcohol consumption during pregnancy to be $\sim 10\%$,

although in many Western countries it is much higher (Popova et al., 2017). Although

52 PAE causes well-recognised neurological and behavioural/cognitive deficits in

offspring, there is also emerging evidence for a range of deficits in other body systems,

- 54 leading to long-term adverse health outcomes, including impaired glucose metabolism.
- 55 While clinical studies are sparse, one study reports on a small cohort (n = 7) of early
- 56 school-age children with fetal alcohol syndrome (FAS), providing some evidence of
- 57 glucose intolerance and insulin resistance in these patients compared to 'normal'

5

controls (Castells et al., 1981). However, compelling evidence for metabolic 58 59 dysfunction following PAE comes from preclinical studies. In our recent systematic review, of the 18 studies included all but three reported glucose intolerance and/or 60 insulin resistance in PAE offspring in adulthood (see (Akison *et al.*, 2019) for details). 61 This was often associated with disruptions in molecular pathways involved in 62 gluconeogenesis, glucose transport, IGF signalling and/or insulin signalling pathways in 63 the liver and/or peripheral tissues. However, previous models tended to administer 64 chronic, high doses of alcohol, resulting in daily peak blood alcohol concentrations 65 (BAC) of 100-150 mg/dl (0.10-0.15%) (Chen & Nyomba, 2003b). This is not 66 representative of drinking patterns reported in the majority of pregnant women (Muggli 67 et al., 2016; McCormack et al., 2017). Further, recent studies, in both animal models of 68 PAE (Amos-Kroohs et al., 2018; Dorey et al., 2018) and children with FASD (Werts et 69 al., 2014; Smith et al., 2015; Amos-Kroohs et al., 2016), also report dysregulated eating 70 71 behaviours and food preference, potentially contributing to a propensity towards 72 diabetes and associated comorbidities such as obesity. 73 In the current study, we used a rat model of moderate, acute alcohol exposure during an 74 important stage for liver and pancreas development, but within the first trimester 75 equivalent period in humans, when the mother may still be unaware of her pregnancy. 76 Timing of exposure was based on the relative development of these organs between humans and rodents (Godlewski et al., 1997; Pan & Brissova, 2014). Food preference 77 78 for a HFD compared to standard chow was examined at 4-5 months of age and then a 79 glucose tolerance test (GTT) and insulin tolerance test (ITT) were performed in 80 offspring at 5-6 months of age. In order to elucidate potential molecular mechanisms 81 contributing to disease phenotypes, the effect of prenatal alcohol exposure on hepatic expression of genes involved in glucose homeostasis and AKT-signalling in peripheral 82 tissues were also examined in adult offspring. We hypothesised that our moderate, acute 83 prenatal alcohol exposure could program glucose intolerance and insulin resistance in 84 adult offspring, as well as a preference for a high-fat diet. Given previous reports of sex-85 86 specific effects, we separated all analyses by sex.

87

88 Materials and Methods

89 *Ethical approval*

6

- 90 All animal experiments and procedures were approved by The University of
- 91 Queensland Anatomical Biosciences Ethics Committee (SBMS/AIBN/521/15/NHMRC)
- and were conducted in accordance with the Australian Code for the Care and Use of
- Animals for Scientific Purposes (2013, 8th Edition).
- 94

95 Animal model of acute prenatal alcohol exposure

- 96 Outbred, nulliparous Sprague-Dawley rats were obtained from the Animal Resources
- 97 Centre, Perth WA. All animals were housed at the Australian Institute for
- 98 Bioengineering and Nanotechnology (AIBN) Animal Facility (University of
- 99 Queensland, St Lucia, QLD, Australia) in a temperature- and humidity-controlled
- 100 environment with an artificial 12 h reversed light-dark cycle and provided with standard
- 101 laboratory rat chow (Rat & Mouse Meat-Free Diet, Specialty Feeds, Glen Forrest WA,
- 102 Australia) and water ad libitum. Following transport, females were group-housed during
- an initial acclimation period in open-top cages with wire lids, plastic bases and wood-
- 104 chip bedding.
- 105 At a weight threshold of 230 g (~3-4 months old), dams were assessed daily for
- 106 proestrous via vaginal electrical impedance ($\geq 4.0 \text{ k}\Omega$) using an EC40 estrous cycle
- 107 monitor (Fine Science Tools, Foster City, CA, USA) as previously described (Jaramillo
- 108 *et al.*, 2012). Once in proestrous, dams were mated with a proven stud male for the first
- 109 5 h of the dark cycle and successful mating confirmed by the presence of a seminal
- 110 plug, with the following morning designated as embryonic day (E) 0.5. Pregnant dams
- 111 were housed singly. Dams were weight-matched and then randomly assigned to either
- receive ethanol (EtOH) or saline (Control) via oral gavage at E13.5 and E14.5. EtOH
- 113 treated females (n = 10) received 18% v/v EtOH in saline solution (0.9% NaCl) at a
- 114 dose of 1 g/kg body weight, while Control females (n = 8) received an equivalent
- volume of saline. Gavage was performed between 09:00-10:00 each day. Water and
- 116 chow consumption were measured daily from E12.5 (one day prior to first gavage) until
- birth. Weight gain was monitored throughout pregnancy. Day of birth was designated
- postnatal day (PN) 0, with offspring weighed on alternate days from PN1, then weekly
- 119 following weaning at PN21. Once offspring were weaned, all dams were culled via CO₂
- 120 asphyxiation.

7

121

122 Blood and tissue collection

123 Approximately 150 µl whole blood was collected from dams via a tail tip bleed at 1 h 124 and 5 h post gavage on E13.5 and 14.5 to measure blood alcohol concentration (BAC; 125 see details for measurement below) and non-fasted blood glucose level using an Accu-126 Chek Performa glucometer (Roche, Bella Vista, NSW, Australia). At PN30, a subset of 127 offspring (1-4 animals per sex from 3-8 litters per treatment; see Supplemental Data 1 for details https://doi.org/10.5281/zenodo.3257092) were weighed and then culled via 128 129 CO₂ asphysiation following a 16 h fasting period. Blood was collected via cardiac puncture for measurement of fasting plasma insulin, metabolites involved in lipid 130 131 metabolism and fasting blood glucose. Blood was immediately centrifuged at 4000 rpm for 10 min at 4°C and plasma separated, aliquoted and stored at -20°C until subsequent 132 133 analysis. Fasting blood glucose was also measured in all offspring at 10-11 weeks of 134 age via a spot tail bleed and glucometer. Litter-mate blood glucose levels were averaged 135 for each sex prior to analysis for differences between PAE and control. At 6 months of 136 age, 1 male and 1 female per litter had blood collected as part of a glucose tolerance test 137 (GTT) or insulin tolerance test (ITT) (see below for details). All offspring were culled at 138 6-7 months of age via CO₂ asphysiation, with a subset used for tissue collection (1-2) 139 males and 1-2 females per litter for a total of 12 per sex per treatment). Females were 140 assessed for proestrous ($\geq 4.0 \text{ k}\Omega$ vaginal impedance) as described above and were not culled at this stage of the cycle to reduce potential variability due to hormonal changes 141 just prior to ovulation. Body weight, abdominal circumference, snout-rump length and 142 143 tibia length were measured for calculations of size and ponderal index (weight in 144 g/cubed length in cm). Pancreas and liver were removed, weighed and a section from 145 the largest lobe of the liver snap-frozen in liquid N₂ and stored at -80°C for subsequent 146 molecular analysis. Samples of abdominal visceral fat and the left gastrocnemius 147 muscle were also frozen for subsequent molecular analysis.

148

149 Measurement of blood alcohol concentration (BAC)

150 Maternal blood samples were immediately centrifuged after collection at 4000 rpm for

151 10 min at 4°C and plasma separated, aliquoted and stored at -20°C until analysed. Blood

alcohol concentration (BAC) was measured by Pathology Queensland (Queensland

8

153 Health) using an alcohol dehydrogenase enzymatic assay (Beckman Coulter, Ref

154 #474947) and a Beckman Coulter AU480 Chemistry Analyzer (Beckman Coulter, Lane

- 155 Cove, NSW, Australia). The limit of detection for this assay was 5 mg/dL or 0.005%.
- 156

157 Food preference study

158 Food preference was assessed in offspring 4-5 months of age as previously reported 159 (Dorey et al., 2018). Briefly, 1 male and 1 female from each litter were randomly 160 chosen and housed individually in cages with a divided feed hopper. After a 4-day 161 acclimatisation period, baseline consumption was established by measuring intake of standard chow diet (SD, 4.8% fat) daily for a period of 4 days and calculating 162 163 consumption per gram of body weight. Offspring were then allowed free access to both a high-fat 'Western' style chow diet (HFD; 21% fat; Specialty Feeds Diet SF00-219) 164 165 and the SD over a 4-day test period. The diets were randomly placed on either side of the feed hopper and their positions switched after 2 days. Cage positions were also 166 167 randomised on the racks and were changed after 2 days to prevent systematic sampling 168 bias of Control and EtOH animals. Food and water intake were recorded daily and 169 consumption per gram of body weight calculated over the first 2 days (Choice Period 1, 170 CP1) and the second 2 days (Choice Period 2, CP2) of the two diets being offered. The 171 test period was split into CP1 and CP2, as a previous study has shown that the novelty of the HFD diminishes over the test period, resulting in different eating behaviour over 172 173 the 4-day period (Dorey et al., 2018).

