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While the development of new drugs is costly, time consuming, and often accom-
panied with safety issues, drug repurposing, where old drugs with established safety
are used for medical conditions other than originally developed, becomes an attractive
alternative. Then, how the old drugs work on new targets becomes a crucial part of
drug repurposing and gains much of interest. Several statistical and machine learning
models have been proposed to estimate drug–target binding affinity and deep learning
approaches have been shown to be among state-of-the-art methods. However, drugs
and targets in these models were commonly represented in 1D strings, regardless the
fact that molecules are by nature formed by the chemical bonding of atoms. In this
work, we propose GraphDTA to capture the structural information of drugs, possibly
enhancing the predictive power of the affinity. In particular, unlike competing meth-
ods, drugs are represented as graphs and graph convolutional networks are used to learn
drug–target binding affinity. We trial our method on two benchmark drug–target bind-
ing affinity datasets and compare the performance with the state-of-the-art schemes in
the field. The results show that our proposed method can not only predict the affinity
better than non-deep learning models, but also outperform competing deep learning
approaches. This demonstrates the practical advantages of graph-based representation
for molecules in providing accurate prediction of drug–target binding affinity. The ap-
plication may also include any recommendation systems where either or both of the
user- and product-like sides can be represented in graphs.

Availability and implementation The proposed models are implemented in Python.
Related data, pre-trained models, and source code are publicly available at
https://github.com/thinng/GraphDTA.

1 Introduction
It costs 2.6 billion US dollars to develop a de novo drug [22] and takes about 10–17
years for the drug to be accepted/rejected by US FDA [1, 29]. Repurposing/repositioning
a drug – identifying new use for an existing approved drug [33] – would reduce the time
and cost as several phases spent in the development for its original indication can be
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bypassed [1]. Then, how the old drugs work on new targets – drug-target interaction –
becomes a crucial part of drug repurposing and gains much of interest.

Conventionally, high-throughput screening experiments are used to examine the
bio-activity between drugs and targets, which is a costly and time-consuming process
[6, 24]. This is impracticable as there are millions of drug-like compounds [10] and
hundreds of popular targets, e.g., 500 protein kinases [20], responsible for the modifi-
cations of about 30% of human proteins [32]. Thus, it is an important alternative to use
statistical and machine learning models to estimate the strength of the interactions for
novel couples of drug-target based on the interactions already measured.

Several computational approaches/machine learning methods have been proposed
for the purpose [16, 15, 7]. In that trend, deep learning models are among the best per-
formers in the prediction of drug–target binding affinity [25]. However in these state-
of-the-art deep learning models, for computing convenience, drugs are represented as
strings, which is not a natural representation of them as the structural information of
molecules is lost.

In this paper we propose GraphDTA to predict the drug–target binding affinity. In
the model drugs are represented as graphs where the edges are the bonding of atoms.
Then layers of convolutions on graphs of drugs, concatenated with 1D convolution for
protein sequences, were together regressed with the affinity of drug-target couples. We
trial the proposed method on two benchmark datasets and compare the performance
with the state-of-the-art approaches in the field. The results show that our proposed
method gains the best performance in the task of drug–target binding affinity predic-
tion.

2 Related work

2.1 Drug representation
To represent molecules to be readable by computers, SMILES (Simplified Molecular
Input Line Entry System) was invented [38], enabling several efficient applications,
including fast retrieval and substructure searching. From SMILES code, drug descrip-
tors, such as the number of heavy atoms or valence electrons, can be inferred, used as
the features to predict the affinity. One can also consider SMILES codes as strings and
use natural language processing (NLP) techniques to featurize the drugs. Alternatively,
these strings can be seen as 1D representation, input into a convolution neural network
(CNN) to learn a model to predict the affinity. Layers of 1D convolutions and pooling
are used to capture hidden patterns in the inputs, which potentially become powerful
features of the affinity.

SMILES as graphs SMILES codes can be also be converted back to graphs, and
then geometric deep learning techniques can be applied in downstream analysis.

The most popular deep learning approaches to graphs, graph convolutional net-
works (GCNs), can be adopted for the task of drug–target binding affinity prediction.
GCNs is a generalization of convolution neural networks (CNN) to graph-structured
data. GCNs can be divided into two main categories: spectral-based and spatial-based

2

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 27, 2019. ; https://doi.org/10.1101/684662doi: bioRxiv preprint 

https://doi.org/10.1101/684662
http://creativecommons.org/licenses/by/4.0/


approaches. In the spectral-based approach, graphs are first represented in spectral do-
main, then convolutional operation is defined in that domain. Spectral-based GCNs
were first proposed in [2], extended by [9, 17, 14].