174

175 Glucose and insulin tolerance tests

176 At 6-7 months of age, a GTT and ITT were performed as previously described (Probyn 177 et al., 2013; Gardebjer et al., 2015). Briefly, 1 male and 1 female were randomly 178 selected from each litter (EtOH = 9; Control = 8) for each test. For the GTT, offspring 179 were fasted overnight for 12-16 h and then received an intraperitoneal (ip) injection of a 180 50% w/v glucose solution (Baxter Healthcare, Old Toongabbie, NSW, Australia) at a dose of 1 g/kg body weight. Blood was sampled via tail tip bleed, and blood glucose 181 182 concentrations were measured using a glucometer prior to glucose administration (-5 min), and at 5, 10, 20, 30, 45, 60 and 90 min post-bolus. Blood was also collected, 183 184 processed as described above and plasma stored for subsequent analysis of plasma

9

185 insulin and glucose levels. For the ITT, non-fasted rats received an ip injection of 0.75

186 U/kg body weight insulin (Actrapid, Novo Nordisk Pharmaceuticals Pty. Ltd.,

187 Baulkham Hills, NSW, Australia), and tail tip bleeds were performed to measure blood

188 glucose concentrations via glucometer as above at -5, 20, 40, 60, 90 and 120 min post-189 injection.

190

191 Quantitative PCR and Western blotting

192 Expression of genes involved in hepatic glucose metabolism and peripheral tissue 193 glucose transport and insulin signalling were examined using real-time quantitative 194 polymerase chain reaction (qPCR) (see Table 1 for details of specific genes). Liver and 195 gastrocnemius muscle samples collected from 6 month-old offspring (n = 8-9 per sex 196 per group) were homogenised and total RNA was extracted using RNeasy Mini Kits 197 (liver; Qiagen, Chadstone, VIC, Australia) or Trizol reagent (muscle; ThermoFisher 198 Scientific, Richlands, QLD, Australia) according to the manufacturer's instructions. 199 Total RNA (1 µg/reaction for liver; 500 ng/reaction for muscle) was reverse transcribed 200 into cDNA using iScript Reverse Transcription Supermix for RT-qPCR (Bio-Rad. 201 Gladesville, NSW, Australia). qPCR reactions were performed on the Applied 202 Biosystems Quantstudio 6 Flex Real-Time PCR System (ThermoFisher Scientific) 203 using 10 ng and 20 ng of cDNA for muscle and liver respectively, Quantinova Probe 204 PCR Master Mix (Qiagen) and Assay-on-Demand primer/probe sets (see Table 1 for 205 details). Reactions were multiplexed with beta-actin (Actb) as an endogenous control. In 206 addition, Eif2a and Rpl19 were used as additional endogenous control genes for liver 207 and muscle samples respectively (see Table 1). All control genes were stably expressed 208 across all samples, irrespective of experimental group or sex (data not shown). The 209 geometric mean of the two endogenous control genes was used in the $\Delta\Delta$ Ct calculation 210 of gene expression, with fold-change expressed relative to the average of the male 211 offspring saline control group.

Total protein was extracted from visceral adipose tissue (100 mg) and gastrocnemius

muscle (30 mg) samples (male offspring only; n = 8-9 per group) for western blot

analysis of total and phosphorylated AKT, which plays a central role in insulin

- signalling in peripheral tissues (Mackenzie & Elliott, 2014). Tissues were homogenised
- 216 in Cell Lysis Buffer (Cell Signaling Technology, Danvers, MA, USA) with protease

217 (Sigma-Aldrich, Sydney, NSW, Australia) and phosphatase (Roche) inhibitors using a 218 FastPrep-24 5G homogeniser (MP Biomedicals, Seven Hills, NSW, Australia). Homogenates were centrifuged (11,000 rpm, 10 min, 4°C) and resultant supernatant 219 220 assayed using a DC Protein Assay Kit (Bio-Rad). Samples were loaded onto 12% SDS-221 PAGE gels and subsequently transferred overnight at 4°C to Immun-Blot LF PVDF 222 membranes (Bio-Rad). Membranes were incubated overnight with one of the following rabbit primary antibodies (all from Cell Signaling Technology): anti-Pan-AKT (1:1000, 223 224 Cat# 5373s, 60 kDa, RRID:AB_10891424), anti-phospho-AKT_{Thr308} (1:1000, Cat# 225 9275s, 60 kDa, RRID:AB 329828), anti-phospho-AKT_{Ser473} (1:1000, Cat# 4060s, 60 226 kDa, RRID:AB_2315049). Protein expression was measured as previously described using a LI-COR Odyssey CLx infrared imaging system (LI-COR Biosciences, Lincoln, 227 228 NE, USA, RRID:SCR 014579) following exposure to LI-COR IRDye 680 goat antirabbit secondary antibody (LI-COR Biosciences, Cat# 926-32221, RRID:AB_621841). 229 230 Band intensity was analysed using Image Studio Lite software (LI-COR Biosciences, 231 v5.2, RRID:SCR 013715) and was normalised to glyceraldehyde 3-phosphate 232 dehydrogenase (GAPDH, 1:1000, Cat# 2118s, 37 kDa, RRID:AB_561053) 233 immunoreactivity for densitometric analysis. Protein levels in the EtOH samples were

- 234 expressed relative to the average of the saline controls.
- 235

236 Plasma insulin, glucose and lipid analysis

237 Fasting plasma samples collected from offspring at PN30 and during the GTT at 6-7 238 months of age were analysed for insulin levels using a rat insulin radioimmunoassay kit 239 (SRI-13K, Millipore Australia, Kilsyth, VIC). Insulin samples were run in duplicate at 240 1:5, 1:10 or 1:20 dilution. Assay sensitivity was 0.03 ng/mL and inter- and intra-assay 241 coefficients of variation were 16.7% and 12.1% respectively. Plasma collected at offspring culls at PN30 were analysed for triglycerides (TG), high-density lipoproteins 242 243 (HDL), and low-density lipoproteins (LDL) using a Cobas Integra 400 Plus Chemistry 244 Analyzer (Block Scientific, Bellport, NY, USA). In addition, plasma collected at 245 baseline for the GTT at 6 months of age were analysed for glucose levels using the Cobas Analyzer, for comparison to measurement of glucose levels by the glucometer. 246 Blood glucose levels, as measured using the glucometer, were found to underestimate 247 248 plasma glucose levels measured using the 'gold standard' Cobas analyser (Figure 1A).

11

249 However, this underestimation was consistent across all treatment/sex combinations

250 (Figure 1B). Therefore, where insufficient plasma was available for Cobas analysis

251 (PN30), glucometer readings of blood glucose levels were adequate to compare fasting

252 glucose and insulin sensitivity/resistance indices between treatment/sex groups. When

- sufficient plasma could be collected (6 months of age), plasma glucose levels were used
- for all analyses.
- 255

256 Calculations and statistical analyses

257 Area under the glucose (AUGC) and insulin (AUIC) curves were calculated using the

trapezius method with baseline defined as zero (Allison *et al.*, 1995). Glucose

259 concentration curves for the ITT were inverted before calculating AUGC as previously

260 described (Gardebjer *et al.*, 2015). Acute 1st phase insulin secretion was calculated as

the AUIC from basal to 5 min post-glucose bolus and 2nd phase insulin secretion as the

AUIC from 5 to 120 min post-bolus. Quantitative insulin sensitivity check index

263 (QUICKI) was calculated using $1/[log(fasting insulin (\mu U/mL)) + log(fasting glucose$

264 (mg/dL)] (Katz et al., 2000). The homeostasis model assessment-estimated insulin

 $265 \qquad resistance \ (HOMA-IR) \ was \ calculated \ using \ [fasting insulin \ (\mu U/mL) \times fasting \ glucose$

266 (mg/dL)]/2430, which has been validated for use in rats (Cacho *et al.*, 2008). Total

cholesterol (TC) was calculated by re-arranging the Friedewald equation (Friedewald *et*

268 *al.*, 1972) such that TC = HDL + LDL + (TG/5).

All raw data and sample sizes for figures and tables are provided in Supplemental Data

270 1 (https://doi.org/10.5281/zenodo.3257092). Analyses were conducted using GraphPad

271 Prism 7.0 (GraphPad Software, San Diego, CA, USA) and all data presented as mean \pm

272 SEM. Prior to analysis, all data were tested for normality using the D'Agnostino-

273 Pearson omnibus or the Shapiro-Wilk normality tests. Maternal parameters and western

blot data were analysed using a Student's t-test (parametric data) or a Mann-Whitney U-

test (non-parametric data). Where variances were significantly different but data was

276 normally distributed, Welch's correction was applied. All other data were analysed

using a two-way ANOVA, with offspring sex (male/female) and treatment group

278 (EtOH/Control) as factors. Where there was a significant interaction, a Sidak multiple

279 comparison test was used to determine significantly different groups. Where data was

280 not normally distributed, a non-parametric Kruskal-Wallis test across all treatment/sex

12

281 groups was used, with Dunn's multiple comparison test used to determine significantly 282 different groups. Significance level was P<0.05 for all statistical tests.

283

284 **Results**

285 Maternal parameters and postnatal growth

Dams in the EtOH and Control groups were of similar weight at mating and at E13.5
(Table 2). Gestational weight gain prior to gavage and post-gavage were also not

- significantly different between groups, nor were daily chow or water consumption
- (Table 2). Blood glucose concentrations at 1 h and 5 h post gavage on E13.5 and E14.5
- 290 were not significantly different (Table 2). There were also no differences in pregnancy
- 291 outcomes between EtOH and Control dams, such as litter sex ratio, litter size, and
- number of implantation scars (Table 2). However, one dam in the EtOH group had a
- litter of only 7 pups due to a suspected blockage in one uterine horn (no implantation
- scars were observed) and so this litter was excluded from subsequent analyses. BAC
- was measured in 4 out of 8 Control dams, with BAC below the limit of detection at each
- time point. In EtOH-treated dams, mean BAC was ~50 mg/dL (~0.05%) at 1 h
- following gavage at E13.5 and E14.5, but by 5 h post-gavage, was below the limit of
- detection on both days (Table 2).
- 299 There was no difference in pup weights at PN1 between EtOH and control litters, nor
- 300 differences in weight gain until weaning at PN21 (Table 3). For the first week post-
- 301 weaning, weight gain was higher in males than in females ($P_{(sex)} = 0.03$) but there was 302 no effect of treatment (Table 3). Weights of offspring at the PN30 cull were also not
- different (Table 3).
- 304

305 Fasting blood glucose, plasma insulin and lipid levels in adolescent offspring

- 306 Fasting blood glucose, plasma insulin and indexes for insulin resistance (HOMA-IR)
- 307 and insulin sensitivity (QUICKI) were not significantly different between groups in
- 308 either sex at PN30 (Table 4). Fasting blood glucose (mmol/L) was also not different at
- 309 10-11 weeks of age (Male EtOH: 5.5 ± 0.2 , n = 9; Male Control: 5.5 ± 0.2 , n = 8;
- 310 Female EtOH: 5.3 ± 0.1 , n = 9; Female Control: 5.5 ± 0.1 , n = 8. $P_{\text{treat}} = 0.69$, $P_{\text{sex}} =$

13

- 311 0.51, $P_{int} = 0.57$). The plasma lipid profile (HDL, LDL, TG and TC) was also not 312 different between EtOH and control offspring at PN30 (Table 4).
- 313

314 Food preference and water consumption at 4-5 months of age

315 There were no significant differences in consumption of SD or HFD between EtOH and 316 Control offspring at any time (Table 5). Animals consumed ~10-fold more HFD than 317 SD during CP1, with a concomitant 10-fold decrease in SD consumption compared to 318 baseline levels. This continued through CP2, although HFD consumption dropped to ~4-fold that of SD. However, there were sex differences in consumption rates, with 319 320 females consuming more SD at baseline and more HFD during CP1 and CP2 than males (Table 5). However, as the HFD was more energy dense than the SD (19.4 MJ/kg 321 322 versus 14.0 MJ/kg), there was a significant decrease in energy intake per day by the EtOH groups compared to controls, due to a slightly reduced (non-significant) 323 consumption of HFD by these groups. 324 325 Daily baseline water and SD consumption was not significantly different between Control and EtOH offspring in either sex, but females did drink a larger volume of 326

Control and Leori onspring in cluic sen, our remains and armit a ranger volume of

327 water compared to males, regardless of treatment (Table 5). EtOH females also showed

328 a tendency to increase their water consumption compared to controls in the 2^{nd} half of

the testing period (CP2, Table 5) with a non-parametric Mann-Whitney U-test

330 performed separately for each sex, indicating a significant difference between control

and EtOH females (P = 0.003) but no difference between groups within males (P = 0.32).

333

334 Fasting plasma glucose, glucose clearance and insulin sensitivity in adult offspring

At 6 months of age, fasting plasma glucose continued to be similar between EtOH and

Control groups and between males and females (Figure 2A). However, fasting plasma

insulin was significantly elevated in males only (Figure 2B). HOMA-IR and QUICKI

338 indices were also significantly altered in EtOH compared to Control offspring,

indicative of increased insulin resistance and reduced insulin sensitivity (Figure 2C, D).

340 In the GTT, there was no significant difference in the overall AUGC between EtOH and

341 Control offspring (Figure 3B). However, these was a tendency for the EtOH females to

342	exhibit a reduced response to glucose injection, resulting in a trend $(P = 0.07)$ for
343	reduced AUGC in females versus males (Figure 3A, B). Insulin output, as shown by the
344	AUIC, was significantly elevated in males compared to females during the GTT (Figure
345	3C, D). This was particularly evident during the acute first-phase insulin response, with
346	EtOH males having a tendency to increase insulin output compared to Control males
347	and female offspring (Figure 3E). Second phase insulin production continued to be
348	higher in males than females, but there was no effect of PAE (Figure 3F). In addition,
349	EtOH male offspring had significantly reduced glucose clearance in response to
350	exogenous insulin in the ITT (Figure 3G, H). However, PAE had no effect on glucose

- 351 clearance in females during the ITT (Figure 3H).
- 352

Body condition and organ weights at 6 months of age

- 354 At the completion of the study, all animals were culled and a subset (1-2 males and/or 355 females per litter for n=12 per sex per group) underwent detailed morphometric 356 analysis. There was no significant difference in body weight, measures of size (snout-357 rump length, tibia length), or measures of body condition (ponderal index, absolute 358 abdominal circumference and abdominal circumference relative to body size 359 parameters) between EtOH-exposed and control offspring (Table 6). However, as would be expected, males were significantly larger than females across all parameters (Table 360 6). There was also no significant difference in liver or pancreas weight (absolute or 361 362 relative to body weight) between EtOH and control offspring. Again, liver weight (absolute and relative to BW) and absolute pancreas weight were significantly larger in 363 364 males than females. However, pancreas weight relative to body weight was significantly
- 365 larger in females than males (Table 6).
- 366

367 Expression of hepatic genes involved in insulin signalling and glucose homeostasis

368 Liver tissue was collected from 6 month-old offspring for analysis of genes involved in

- 369 glucose transport (*Glut2*), homeostatic regulation of glucose levels (*G6pc*, *Gck*, *Pck1*
- and *Ppargc1a*) and insulin signalling (*Insr*) (Table 7). There was no significant
- difference in the expression of these genes between EtOH-exposed and control
- 372 offspring (Table 7). However, there was a sex-specific difference in expression of

15

373 *Ppargc1a* and *Insr*, and a trend for an effect of sex on *Glut2* expression, with all three
374 genes displaying higher relative expression in females compared with males (Table 7).

375

376 Peripheral tissue insulin signalling

377 Given the insulin resistance observed in EtOH-exposed males, we examined a key 378 molecule involved in the insulin signalling pathway in peripheral tissues, AKT, also 379 known as protein kinase B. In skeletal muscle, there was no significant difference in 380 total (pan-)AKT, pAKT_{Ser473} (absolute or as a ratio of pan-AKT) or pAKT_{Thr308} 381 (absolute or as a ratio of pan-AKT) between EtOH-exposed and control male offspring (Figure 4A-E). Muscle gene expression of the glucose transporter, *Glut4*, and the insulin 382 receptor, Insr, were also not affected by EtOH exposure (Figure 4F, G). However, there 383 was a significant increase in pan-AKT in adipose tissue from EtOH-exposed males 384 385 compared to controls (Figure 5A) and a tendency for increased pAKT Ser473 (Figure 5B, 386 P = 0.13) and pAKT_{Thr308} (Figure 5C, P = 0.07), and but not as a ratio of pan-AKT 387 (Figure 5D, E).

388

389 **Discussion**

This study demonstrates for the first time that a low, acute dose of prenatal EtOH can 390 391 program metabolic dysfunction in a sex-specific manner. Male offspring developed 392 insulin resistance at 6 months of age, regardless of the lack of traditional hallmarks of 393 low birth weight and catch-up growth seen in fetal programming. PAE male offspring 394 also showed alterations in insulin signalling in adipose tissue. Given that BAC levels 395 following alcohol exposure were relatively moderate, at $\sim 0.05\%$, these results 396 strengthen the message that no amount of alcohol during pregnancy is safe for long-397 term offspring health.

Previous preclinical studies investigating the association between PAE and offspring
metabolic health have typically used a high dose (2 g/kg BW administered twice a day)
throughout gestation and found this can induce glucose intolerance and insulin
resistance (see (Akison *et al.*, 2019) for review). This dosage typically results in a peak
BAC of ~0.1-0.15% (Chen & Nyomba, 2003b). However, our moderate, acute dose
model, resulting in a BAC of just 0.05% one hour after gavage, is more representative

16

of drinking practices in pregnant women who report drinking on average 1-2 standard
drinks sporadically during pregnancy. Although the model used in this study has been
previously used by Gray et al. (Gray *et al.*, 2010), they reported a BAC of 0.107% in
treated dams 1 h after gavage. The reasons for these differences in BAC are unknown
but given these discrepancies, this highlights the importance of measuring and reporting
BAC levels, in addition to providing the dosage administered.

- 410 In our moderate exposure model, there were no changes in fasting blood glucose levels 411 at any age, or fasting insulin levels in adolescent offspring exposed to prenatal alcohol. 412 Blood glucose concentrations during a GTT performed at 6 months of age were also not 413 altered. However, the major finding of our study was that male offspring exposed to 414 alcohol showed evidence of insulin resistance at 6 months of age, with elevated fasting 415 plasma insulin, resulting in an increased HOMA-IR index, indicative of insulin 416 resistance, and a decreased QUICKI index, indicative of reduced insulin sensitivity. 417 There was also a trend for increased first phase insulin secretion during the GTT and a 418 significant impairment in glucose clearance following an insulin challenge. This is 419 consistent with findings of a recent systematic review, which found that of 12 420 preclinical studies that examined glucose metabolism using a GTT and/or ITT, all but 421 one study found evidence of insulin resistance (Akison et al., 2019). However, the 422 majority of these studies also reported changes in circulating glucose levels following 423 PAE. Interestingly, only one of these 12 studies had a low BAC (peak of ~0.03%), 424 comparable to that measured in our study. That study, using a chronic low dose of 425 alcohol throughout pregnancy, also found increased first phase insulin secretion in 426 response to a glucose challenge exclusively in males, without concomitant changes in 427 blood glucose levels (Probyn et al., 2013). These are hallmarks of a pre-diabetic state. 428 This suggests that the BAC may need to reach a higher threshold to induce changes in 429 glucose tolerance, while changes in insulin sensitivity can potentially manifest following exposure to a much lower BAC. 430 431 We explored potential molecular mechanisms underlying the observed insulin resistant
- 432 phenotype. Given the importance of the liver for glucose homeostasis, we examined the
- 433 expression of a selection of hepatic genes involved in glucose transport (*Glut2*), glucose
- 434 homeostasis (*G6pc, Gck, Pck1, Ppargc1a*) and insulin signalling (*Insr*). Similar to our
- 435 low dose chronic alcohol exposure model (Probyn et al., 2013), we found no