On the contrary, the spatial-based methods perform learning algorithms directly on
graph spatial domain. The learning process includes a neighborhood formulation, then
a node information is updated by aggregating information from its neighbor nodes,
followed by a sub-sampling task. Compared to the spectral-based methods which han-
dle the whole graph simultaneously, the spatial approaches can instead process graph
nodes in batches thus can be scalable to large graphs. Recent works on this approach
include [21, 23, 12, 37, 36, 40]

GCNs have been used in computational drug discovery [34], including quantitative
structure activity/property relationship prediction, interaction prediction, synthesis pre-
diction, and de novo molecular design. The problem we explore in this paper, predic-
tion of drug–target binding affinity, belongs to the task of interaction prediction, where
the interactions could be among drugs, among proteins, or between drugs and pro-
teins. Examples include Decagon [41], where graph convolutions were used to embed
the multimodal graphs of multiple drugs to predict side effects of drug combinations;
or AttSemiGAE/AttTransGAE [19], where attentive multi-view graph auto-encoders
were used to measure drug similarity. There are also other approaches in dealing with
the problem this work aims to solve, described as follows.

2.2 Prediction of drug–target binding affinity
2.2.1 Affinity similarity (SimBoost)

Apparently the task of drug–target binding affinity prediction could be considered as
a collaborative filtering problem (CF). For example, in movie ratings as in the Nexflix
competition1, the rating for a couple of movie-user is learned, or collaboratively fil-
tered, from the ratings by the movies/users similar to the given movie/user. The lesson
from Nexflix competition is that if the number of training user-movie ratings is big
enough, external information for users or movies does not make significantly contri-
bution to the recommendation systems. However this is not always the case for drug-
target binding prediction problem, where the affinity (as ratings in CF) available is
often sparse.

The affinity available in training is also used, accompanied with similarities among
drugs as well as among targets, to build features in [13] (SimBoost). The features
are then are the input to gradient boosting machines to predict the binding affinity for
unknown drug–target couples.

2.2.2 Kernel based (KronRLS)

Alternatively, the similarity could be built from other sources rather than the affinity in
training data. For example, in kernel based approaches, as in [5, 4], kernels for drugs
and targets are built from their molecular descriptors, input into a regularized least
squares regression model (RLS) to predict the binding affinity.

1https://www.netflixprize.com/rules.html
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Figure 1: A deep learning model, with drug and targets as strings, to predict the affinity.

Given the problem is to predict the affinity for n drugs and m targets, there would
be n*m combinations of them and the kernel would be in the size of (n ∗ m)2. To
speed up model training, Cichonska et al. [5, 4] (KronRLS) suggest to use KronRLS
(Kronecker regularized least-squares). In KronRLS, a pairwise kernel K is computed
as the Kronecker product of compound kernel of size n*n and protein kernel of size
m*m.

To compute the kernels any similarity measures can be used. For example, in [27],
the kernels for drugs was built from Tanimoto-based similarity (Pubchem-Sim)2; whilst
for targets, Smith-Waterman score [31] was used as the similarity measure of protein
sequences.

2.2.3 Deep learning (DeepDTA & WideDTA)

When 1D representation for drugs (SMILES) and proteins (sequences) is provided,
deep learning could be a possible approach to predict the affinity [25] (DeepDTA), as
shown in Figure 1. In the figure, input_1 and input_2 are drugs and targets, respectively.
As these are in 1D representation, layers of 1D convolutions and pooling are used
to capture potential patterns in the inputs. They are then concatenated, sent through
regularized layers of Dropout, and finally regressed with the training affinity.

WideDTA [26] is an extension of DeepDTA [25] where drugs and proteins are
represented as words, instead of characters as in DeepDTA. In particular, drugs are de-
scribed via most common substructures, denoted as Ligand Maximum Common Sub-
structures (LMCS) [39]; and proteins are represented through most conserved subse-

2Provided at http://pubchem.ncbi.nlm.nih.gov
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quences, which are Protein Domain profiles or Motifs (PDM), retrieved from PROSITE
database [30].

While WideDTA [26] and DeepDTA [25] learned latent feature vectors for the pro-
teins, PADME [11] proposed to used fixed-rule descriptors to represent proteins, such
as Protein Sequence Composition (PSC) descriptors [3]. Though, PADME was re-
ported [11] to have similar performance with DeepDTA [25].