17

436 dysregulation of these genes due to PAE, and instead observed only sex-specific 437 differences in gene expression. This suggested the deficits lay within peripheral tissues regulating glucose uptake and utilisation. Supporting this, we did find alterations in 438 439 PI3K/AKT signalling in a peripheral tissue, specifically in adipose tissue. AKT 440 signalling is known to play an essential role in insulin-mediated glucose uptake in these 441 peripheral tissues (Huang et al., 2018). Both total AKT and activated AKT, measured 442 by phosphorylation at Threonine 308, were elevated in adipose tissue collected from 443 PAE male offspring at 6 months of age. However, it is pAKT(Ser473) that is the rate-444 limiting factor, suggesting that no compensatory changes to the levels of 445 phosphorylation at this site may underlie the dysregulated glucose clearing observed during the ITT. Our results are consistent to a previous study investigating insulin 446 447 signalling in offspring exposed to periconceptional alcohol (Gardebjer *et al.*, 2015). 448 This suggests that increased pAKT(Thr308) may be a potential compensatory 449 mechanism in response to increased fasting insulin levels. We found no differences in 450 muscle expression of *Glut4* or AKT signalling that have been demonstrated in other 451 models of prenatal alcohol (Chen & Nyomba, 2003a; Chen & Nyomba, 2003b; Chen et 452 al., 2005; Yao et al., 2006), highlighting this relatively low amount of alcohol for just 453 two days may not have reached a sufficient threshold to result in long-term changes in 454 this tissue. 455 Maternal malnutrition, even if relatively modest, is an established prenatal perturbation

456 which may result in fetal growth restriction and offspring metabolic disorders (Flynn et 457 al., 2013; Gao et al., 2014). However, this can be excluded in our study, as food and 458 water consumption throughout pregnancy did not differ between the EtOH and control 459 dams. Additionally, there were no differences in other maternal parameters known to 460 affect offspring metabolic outcome, such as obesity (Whitaker, 2004; El-Gilany & 461 Hammad, 2010; Janjua et al., 2012), gestational weight gain (Margerison Zilko et al., 2010) and blood glucose (used as an indicator for gestational diabetes) (Van Wootten & 462 463 Turner, 2002). Previous preclinical studies have reported reduced birth weight and 464 subsequent 'catch-up' growth in offspring exposed to prenatal alcohol that was 465 associated with subsequent metabolic dysfunction, specifically insulin resistance, in adults (Chen & Nyomba, 2003b; Yao et al., 2006; Dobson et al., 2014; Xia et al., 2014; 466 Gardebjer et al., 2015). However, other studies highlight that growth restriction is not 467

18

468 required to program chronic disease, with insulin resistance arising in PAE offspring 469 irrespective of birth weight (Chen & Nyomba, 2004; Yao & Nyomba, 2008; Probyn et al., 2013; Yao et al., 2013). Clinical studies have also reported that growth restriction is 470 471 not a prerequisite for development of metabolic syndrome (Euser *et al.*, 2010; Kopec *et* 472 al., 2017). We found no differences in offspring weight soon after birth, or postnatally, 473 between control and PAE offspring, and yet males developed insulin resistance at 6 474 months of age. Interestingly, the low-dose model mentioned above, which showed a 475 similar insulin resistant phenotype in males only, also exhibited normal birth weights 476 and offspring growth (Probyn et al., 2013). This highlights that even low-dose 477 exposures can program offspring disease, irrespective of birth weight. 478 PAE offspring at 4 months of age did not exhibit a preference for a HFD. However, 479 they did eat slightly less than controls, which resulted in a significantly lower energy 480 consumption in PAE offspring due to the HFD being more energy rich. This was 481 particularly evident in the second choice period, when the novelty of the new diet had 482 presumably waned (Dorey et al., 2018). This was contrary to a recent study in rat 483 offspring exposed to a higher dose of alcohol exclusively around conception, which 484 found that males preferentially consumed more HFD than controls (Dorey et al., 2018). 485 However, this study was conducted in much older rats (15 months of age). Clinical 486 studies have found that children diagnosed with FASD tend to have hyperphagia and 487 abnormal eating patterns, including constant snacking and impaired satiety (Werts et al., 488 2014; Amos-Kroohs *et al.*, 2016). Our results are more consistent with a study 489 conducted in mice, which found no changes in food preference as a result of PAE 490 (Amos-Kroohs et al., 2018). Interestingly, that study also restricted PAE to later in 491 gestation (E12.5-17.5). 492 Our study also revealed a tendency for PAE females to consume more water than 493 controls. This was consistent with a recent study in 18 month-old rat offspring exposed 494 to periconceptional alcohol, which found that exposed females consumed significantly 495 more water than controls (Dorey et al., 2018). Two other studies have also reported 496 increased water intake in 2-3 month-old rat offspring due to PAE from embryonic day

497 6/7 to birth (Dow-Edwards *et al.*, 1989; Knee *et al.*, 2004). One only measured this in

- 498 male offspring (Dow-Edwards et al., 1989). However, the second study measured this
- in both sexes and found the polydipsia phenotype was most pronounced in females

19

500 (Knee et al., 2004). One other preclinical study found no effect of an acute binge 501 exposure at embryonic day 7, although they only examined male offspring (Desroches 502 et al., 1987). This suggests a sex-specific, polydipsia phenotype associated with PAE. 503 Although we did not examine renal function, a previous study using the same acute 504 PAE protocol in rats showed sex-specific alterations in glomerular filtration rate and 505 altered protein excretion at 6 months of age, particularly in males (Gray et al., 2010). 506 A possible limitation of this study was that the saline gavage did not control for the 507 additional calories provided by the EtOH. A recent study highlighted that the typical 508 maltodextrin control, used as a substitute for the calories provided by EtOH, is not 509 metabolised in the same way, and when a medium chain triglycerides solution was 510 included as a control, no changes in metabolic outcomes could be attributed to PAE 511 (Amos-Kroohs et al., 2018). 512 Furthermore, although the low dose PAE in this study did not affect body weight at 6 513 months, we did not specifically assess body fat. Studies have previously assessed body 514 composition in PAE offspring using dual-energy X-ray absorptiometry (DEXA) and/or 515 magnetic resonance imaging (MRI), with variable results. Our result is similar to that 516 found in a previous low-dose model in rats (Probyn et al., 2013), as well as a study in 517 mice with EtOH exposure restricted to late gestation (Amos-Kroohs et al., 2018). 518 However, three studies reported increased adiposity in PAE offspring compared to

- 519 controls, particularly in males (Dobson *et al.*, 2012; Gardebjer *et al.*, 2018; Zhang *et al.*,
- 520 2018). Given we saw a reduced tendency for PAE offspring to consume a high fat,
- 521 energy dense diet when it was offered, our model does not suggest that PAE offspring
- 522 were at increased risk for adiposity later in life.
- 523

524 Conclusions

This study supports the programming of offspring metabolic health as a result of a relatively moderate PAE during a critical period of development. Although ethanol was administered during mid-pregnancy in the rat, this equates to ~week 10-12 of a human pregnancy when a woman may not yet be aware she is pregnant, particularly if the pregnancy was not planned. The pre-diabetic, insulin resistant phenotype reported in male offspring of PAE dams occurred despite a relatively low BAC and standard postnatal care, and without the '2nd Hit' of a high fat diet as used by others to 'unmask'

20

532	disease. Programmed alterations were also independent of maternal parameters known
533	to affect offspring metabolic health, such as gestational diabetes and obesity. Therefore,
534	this study highlights the importance of abstaining from alcohol consumption during
535	pregnancy or when planning a pregnancy.
536	
537	Additional information
538	Competing interests
539	The authors have no conflicts of interest to disclose.
540	
541	Author contributions
542	All experiments were performed in the Developmental Programming in Disease Lab,
543	School of Biomedical Sciences, The University of Queensland. K.M.M. and L.K.A.
544	were responsible for the conception and design of the experiments. T.M.T.N., L.K.A.
545	and S.E.S. were responsible for the collection of the data. All authors were involved in
546	data analysis and/or interpretation. All authors contributed to drafting the work and/or
547	revising it critically for important intellectual content. All authors approve of the final
548	version of the manuscript and agree to be accountable for all aspects of the work in
549	ensuring that questions related to the accuracy or integrity of any part of the work are
550	appropriately investigated and resolved. All persons designated as authors qualify for
551	authorship, and all those who qualify for authorship are listed.
552	
553	Funding
554	Funding for this project was provided by the University of Queensland Early Career
555	Researcher Grants Scheme (to L.K.A.) and the National Health and Medical Research
556	Council (to K.M.M., APP1078164).
557	
558	Acknowledgements
559	We would like to acknowledge Natasha Steiger (Animal Endocrinology Lab, School of
560	Biomedical Sciences, University of Queensland) for analysis of plasma insulin; Dave
561	Herne and Barb Arnts (University of Queensland Biological Resources) for assistance

562 with animal treatments and husbandry; Elizabeth McReight (School of Biomedical

563	Sciences, University of Queensland) for assistance with animal work; and Jacobus
564	Ungerer (Pathology Queensland, Queensland Health) for analysis of BAC.
565	
566	Supporting information
567	Supplemental Data 1 contains all underlying data used in figures and tables reported in
568	this study and can be accessed from the following URL:
569	https://doi.org/10.5281/zenodo.3257092.
570	
571	References
572	Akison LK, Reid N, Wyllie M & Moritz KM. (2019). Adverse health outcomes in
573	offspring associated with fetal alcohol exposure: A systematic review of clinical
574	and preclinical studies with a focus on metabolic and body composition
575	outcomes. Alcohol Clin Exp Res, DOI: 10.1111/acer.14078.
576	
577	Allison DB, Paultre F, Maggio C, Mezzitis N & Pi-Sunyer FX. (1995). The use of areas
578	under curves in diabetes research. Diabetes Care 18, 245-250.
579	
580	Amos-Kroohs RM, Fink BA, Smith CJ, Chin L, Van Calcar SC, Wozniak JR & Smith
581	SM. (2016). Abnormal eating behaviors are common in children with fetal
582	alcohol spectrum disorder. J Pediatr 169, 194-200 e191.
583	
584	Amos-Kroohs RM, Nelson DW, Hacker TA, Yen C-LE & Smith SM. (2018). Does
585	prenatal alcohol exposure cause a metabolic syndrome?(Non-) evidence from a
586	mouse model of fetal alcohol spectrum disorder. PloS one 13, e0199213.
587	
588	Barker DJ. (2007). The origins of the developmental origins theory. J Intern Med 261,
589	412-417.
590	
591	Cacho J, Sevillano J, de Castro J, Herrera E & Ramos MP. (2008). Validation of simple
592	indexes to assess insulin sensitivity during pregnancy in Wistar and Sprague-
593	Dawley rats. American journal of physiology Endocrinology and metabolism
594	295, E1269-1276.