3 Proposed method (GraphDTA)
Motivated by bringing nature representation for drugs into modeling of drug-target in-
teraction, we propose a novel deep learning model, GraphDTA, for drug-target affinity
prediction. Then the DTA prediction problem is cast as a regression task where the in-
put is a pair of protein and drug representations and the output is a continuous value
reflecting the affinity binding score between them. In the existing methods, the input
proteins and drugs are treated as sequence representations. Specifically, drugs are rep-
resented as SMILES strings – describing the chemical structure in short ASCII strings;
and similarly, protein sequences is represented as a string of ASCII letters, which are
the amino acids. Having the inputs as strings of text, one conventional approach is to
apply various 1D CNN layers to learn latent features on those sequences, similar to
natural language processing technique. Our approach is different, we instead investi-
gate the use the representations of input compounds in the form of graphs, which are
capable of capturing bonds among the atoms.

3.1 Graph representation of drug compounds
The drug compounds can be described as graph of interactions between atoms. There-
fore, handling input compounds in the form of graph representation, and subsequently
applying learning algorithms on graphs may fit well the task. To this end, from each
input drug compound string (SMILES), we construct a corresponding molecular graph
reflecting interactions between the atoms inside the compound. The graph construction
and atom feature extraction process are conducted using the RDKit – an open-source
chemical informatics software [18].

To describe a node, we adopt an atom feature design from DeepChem [28]3. In de-
tails, the node feature vector is constituted of five types of atom features: atom symbol,
atom degree – number of bonded neighbors plus number of Hydrogen, total number
of Hydrogen, implicit value of atom, and whether the atom is aromatic. These atom
properties constitute a multi-dimensional binary feature vector.

An edge is set to a pair of atoms if there exists a bond between them. As a results,
an indirect, binary graph with attributed nodes is built for each input SMILES string.

3.2 Deep learning on molecular graphs
Having the drug compounds represented in the form of graphs, the problem is to em-
ploy an algorithm that enables learning effectively from graph structured data. Recent

3https://github.com/deepchem/deepchem
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Figure 2: GraphDTA model illustration. Compound SMILES is first converted to a
molecular graph, then a deep learning algorithm is adopted on the graph to learn graph
representation. Protein sequence is first encoded and embedded, then several 1D CNN
layers are applied to learn sequence representation. The two representation vectors are
then concatenated and undergo various fully connected layer, ended by a regression
layer to estimate the output as the drug-target affinity value.
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success of deep convolutional neural networks in computer vision, speech recognition
and natural language processing has led to the idea of extending the convolution oper-
ation to graph structures. A number of works have been proposed to handle two main
challenges of generalizing CNN to graphs, that are, the formation of receptive field in a
graph whose data points are not arranged as Euclidean grids, and the pooling operation
to down-sample a graph.

In this work, we propose a new DTA prediction model based on a combination
of graph neural network and conventional CNN. As illustrated in Figure 2, our model
takes two inputs: protein sequence and SMILES sequence and feed-forwards them in
parallel to learn a representation vector for each, then the two latent feature vectors are
concatenated and undergo several dense layers, ended by a regression layer to estimate
the affinity value.

For the protein sequence input, similar to the existing methods, our models takes
the protein sequence as a string of ASCII and apply several 1D CNN layers over the
text to learn a sequence representation vector. More specifically, the protein sequence
is first categorically encoded, then an embedding layer is added to the sequence, each
(encoded) character is represented by a 128-dimentional vector. Next, three 1D con-
volutional layers are used to learn different levels of abstract features from the input.
Finally, a max pooling layer is applied to get a representation vector of the input protein
sequence.

Our model takes the SMILES input as a graph which has been constructed as de-
scribed previously, then applies a graph convolutional algorithm to learn a represen-
tation vector. In order to evaluate the effectiveness of graph-based methods, we in-
vestigate several graph neural network models, including GCN [17], GAT [37], GIN
[40], and a combined GAT-GCN architecture. The details of each GCN architecture
are described as follows.