22

595	
596	Castells S, Mark E, Abaci F & Schwartz E. (1981). Growth retardation in fetal alcohol
597	syndrome. Unresponsiveness to growth-promoting hormones. Dev Pharmacol
598	<i>Ther</i> 3 , 232-241.
599	
600	Chen L & Nyomba B. (2003a). Glucose intolerance and resistin expression in rat
601	offspring exposed to ethanol in utero: modulation by postnatal high-fat diet.
602	Endocrinology 144, 500-508.
603	
604	Chen L & Nyomba BLG. (2003b). Effects of prenatal alcohol exposure on glucose
605	tolerance in the rat offspring. Metab Clin Exp 52, 454-462.
606	
607	Chen L & Nyomba BLG. (2004). Whole body insulin resistance in rat offspring of
608	mothers consuming alcohol during pregnancy or lactation: comparing prenatal
609	and postnatal exposure. J Appl Physiol 96, 167-172.
610	
611	Chen L, Yao XH & Nyomba BL. (2005). In vivo insulin signaling through PI3-kinase is
612	impaired in skeletal muscle of adult rat offspring exposed to ethanol in utero. J
613	Appl Physiol 99, 528-534.
614	
615	Desroches D, Ryan K, Vleck E & Benno RH. (1987). Effects of acute, in utero, alcohol
616	exposure on growth and electrolyte metabolism in male offspring of C57BL/10J
617	mice. Alcohol and drug research 7, 415-422.
618	
619	Dobson CC, Mongillo DL, Brien DC, Stepita R, Poklewska-Koziell M, Winterborn A,
620	Holloway AC, Brien JF & Reynolds JN. (2012). Chronic prenatal ethanol
621	exposure increases adiposity and disrupts pancreatic morphology in adult guinea
622	pig offspring. Nutr Diabetes 2, e57.
623	
624	Dobson CC, Thevasundaram K, Mongillo DL, Winterborn A, Holloway AC, Brien JF
625	& Reynolds JN. (2014). Chronic prenatal ethanol exposure alters expression of

626	central and peripheral insulin signaling molecules in adult guinea pig offspring.
627	Alcohol (Fayetteville, NY) 48, 687-693.
628	
629	Dorey ES, Cullen CL, Lucia D, Mah KM, Manchadi MR, Muhlhausler BS & Moritz
630	KM. (2018). The impact of periconceptional alcohol exposure on fat preference
631	and gene expression in the mesolimbic reward pathway in adult rat offspring.
632	Journal of developmental origins of health and disease 9, 223-231.
633	
634	Dow-Edwards DL, Trachtman H, Riley EP, Freed LA & Milhorat TH. (1989). Arginine
635	vasopressin and body fluid homeostasis in the fetal alcohol exposed rat. Alcohol
636	(Fayetteville, NY) 6, 193-198.
637	
638	El-Gilany A-H & Hammad S. (2010). Body mass index and obstetric outcomes in Saudi
639	Arabia: a prospective cohort study. Ann Saudi Med 30, 376-380.
640	
641	Euser AM, Dekker FW & Hallan SI. (2010). Intrauterine growth restriction: no unifying
642	risk factor for the metabolic syndrome in young adults. European journal of
643	cardiovascular prevention and rehabilitation : official journal of the European
644	Society of Cardiology, Working Groups on Epidemiology & Prevention and
645	Cardiac Rehabilitation and Exercise Physiology 17, 314-320.
646	
647	Fleming TP, Watkins AJ, Velazquez MA, Mathers JC, Prentice AM, Stephenson J,
648	Barker M, Saffery R, Yajnik CS, Eckert JJ, Hanson MA, Forrester T, Gluckman
649	PD & Godfrey KM. (2018). Origins of lifetime health around the time of
650	conception: causes and consequences. Lancet 391, 1842-1852.
651	
652	Flynn ER, Alexander BT, Lee J, Hutchens ZM, Jr. & Maric-Bilkan C. (2013). High-
653	fat/fructose feeding during prenatal and postnatal development in female rats
654	increases susceptibility to renal and metabolic injury later in life. American
655	journal of physiology Regulatory, integrative and comparative physiology 304,
656	R278-285.
657	

658	Friedewald WT, Levy RI & Fredrickson DS. (1972). Estimation of the concentration of
659	low-density lipoprotein cholesterol in plasma, without use of the preparative
660	ultracentrifuge. Clin Chem 18, 499-502.
661	
662	Gao F, Liu Y, Li L, Li M, Zhang C, Ao C & Hou X. (2014). Effects of maternal
663	undernutrition during late pregnancy on the development and function of ovine
664	fetal liver. Animal reproduction science 147, 99-105.
665	
666	Gardebjer EM, Anderson ST, Pantaleon M, Wlodek ME & Moritz KM. (2015).
667	Maternal alcohol intake around the time of conception causes glucose
668	intolerance and insulin insensitivity in rat offspring, which is exacerbated by a
669	postnatal high-fat diet. FASEBJ 29, 2690-2701.
670	
671	Gardebjer EM, Cuffe JSM, Ward LC, Steane S, Anderson ST, Dorey ES, Kalisch-Smith
672	JI, Pantaleon M, Chong S, Yamada L, Wlodek ME, Bielefeldt-Ohmann H &
673	Moritz KM. (2018). The effects of periconceptional maternal alcohol intake and
674	a postnatal high-fat diet on obesity and liver disease in male and female rat
675	offspring. American journal of physiology Endocrinology and metabolism 315,
676	E694-E704.
677	
678	Gittes GK. (2009). Developmental biology of the pancreas: a comprehensive review.
679	<i>Dev Biol</i> 326, 4-35.
680	
681	Godlewski G, Gaubert-Cristol R, Rouy S & Prudhomme M. (1997). Liver development
682	in the rat and in man during the embryonic period (Carnegie stages 11-23).
683	Microscopy research and technique 39 , 314-327.
684	
685	Gray SP, Denton KM, Cullen-McEwen L, Bertram JF & Moritz KM. (2010). Prenatal
686	exposure to alcohol reduces nephron number and raises blood pressure in
687	progeny. Journal of the American Society of Nephrology : JASN 21, 1891-1902.
688	

689	Heindel JJ & Vandenberg NL. (2015). Developmental origins of health and disease: a
690	paradigm for understanding disease cause and prevention. Curr Opin Pediatr 27,
691	248-253.
692	
693	Huang X, Liu G, Guo J & Su Z. (2018). The PI3K/AKT pathway in obesity and type 2
694	diabetes. International journal of biological sciences 14, 1483-1496.
695	
696	Janjua NZ, Mahmood B, Islam MA & Goldenberg RL. (2012). Maternal and early
697	childhood risk factors for overweight and obesity among low-income
698	predominantly black children at age five years: A prospective cohort study.
699	Journal of obesity 2012 , 457173.
700	
701	Jaramillo LM, Balcazar IB & Duran C. (2012). Using vaginal wall impedance to
702	determine estrous cycle phase in Lewis rats. Lab Animal 41, 122.
703	
704	Katz A, Nambi SS, Mather K, Baron AD, Follmann DA, Sullivan G & Quon MJ.
705	(2000). Quantitative insulin sensitivity check index: a simple, accurate method
706	for assessing insulin sensitivity in humans. J Clin Endocrinol Metab 85, 2402-
707	2410.
708	
709	Knee DS, Sato AK, Uyehara CFT & Claybaugh JR. (2004). Prenatal exposure to
710	ethanol causes partial diabetes insipidus in adult rats. American journal of
711	physiology Regulatory, integrative and comparative physiology 287, R277-
712	R283.
713	
714	Kopec G, Shekhawat PS & Mhanna MJ. (2017). Prevalence of diabetes and obesity in
715	association with prematurity and growth restriction. Diabetes Metab Syndr Obes
716	10, 285-295.
717	
718	Mackenzie RW & Elliott BT. (2014). Akt/PKB activation and insulin signaling: a novel
719	insulin signaling pathway in the treatment of type 2 diabetes. Diabetes Metab
720	<i>Syndr Obes</i> 7 , 55-64.