3.2.1 GCN-based graph representation learning

GCN model [17] was originally designed for the problem of semi-supervised node
classification. The model enables to learn hidden layer representations that capture
both local graph structures and features of nodes. This fits well our constructed indirect,
node attributed graphs. Formally, denote a built drug graph as G =(V, E), where V ∈
RN×F is the set of N nodes each represented by a F -dimentional vector and E is the
set of edges represented as an adjacency matrixA ∈ RN×N . The GCN layer is defined
by [17] as

Z = D̃−
1
2 ÃD̃−

1
2XΘ (1)

where Z ∈ RN×F is the convolved feature matrix, Ã is the graph adjacency matrix
with added self loop, D̃ is the graph diagonal degree matrix, and Θ ∈ RN×C is the
trainable parameter matrix.

To make the GCN applicable to the task of learning a representation vector of the
whole graph, we add a global max pooling layer right after the last GCN layer. In our
GCN-based model, we make use of three consecutive GCN layers each activated by
a ReLU function. Then a global max pooling layer is added to aggregate the whole
graph representation.
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3.2.2 GAT-based graph representation learning

We adopt graph attention network (GAT) [37] in our model. Unlike graph convolution
techniques, this method proposes an attention-based architecture to learn hidden rep-
resentations of nodes in a graph by applying a self-attention mechanism. The building
block of a GAT architecture is a graph attention layer. The GAT layer takes the set
of nodes of a graph as input, applies a linear transformation to every node by a weigh

matrix W ∈ RF
′
×F where F and F ′ are feature dimensions of input and output nodes,

respectively. At the input node i in the graph, the attention coefficients between i and
its first-order neighbors are computed as

eij = a(W ~hi,W ~hj) (2)

The value of eij indicates the importance of node j to node i. These attention
coefficients are then normalized by applying a soft-max function, then used to compute
the layer output as

~h
′
i = σ(

∑
j∈Ni

αijW ~hj) (3)

where α(.) is a non-linear activation function, and αij are the normalized attention
coefficients.

In our model, the GAT-based graph learning architecture includes two GAT layers,
activated by a ReLU function, then followed a global max pooling layer to obtain
graph representation vector. In details, for the first GAT layer multi-head-attentions
are applied with the number of heads is set to 10, and the number of output features are
set identical with the number of input features. The output features of the second GAT
is set to 128.

3.2.3 Graph Isomorphism Network

We integrate a recently proposed graph learning method, namely Graph Isomorphism
Network (GIN) [40]. This model is theoretically proven that it achieves maximum dis-
criminative power among GNNs [40]. Specifically, GIN uses a multi-layer perceptrons
(MLP) to update the node features as

x
′

i = MLP ((1 + ε)xi +
∑

j∈N (i)

xj) (4)

where ε is either a learnable parameter or a fixed scalar.
In our model, the GIN-based graph neural net consists of five GIN layers, each

followed by a batch normalization layer. Finally, a global max pooling layer is added
to aggregate a graph representation vector.

3.2.4 GAT-GCN combined graph neural network

We investigate a combination of GAT-GCN [37, 17] for learning on graphs in our
proposed GraphDTA model. In detail, the graph neural network starts by a GAT layer
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which takes graphs as input and returns the convolved feature matrix to a GCN layer.
Each layer is activated by a ReLu function. The graph representation vector is then
computed by concatenating the global max pooling and global mean pooling layers
from GCN layer output.

4 Experiments and Results

4.1 Experimental setting
To compare with the state of the art performers DeepDTA [25] and WideDTA [26], we
ran our proposed method on the same datasets used in these work. In particular, two
datasets were used to evaluate the models:

- Davis dataset: binding affinities observed for all pairs of 72 drugs and 442 targets,
measured by Kd value (kinase dissociation constant) [8]. The affinity value ranges from
5.0 to 10.8

- Kiba dataset: binding affinities for 2,116 drugs and 229 targets [35]. The affinity
value ranges from 0.0 to 17.2.

For all these two datasets, same train/test splits with [25] (DeepDTA) and [26]
(WideDTA) were used in the experiments, making the comparison as fair as possible.
That is, 80% of data instances were used for training and 20% were for testing the
models. For the same purpose, same performance measures as used in [25, 26], Mean
Square Error (MSE, the smaller the better) and Concordance Index (CI, the larger the
better), were used to evaluate the performance of all the methods. For DeepDTA [25],
WideDTA [26] and all the referenced methods, reported results in relevant papers were
shown.

4.2 Results and Discussion
Table 1 presents the performance, in MSE or CI measures, for different approaches to
predict the affinity for Davis dataset (Table 1a) and Kiba dataset (Table 1b).

For Davis dataset (Table 1a), the best MSE for baseline is 0.261, gained by Deep-
DTA [25], when both drugs and proteins are represented as 1D strings. In comparison,
all of our proposed graph convolution models achieved better MSE. The best MSE our
methods gained is 0.229, a reduction of 12.3% over the best baselines.

Meanwhile, on CI measure, there is a slight improvement by the proposed methods.
In details, the best CI a baselines could achieve is 0.886, by DeepDTA [25], when
drugs are represented as 1D strings and proteins in Smith-Waterman, and by WideDTA
[26], when the both parties are presented as ‘words’. In comparison, two graph-based
methods, GAT and GIN outperformed the best baselines in CI measures, at 0.892 and
0.893, respectively.

Similar performance is observed for Kiba dataset (Table 1b). In particular, Wid-
eDTA [26] is the best baseline in both measures, CI, at 0.875, and MSE, at 0.179,
when both drugs and proteins are represented as ‘words’. In comparison, three of our
four proposed models outperformed the best baseline in both of MSE and CI measures.
Noticeably, the best MSE the proposed methods gained is 0.139, a reduction of 22.3%
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Method Protein rep. Compound rep. CI MSE
Baseline models

DeepDTA Smith-Waterman Pubchem-Sim 0.790 0.608
DeepDTA Smith-Waterman 1D 0.886 0.420
DeepDTA 1D Pubchem-Sim 0.835 0.419
KronRLS Smith-Waterman Pubchem-Sim 0.871 0.379
SimBoost Smith-Waterman Pubchem-Sim 0.872 0.282
DeepDTA 1D 1D 0.878 0.261
WideDTA 1D + PDM 1D + LMCS 0.886 0.262

Proposed model - GraphDTA
GCN [17] 1D Graph 0.880 0.254

GAT_GCN 1D Graph 0.881 0.245
GAT [37] 1D Graph 0.892 0.232
GIN [40] 1D Graph 0.893 0.229

(a) For Davis dataset, sorted by MSE. Italics: best for baseline models, bold: better than
baselines.

Method Protein rep. Compound rep. CI MSE
Baseline models

DeepDTA 1D Pubchem-Sim 0.718 0.571
DeepDTA Smith-Waterman Pubchem-Sim 0.710 0.502
KronRLS Smith-Waterman Pubchem-Sim 0.782 0.411
SimBoost Smith-Waterman Pubchem-Sim 0.836 0.222
DeepDTA Smith-Waterman 1D 0.854 0.204
DeepDTA 1D 1D 0.863 0.194
WideDTA 1D + PDM 1D + LMCS 0.875 0.179

Proposed model - GraphDTA
GAT [37] 1D Graph 0.866 0.179
GIN [40] 1D Graph 0.882 0.147
GCN [17] 1D Graph 0.889 0.139

GAT_GCN 1D Graph 0.891 0.139
(b) For Kiba dataset, sorted by MSE. Italics: best for baseline models, bold: better than
baselines.

Table 1: Prediction performance. Baseline results are from [25]. For our proposed
method, same settings as with the referenced methods, e.g., train/test splits, was used.
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over the best baseline. Meanwhile, a slight improvement in CI measure is gained by
the proposed methods, at 0.891, versus 0.875 by the best baseline.

Of all the graph convolution models experimented, GIN [40] outperformed the best
baselines in both the datasets and both the performance measures. This shows the
potential of GIN in graph discrimination/representation, partly supporting the claim in
[40] that Graph Isomorphism Network (GIN) is the most powerful GNN.

5 Summary
In this work, we propose a novel method for estimating drug–target binding affinity,
called GraphDTA, which represents drugs as graphs. Using deep convolution net-
works on graphs of drugs, we show that GraphDTA can not only predict the affinity
of drugs–targets better than non-deep learning models, but also outperform compet-
ing deep learning methods. In particular, GraphDTA perform consistently well across
two separate benchmark databases in all the performance measures. The results sug-
gest that representing molecules as graphs improves performance considerably. Also,
they confirm that deep learning models are appropriate for drug–target binding affin-
ity problem. In addition to tackling drug–target binding affinity problem, our method
could be applied to any collaborating filtering problems / recommendations systems
where either or both of users or products sides can be represented in graph structures.
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[39] Michał Woźniak, Agnieszka Wołos, Urszula Modrzyk, Rafał L Górski, Jan
Winkowski, Michał Bajczyk, Sara Szymkuć, Bartosz A Grzybowski, and Maciej
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