721	
722	Margerison Zilko CE, Rehkopf D & Abrams B. (2010). Association of maternal
723	gestational weight gain with short- and long-term maternal and child health
724	outcomes. American journal of obstetrics and gynecology 202, 574.e571-578.
725	
726	McCormack C, Hutchinson D, Burns L, Wilson J, Elliott E, Allsop S, Najman J, Jacobs
727	S, Rossen L, Olsson C & Mattick R. (2017). Prenatal alcohol consumption
728	between conception and recognition of pregnancy. Alcohol Clin Exp Res 41,
729	369-378.
730	
731	Muggli E, O'Leary C, Donath S, Orsini F, Forster D, Anderson PJ, Lewis S, Nagle C,
732	Craig JM, Elliott E & Halliday J. (2016). "Did you ever drink more?" A detailed
733	description of pregnant women's drinking patterns. BMC public health 16, 683.
734	
735	National Health and Medical Research Council. (2009). Australian Guidelines to
736	Reduce Health Risks from Drinking Alcohol, pp. 181. Commonwealth of
737	Australia, Canberra, ACT.
738	
739	Pan FC & Brissova M. (2014). Pancreas development in humans. Current opinion in
740	endocrinology, diabetes, and obesity 21, 77-82.
741	
742	Popova S, Lange S, Probst C, Gmel G & Rehm J. (2017). Estimation of national,
743	regional, and global prevalence of alcohol use during pregnancy and fetal
744	alcohol syndrome: a systematic review and meta-analysis. The Lancet Global
745	<i>health</i> 5 , e290-e299.
746	
747	Probyn ME, Parsonson KR, Gardebjer EM, Ward LC, Wlodek ME, Anderson ST &
748	Moritz KM. (2013). Impact of low dose prenatal ethanol exposure on glucose
749	homeostasis in Sprague-Dawley rats aged up to eight months. PloS one 8,
750	e59718.
751	

752	Smith S, Amos-Kroohs R, Chin L, Fink B & Wozniak J. (2015). Disordered eating
753	behaviors and nutritional issues in children with Fetal Alcohol Spectrum
754	Disorders (FASD). FASEBJ 29.
755	
756	Sundrani DP, Roy SS, Jadhav AT & Joshi SR. (2017). Sex-specific differences and
757	developmental programming for diseases in later life. Reproduction, fertility,
758	and development 29, 2085-2099.
759	
760	Van Wootten W & Turner RE. (2002). Macrosomia in neonates of mothers with
761	gestational diabetes is associated with body mass index and previous gestational
762	diabetes. Journal of the American Dietetic Association 102, 241-243.
763	
764	Weinberg J, Sliwowska JH, Lan N & Hellemans KG. (2008). Prenatal alcohol exposure:
765	foetal programming, the hypothalamic-pituitary-adrenal axis and sex differences
766	in outcome. Journal of neuroendocrinology 20, 470-488.
767	
768	Werts RL, Van Calcar SC, Wargowski DS & Smith SM. (2014). Inappropriate feeding
769	behaviors and dietary intakes in children with fetal alcohol spectrum disorder or
770	probable prenatal alcohol exposure. Alcohol Clin Exp Res 38, 871-878.
771	
772	Whitaker RC. (2004). Predicting preschooler obesity at birth: the role of maternal
773	obesity in early pregnancy. Pediatrics 114, e29-36.
774	
775	World Health Organisation. (2004). Department of Mental Health and Substance
776	Abuse: Alcohol Policy. Geneva.
777	
778	Xia L, Shen L, Kou H, Zhang B, Zhang L, Wu Y, Li X, Xiong J, Yu Y & Wang H.
779	(2014). Prenatal ethanol exposure enhances the susceptibility to metabolic
780	syndrome in offspring rats by HPA axis-associated neuroendocrine metabolic
781	programming. Toxicol Lett 226, 98-105.
782	

783	Yao X-H, Nguyen HK & Nyomba BG. (2013). Prenatal ethanol exposure causes
784	glucose intolerance with increased hepatic gluconeogenesis and histone
785	deacetylases in adult rat offspring: reversal by tauroursodeoxycholic acid. PloS
786	one 8 , e59680.
787	
788	Yao XH, Chen L & Nyomba BL. (2006). Adult rats prenatally exposed to ethanol have
789	increased gluconeogenesis and impaired insulin response of hepatic
790	gluconeogenic genes. J Appl Physiol 100, 642-648.
791	
792	Yao XH & Nyomba BLG. (2008). Hepatic insulin resistance induced by prenatal
793	alcohol exposure is associated with reduced PTEN and TRB3 acetylation in
794	adult rat offspring. American journal of physiology Regulatory, integrative and
795	comparative physiology 294 , R1797-R1806.
796	
797	Zhang CR, Kurniawan ND, Yamada L, Fleming W, Kaminen-Ahola N, Ahola A,
798	Galloway G & Chong S. (2018). Early gestational ethanol exposure in mice:
799	Effects on brain structure, energy metabolism and adiposity in adult offspring.
800	Alcohol (Fayetteville, NY) 75, 1-10.
801	
802	

29

803 Figure legends

- 804 Figure 1: Comparison of blood glucose concentrations measured by glucometer
- 805 and plasma glucose concentrations measured by Cobas analyser. Dual-analysis was
- so conducted on n = 8-9 per sex per group (see Supplemental Data 1 for details
- 807 https://doi.org/10.5281/zenodo.3257092). (A) Bland-Altman plot to visualise the
- 808 difference in the glucometer and Cobas readings versus the average of the readings. (B)
- 809 Comparison of glucose levels across each treatment/sex group by method. White bars
- 810 indicate control and black bars indicate EtOH-exposed animals within each sex. Data
- analysed using a two-way ANOVA, with treatment/sex (Control Male, EtOH Male,
- 812 Control Female, EtOH Female) and method (glucometer/Cobas) as factors.

813 Figure 2: Effect of prenatal alcohol exposure on fasting plasma glucose and plasma

insulin levels in adult offspring. Offspring were prenatally exposed to ethanol (grey)

- 815 or saline control (white). (A) Fasting plasma glucose and (B) plasma insulin were
- 816 measured at 6 months of age. Corresponding homeostatic model assessment of insulin
- 817 resistance (HOMA-IR) (C) and quantitative insulin-sensitivity check index (QUICKI)
- 818 (D) were calculated. Data are presented as mean \pm SEM. n = 7-9 per sex per group (see
- 819 Supplemental Data 1 for details https://doi.org/10.5281/zenodo.3257092). Data for A)
- and B) were analysed with two-way ANOVA; while data for C) and D) were analysed
- using a non-parametric Kruskal-Wallis test due to non-normal data distribution
- 822 (indicated by ^). ** = significantly different to control male by Sidak's multiple
- 823 comparison post-hoc procedure.

824 Figure 3: Effect of prenatal alcohol exposure on glucose clearing and insulin

- sensitivity. Offspring were prenatally exposed to ethanol (grey) or saline (white). (A)
- 826 Blood glucose concentration curve during a glucose tolerance test (GTT); (B) area
- 827 under the glucose curve (AUGC) generated from the GTT; (C) plasma insulin secretion
- 828 during the GTT; (D) area under the insulin curve (AUIC) generated from the GTT; (E)
- 829 AUIC for 1st phase insulin secretion; and (F) AUIC for 2nd phase insulin secretion. (G)
- 830 Blood glucose concentrations following an insulin tolerance test (ITT) and (H) AUGC
- from inverted ITT curves. Control males (white circles), ethanol males (black circles),
- control females (white squares) and ethanol females (black squares) (A, C, G). Data
- represented as mean \pm SEM; n = 8-9 per group (see Supplemental Data 1 for details
- 834 <u>https://doi.org/10.5281/zenodo.3257092</u>). Data were analysed with two-way ANOVA

835 (B, D, E, F, H). ** indicates P < 0.01, where significance was determined by Sidak's

836 post-hoc analysis.

837 Figure 4: Effect of prenatal alcohol on insulin signalling and glucose transport in

- 838 skeletal muscle of male offspring at 6 months of age. (A-E) AKT protein levels and
- 839 phosphorylation state, expressed relative to GAPDH. (F) Glut4 and (G) Insr gene
- 840 expression, expressed relative to the geometric mean of *Actb* and *Rpl19*. Offspring were
- prenatally exposed to ethanol (grey) or saline (white). Data represented as mean \pm SEM;
- 842 n = 7-9 per group (see Supplemental Data 1 for details
- 843 <u>https://doi.org/10.5281/zenodo.3257092</u>). Data were analysed with an unpaired t-test
- 844 (normally distributed data) or a Mann-Whitney U-test (non-normal distribution,
- 845 indicated by ^).
- Figure 5: Effect of prenatal alcohol on insulin signalling in adipose tissue of male
- offspring at 6 months of age. (A) pan-AKT protein levels; (B) pAKT_{Ser473}; (C)
- 848 pAKT_{Thr308}; (D-E) pAKT relative to pan-AKT. All are expressed relative to GAPDH.
- 849 Offspring were prenatally exposed to ethanol (grey) or saline (white). Data represented
- as mean \pm SEM; n = 7 per group (see Supplemental Data 1 for details
- 851 <u>https://doi.org/10.5281/zenodo.3257092</u>). Data were analysed with an unpaired t-test
- 852 (normally distributed data) or a Mann-Whitney U-test (non-normal distribution,
- 853 indicated by ^).

 Table 1: Primers used for real-time quantitative PCR analysis of metabolic gene expression.
 All primers were Assay-on-Demand

 primer/probe sets from ThermoFisher Scientific (Richlands, QLD, Australia).
 * Endogenous control.

Gene name	Gene symbol	Assay ID	Amplicon size (bp)	Accession number(s)
Beta actin [*]	Actb	Cat #4351319	61	NM_031144.3
Eukaryotic translation initiation factor 2A*	Eif2a	Rn01494813_m1	82	NM_001109339.1
Glucose-6-phosphatase, catalytic subunit	G6pc	Rn00689876_m1	64	NM_013098.2
Glucokinase	Gck	Rn00561265_m1	58	NM_001270849.1 NM_001270850.1 NM_012565.2
Glucose transporter 2 [solute carrier family 2 (facilitated glucose transporter), member 2]	Glut2 (Slc2a2)	Rn00563565_m1	76	NM_012879.2
Glucose transporter 4	Glut4	Rn00562597_m1	75	NM_012751.1
Insulin receptor	Insr	Rn01403321_m1	76	NM_017071.2
Phosphoenolpyruvate carboxykinase 1	Pck1	Rn01529014_m1	87	NM_198780.3
Peroxisome proliferator-activated receptor gamma, coactivator 1 alpha	Ppargc1a	Rn00580241_m1	94	NM_031347.1
Ribosomal protein L19 [*]	Rpl19	Rn00821265_g1	57	NM_031103.1

32

Table 2: Maternal parameters for dams treated with saline (Control) or ethanol

	Treatme		
Maternal parameters	Control $(n = 8)$	EtOH (<i>n</i> = 10)	P value
Body weight when mated (g)	251 ± 4	255 ± 4	0.61
Body weight at E13.5 (g)	310 ± 5	312 ± 5	0.77
Total weight gain (g)*	152 ± 9	148 ± 5	0.98
Pre-gavage (mating to E12.5)	59 ± 3	58 ± 4	0.85
Post-gavage (E15.5 to birth)	91 ± 6	89 ± 5	0.77
H ₂ O consumption (mL/day)			
Pre-gavage (E12.5)	31.9 ± 1.7	29.6 ± 1.8	0.37
During gavage (E13.5-E14.5)	25.8 ± 1.3	25.3 ± 1.4	0.79
Post-gavage (E15.5 to birth)	36.9 ± 1.1	34.8 ± 1.6	0.33
Chow consumption (g/day)			
Pre-gavage (E12.5)	24.7 ± 1.2	24.4 ± 0.8	0.79
During gavage (E13.5-E14.5)	20.9 ± 1.0	20.4 ± 1.0	0.70
Post-gavage (E15.5 to birth)	26.6 ± 0.7	26.0 ± 0.9	0.61
Blood glucose (mmol/L)			
1h post E13.5 gavage*	5.8 ± 0.2	6.1 ± 0.2	0.13
5h post E13.5 gavage	5.9 ± 0.1	6.1 ± 0.2	0.38
1h post E14.5 gavage	5.7 ± 0.2	6.0 ± 0.1	0.09
5h post E14.5 gavage*	6.2 ± 0.2	6.0 ± 0.1	0.62
Litter sex ratio (M:F)	1.1 ± 0.2	1.2 ± 0.2	0.78
Litter size	15 [†]	14^{\dagger}	0.47
Number of implantation scars [*]	16^{\dagger}	$15\pm1^{\dagger}$	0.99
Blood alcohol concentration (BAC)	(mg/dL)		
1h post E13.5 gavage	<ld<sup>‡</ld<sup>	48.2 ± 7.5	-
5h post E13.5 gavage	$<$ LD \ddagger	<ld< td=""><td>-</td></ld<>	-
1h post E14.5 gavage	<ld<sup>‡</ld<sup>	52.9 ± 4.5	-
5h post E14.5 gavage	<ld<sup>‡</ld<sup>	<ld< td=""><td>-</td></ld<>	-

(EtOH). All animals treated by oral gavage on embryonic day 13.5 and 14.5.

Data are presented as mean \pm SEM. *P* values were obtained using an unpaired Student's t-test. <LD = below the limit of detection; E = embryonic day; EtOH = ethanol; M = male; F = female.

* Indicates data not normally distributed and analysed with a non-parametric Mann-Whitney U-test.

[†] Denotes parameters expressed as whole pups/scars.

[‡]Measured in 4 animals only.

Table 3: Postnatal weight and growth of offspring from saline (Control) and ethanol (EtOH) treated litters during the first month. All offspring from dams treated by oral gavage at embryonic day 13.5 and 14.5. Weights at PN1 and PN30 are total body weight (g). At other ages, total weight gain over the specific age ranges are shown (g).

	Male		Fen	Statistics			
	Control	EtOH	Control	EtOH			
Age	(<i>n</i> = 8)	(<i>n</i> = 9)	(<i>n</i> = 8)	(<i>n</i> = 9)	$P_{(trt)}$	$P_{(sex)}$	P (int)
PN1 [*]	6.6 ± 0.1	7.0 ± 0.3	6.4 ± 0.1	6.7 ± 0.3	0.15	0.32	0.84
PN1-10	10.2 ± 0.4	10.5 ± 0.5	10.0 ± 0.3	10.3 ± 0.5	0.50	0.60	0.95
PN11-21	16.4 ± 0.5	17.9 ± 1.2	15.6 ± 0.5	17.4 ± 1.2	0.11	0.51	0.89
PN21-28	31.9 ± 0.8	33.4 ± 2.2	29.4 ± 0.6	29.6 ± 1.0	0.54	0.03	0.66
$PN30^{\dagger}$	73.1 ± 1.3	74.1 ± 3.6	67.2 ± 2.0	62.6 ± 4.4	0.89	0.70	0.69

Data are presented as mean \pm SEM, with littermates averaged. *P* values were obtained using a two-way ANOVA, with treatment (Control/EtOH) and sex (male/female) as factors.

EtOH = ethanol; int = interaction; PN = postnatal day; trt = treatment.

* Birth weight was not recorded at PN0 to minimise disturbance to litters.

[†] Only a subset of the litters were weighed prior to cull (3-8 per treatment); see Supplemental Data 1 for details (<u>https://doi.org/10.5281/zenodo.3257092</u>); total body weight shown at this age.

Table 4: Effect of prenatal ethanol exposure on fasting blood glucose, plasma insulin and plasma lipid levels in adolescent offspring. Offspring were prenatally exposed to ethanol (EtOH) or saline (control) at embryonic day 13.5 and 14.5. All parameters were measured at postnatal day 30.

	Male		Females		Statistics		
	Control	EtOH	Control	EtOH			
Parameters	(<i>n</i> = 6)	(<i>n</i> = 8)	(<i>n</i> = 3)	(<i>n</i> = 3)	$\boldsymbol{P}_{(trt)}$	$P_{(sex)}$	$P_{(int)}$
Fasting blood glucose (mmol/L)	5.6 ± 0.2	5.9 ± 0.2	6.1 ± 0.2	5.9 ± 0.1	0.64	0.69	0.83
Fasting plasma insulin (ng/mL)	0.55 ± 0.07	0.65 ± 0.06	0.64 ± 0.11	0.63 ± 0.07	0.58	0.67	0.53
HOMA-IR	0.71 ± 0.11	0.81 ± 0.07	0.83 ± 0.15	0.79 ± 0.07	0.78	0.65	0.54
QUICKI	0.31 ± 0.007	0.30 ± 0.003	0.30 ± 0.007	0.30 ± 0.003	0.55	0.50	0.50
Plasma HDL (mmol/L)	1.07 ± 0.15	0.98 ± 0.21	0.87 ± 0.16	0.80 ± 0.18	0.73	0.41	0.95
Plasma LDL (mmol/L)	0.43 ± 0.06	0.46 ± 0.04	0.52 ± 0.07	0.33 ± 0.01	0.26	0.80	0.11
Plasma triglycerides (mmol/L)	0.92 ± 0.10	1.09 ± 0.21	0.83 ± 0.20	0.78 ± 0.14	0.53	0.22	0.99
Plasma total cholesterol (mmol/L)*	1.68 ± 0.18	1.65 ± 0.23	1.55 ± 0.20	1.29 ± 0.16	0.59	0.35	0.65

Data presented as mean \pm SEM, with 1 male and/or 1 female used per litter (*n*=3-8 litters per group). Sample sizes were lower than the number of dams treated due to availability of animals of each sex for each parameter measured (see Supplemental Data 1 for details <u>https://doi.org/10.5281/zenodo.3257092</u>). *P* values were obtained using a two-way ANOVA, with treatment (Control/EtOH) and sex (male/female) as factors. *P*<0.05 was considered significant.

EtOH = ethanol; HDL = high density lipoprotein; HOMA-IR = homeostatic model assessment of insulin resistance; int = interaction; LDL = low density lipoprotein; QUICKI = quantitative insulin-sensitivity check index; trt = treatment.

* Calculated using HDL + LDL + (triglycerides/5).

Table 5: Offspring food and water consumption throughout the food preference study. All animals were housed individually and acclimatised to the study cage for 4 days. Following acclimatisation, baseline measurements of standard chow diet (SD) and water were conducted over days 1-4. A choice of high fat diet (HFD) or SD was then offered for the next 4 days, divided into choice period (CP)1 (days 5-6) and CP2 (days 7-8).

	Ma	ale	Fei	Statistics			
Parameter	Control (<i>n</i> = 8)	EtOH $(n = 9)$	Control (<i>n</i> = 8)	EtOH (<i>n</i> = 9)	$P_{(trt)}$	$P_{(sex)}$	P _(int)
H ₂ O consumption	ı (mL/g BW/day)						
Baseline	0.064 ± 0.006	0.060 ± 0.002	0.070 ± 0.005	0.082 ± 0.005	0.34	0.007	0.12
CP1	0.049 ± 0.004	0.047 ± 0.002	0.058 ± 0.011	0.068 ± 0.004	0.37	< 0.001	0.19
CP2*	0.046 ± 0.003	0.049 ± 0.003	0.055 ± 0.003	$0.070 \pm 0.004^{\wedge}$		P = 0.0004	
Standard chow di	iet (SD) consumption (g	/g BW/day)					
Baseline	0.047 ± 0.001	0.046 ± 0.001	0.053 ± 0.002	0.054 ± 0.001	0.99	< 0.001	0.51
CP1	0.007 ± 0.003	0.005 ± 0.001	0.008 ± 0.004	0.003 ± 0.003	0.25	0.92	0.63
CP2	0.019 ± 0.005	0.017 ± 0.003	0.010 ± 0.004	0.013 ± 0.003	0.87	0.11	0.44
High fat diet (HF	D) consumption (g/g B	W/day)					
CP1	0.055 ± 0.004	0.055 ± 0.003	0.077 ± 0.006	0.072 ± 0.004	0.54	< 0.0001	0.64
CP2	0.046 ± 0.004	0.043 ± 0.004	0.067 ± 0.004	0.060 ± 0.004	0.27	< 0.0001	0.61
Energy intake (k.	I/day)						
Baseline	357.8 ± 8.4	348.3 ± 10.3	230.4 ± 10.4	222.1 ± 6.5	0.33	< 0.0001	0.95
CP1	628.3 ± 20.6	605.8 ± 26.9	502.2 ± 27.1	430.4 ± 20.1	0.06	< 0.0001	0.31
CP2	579.8 ± 25.6	538.5 ± 26.6	457.1 ± 22.5	396.0 ± 17.6	0.04	< 0.0001	0.67

Data are presented as mean \pm SEM. *n* numbers are from 1 male and 1 female per litter. *P* values were obtained using a two-way ANOVA, with treatment (Control/EtOH) and sex (male/female) as factors. * Indicates data not normally distributed and analysed with a non-parametric Kruskal-Wallis Test. ^^ Indicates

* Indicates data not normally distributed and analysed with a non-parametric Kruskal-Wallis Test. ^^ Indicates significantly different to corresponding group in males (*P*=0.006) from Dunns multiple comparison procedure. CP = choice period; HFD = high-fat diet; BW = body weight.

	Μ	Male		Females		Statistics		
	Control	EtOH	Control	EtOH				
Parameters	(<i>n</i> = 12)	$\boldsymbol{P}_{(trt)}$	$P_{(sex)}$	$P_{(int)}$				
Body weight (g)	618 ± 25	600 ± 16	345 ± 13	328 ± 7	0.29	< 0.0001	0.99	
Abdominal circumference (cm)	24.7 ± 0.7	24.0 ± 0.4	19.8 ± 0.5	19.1 ± 0.3	0.16	< 0.0001	0.97	
Snout-rump length (cm)	28.7 ± 0.3	28.7 ± 0.2	24.5 ± 0.2	24.6 ± 0.2	0.82	< 0.0001	0.66	
Tibia length (cm)	6.07 ± 0.05	6.09 ± 0.04	5.32 ± 0.04	5.28 ± 0.05	0.89	< 0.0001	0.52	
Ponderal index (g/cm ³) [*]	26.0 ± 0.5	25.6 ± 0.9	23.5 ± 0.7	22.0 ± 0.4	0.15	< 0.0001	0.38	
Abdominal circumference: snout-rump length (cm/cm)	0.86 ± 0.02	0.84 ± 0.02	0.81 ± 0.02	0.78 ± 0.01	0.09	< 0.001	0.61	
Abdominal circumference: tibia length (cm/cm)	0.41 ± 0.01	0.40 ± 0.01	0.37 ± 0.01	0.36 ± 0.01	0.26	< 0.001	0.89	
Liver weight (g)	22.24 ± 1.20	20.68 ± 0.74	11.47 ± 0.40	10.41 ± 0.21	0.08	< 0.0001	0.74	
Liver:BW ratio (mg/g)	35.91 ± 0.80	34.44 ± 0.60	33.41 ± 0.94	31.91 ± 0.81	0.07	0.003	0.99	
Pancreas weight (g)	1.00 ± 0.06	0.95 ± 0.06	0.77 ± 0.03	0.71 ± 0.03	0.22	< 0.001	0.92	
Pancreas:BW ratio (mg/g) [†]	1.63 ± 0.07	1.60 ± 0.12	2.24 ± 0.10^^	2.17 ± 0.11^^		<i>P</i> <0.0001		

Table 6: Body condition and organ weights of offspring from saline (Control) and ethanol (EtOH) treated litters at 6months of age. Offspring were prenatally exposed to ethanol (EtOH) or saline (control) at embryonic day 13.5 and 14.5.

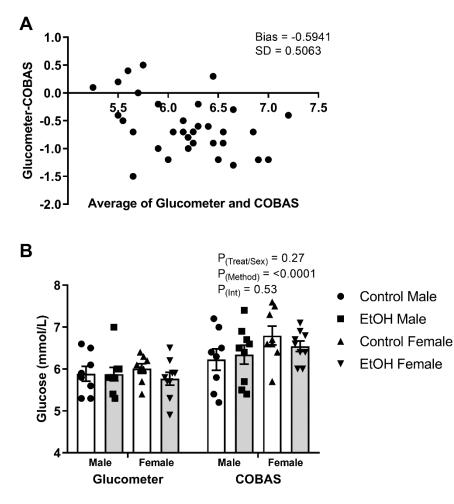
Data are presented as mean \pm SEM. *n*=12 per group, as 1-2 rats per sex per litter (across 8 control litters and 9 EtOH litters). *P* values were obtained using a two-way ANOVA, with treatment (Control/EtOH) and sex (male/female) as factors.

BW = body weight.

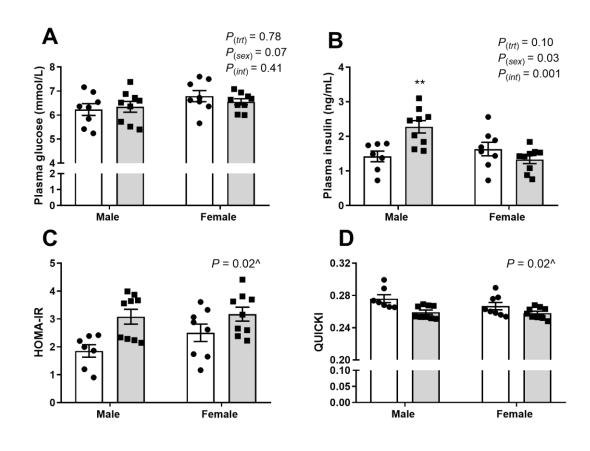
* Ponderal index calculated as body weight (g) divided by snout-rump length cubed (cm³).

[†] Indicates data not normally distributed and analysed with a non-parametric Kruskal-Wallis Test. ^^ Indicates significantly different to corresponding group in males (*P*<0.001) from Dunns multiple comparison procedure.

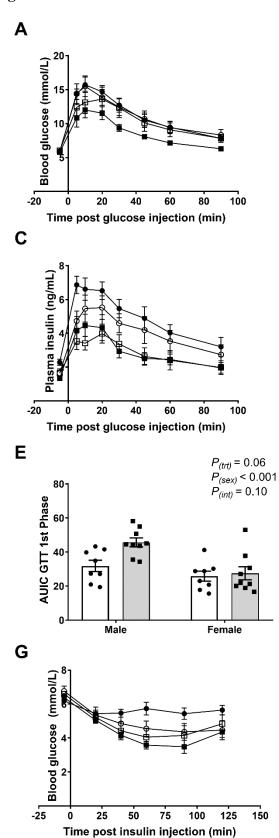
Table 7: Expression of hepatic genes involved in glucose and insulin signalling. Offspring were prenatally exposed to ethanol

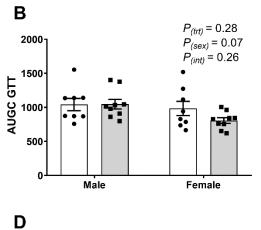

 (EtOH) or saline (control) at embryonic day 13.5 and 14.5. Liver tissue was collected at 6 months of age.

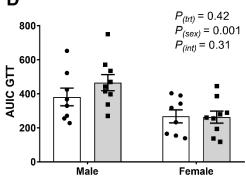
	Male		Fei	Statistics			
Gene of	Control	EtOH	Control	EtOH			
Interest	(<i>n</i> = 8)	(<i>n</i> = 9)	(<i>n</i> = 8)	(<i>n</i> = 9)	$P_{(trt)}$	$P_{(sex)}$	$P_{(int)}$
Glucose tran	sport						
Glut2	1.00 ± 0.05	0.93 ± 0.07	1.15 ± 0.08	1.10 ± 0.12	0.51	0.08	0.93
Gluconeoger	nesis and glycol	lysis					
<i>G6pc</i>	1.00 ± 0.17	0.69 ± 0.16	0.94 ± 0.14	0.75 ± 0.14	0.12	0.98	0.70
Gck^*	1.00 ± 0.17	0.75 ± 0.18	0.70 ± 0.16	0.53 ± 0.06	<i>P</i> = 0.26		
Pck1	1.00 ± 0.15	1.20 ± 0.13	0.80 ± 0.10	1.08 ± 0.18	0.10	0.26	0.80
Ppargc1a [*]	1.00 ± 0.16	0.96 ± 0.20	2.01 ± 0.15	2.40 ± 0.33^^		P = 0.001	
Insulin sign	alling						
Insr	1.00 ± 0.08	0.97 ± 0.08	1.47 ± 0.15	1.42 ± 0.17	0.74	< 0.001	0.95

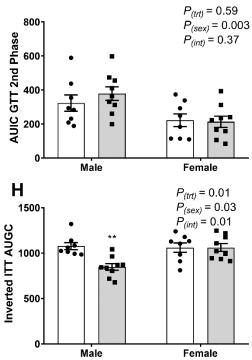

Data are presented as mean \pm SEM. *P* values were obtained using a two-way ANOVA, with treatment (Control/EtOH) and sex (male/female) as factors.

* Indicates data not normally distributed and analysed with a non-parametric Kruskal-Wallis Test. ^^ Indicates significantly different to corresponding group in males (*P*=0.008) from Dunns multiple comparison procedure.






Figure 2


Figure 3

