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Abstract  9 

Background: 10 

Transcriptomics data, often referred as RNA-Seq, are increasingly being adopted in 11 

clinical practice due to the opportunity to answer several questions with the same data -12 

e.g. gene expression, splicing, allele-specific expression even without matching DNA. 13 

Indeed, recent studies showed how RNA-Seq can contribute to decipher the impact of 14 

germline variants. These efforts allowed to dramatically improved the diagnostic yield in 15 

specific rare disease patient cohorts. Nevertheless, RNA-Seq is not routinely adopted for 16 

germline variant calling in the clinic. This is mostly due to a combination of technical noise 17 

and biological processes that affect the reliability of results, and are difficult to reduce 18 

using standard filtering strategies.  19 

 20 

Results: 21 

To provide reliable germline variant calling from RNA-Seq for clinical use, such as for 22 

mendelian diseases diagnosis,, we developed SmartRNASeqCaller: a Machine Learning 23 

system focused to reduce the burden of false positive calls from RNA-Seq. Thanks to the 24 

availability of large amount of high quality data, we could comprehensively train 25 

SmartRNASeqCaller using a suitable features set to characterize each potential variant. 26 
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The model integrates information from multiple sources, capturing variant-specific 27 

characteristics, contextual information, and external sources of annotation. We tested our 28 

tool against state-of-the-art workflows on a set of 376 independent validation samples 29 

from GIAB, Neuromics, and GTEx consortia. SmartRNASeqCaller remarkably increases 30 

precision of RNA-Seq germline variant calls, reducing the false positive burden by 50% 31 

without strong impact on sensitivity. This translates to an average precision increase of 32 

20.9%, showing a consistent effect on samples from different origins and characteristics. 33 

 34 

Conclusions: 35 

SmartRNASeqCaller shows that a general strategy adopted in different areas of applied 36 

machine learning can be exploited to improve variant calling. Switching from a naïve 37 

hard-filtering schema to a more powerful, data-driven solution enabled a qualitative and 38 

quantitative improvement in terms of precision/recall performances. This is key for the 39 

intended use of SmartRNASeqCaller within clinical settings to identify disease-causing 40 

variants. 41 

Keywords:  42 

RNA-Sequencing, variant calling, machine learning, transcriptomics 43 

 44 

Background 45 

Being able to associate genomic variation to phenotypic traits is a long-lasting question 46 

and fundamental task for omics data analysis. Massive adoption of next sequencing 47 

technologies enabled the discovery of causal links between genetic variants and 48 

phenotypes. This is especially true for monogenic mendelian diseases (1,2) and in most 49 

of cancer studies (3–5). On one side, NGS data have been used to elucidate the genetic 50 
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origin of many diseases, with successful diagnoses in 41% of cases overall. On the other 51 

side, hundreds of cancer driver genes, and thousands of putative cancer-driver mutations 52 

have been identified using NGS with important consequences for diagnosis and 53 

treatment. 54 

Whole-genome sequencing (WGS) and whole-exome sequencing (WES) are commonly 55 

adopted both in multicenter studies with thousands of patients (6–8), and increasingly in 56 

clinical daily practice (2,9–11). In parallel, initiatives like GTEx (8) showed how RNA-Seq 57 

data enriched the picture of genome-phenome relationships, for example defining tissue-58 

specific expression and eQTLs. The potential to answer multiple questions 59 

simultaneously from RNA-Seq e.g. gene expression, splicing detection, allele specific 60 

expression (12–15), jointly with its reduced costs, convinced an increasingly large share 61 

of scientists to adopt RNA-Seq in their analyses.  62 

Using RNA-Seq to call germline variants can be beneficial in clinical settings, for example 63 

for Mendelian and common diseases studies. While RNA-Seq does not require additional 64 

laboratory experiments if data are already collected, it can enhance the information from 65 

samples without matching DNA (16,17). Indeed, it has been shown to significantly 66 

improve the diagnostic yield for Rare Diseases (18) when used jointly with DNA data, and 67 

thoroughly processed by field-experts. These recent results show an opportunity to 68 

develop tools to automatically enhance the information that can be extracted from an ever 69 

growing number of RNA-Seq samples. Such tools need to deal with a whole set of 70 

technical challenges i.e. split read mapping, alternative splicing, RNA-Edit, RNA 71 

polymerase errors during transcription, and allele specific expression (12,15,16) hindering 72 

the reliability of RNA-Seq variant calls. A fundamental step for a broader RNA-Seq 73 

adoption in clinical settings for variant discovery and prioritization is to reduce the burden 74 

of false positive calls. A number of workflows have been developed to reliably call and 75 

filter germline variants from RNA-Seq including SNPiR, Opossum or eSNV-detect 76 
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(16,19,20). Those workflows rely on a set of hard-filtering rules implying a trade-off 77 

between quality and quantity of called variants. Such filtering schemas have a limited 78 

ability to capture complex patterns, and to discriminate true germline calls from the rest. 79 

In this work, we developed SmartRNASeqCaller, a machine-learning module to 80 

accurately predict germline variants from RNA-Seq. It makes use of a Random Forest 81 

(RF) model that integrates intrinsic variant features with external annotations. 82 

SmartRNASeqCaller then generates a data-driven nonlinear predictor for germline 83 

variants, harnessing the power to detect complex feature relationship from a massive 84 

high-quality training dataset. With SmartRNASeqCaller we aim to improve existing state-85 

of-the-art in discriminating true germline variants from the rest by adopting a more 86 

powerful and integrative approach than the hard-filtering strategy used in most of the 87 

existing workflows. The overall objective is to minimize the burden of false positive calls 88 

from RNA-Seq to call variants with comparable reliability to WGS/WES results. Similar to 89 

other biomedical research fields where machine learning techniques are used (21,22), the 90 

main novelty of our approach relies on learning complex patterns to discriminate if a given 91 

call is a true germline variant. 92 

SmartRNASeqCaller can be applied as a standalone module to refine the results from 93 

previous variant calling workflows without requiring a full sample re-analysis. In this work, 94 

we provide SmarRNASeqCaller as a plugin to the GATK best-practices workflow. This 95 

module can be easily integrated into any variant calling workflow, as long as it provides 96 

an aligned BAM file, and a VCF file with the variants to be classified.  97 

In order to compare the performance of this newly proposed module, we benchmarked 98 

the impact of including SmartRNASeqCaller as an additional step after using the GATK 99 

best practices workflow against only using the GATK workflow and against SNPiR. We 100 

analysed a set of 10 independent high-quality samples from Neuromics consortium (23), 101 

as well as on GIAB sample NA12878 (24). We then compared SmartRNASeqCaller 102 
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impact when applied to the resulting variants from the GATK best practices pipeline on 103 

365 samples from GTEx consortium, collected from 5 tissues from 73 donors. These 104 

independent tests serve to confirm the utility of the method in improving germline variant 105 

call precision for clinical applications through specific real use-cases. 106 

Implementation 107 

We have implemented an effective tool to post-process variant calling results from RNA-108 

Seq to reliably identify germline variants. This tool is designed to be used as an additional 109 

step in conventional variant calling workflows. It integrates ideas and resources from the 110 

literature (12,13,19,25) within a machine learning framework. The driving approach is to 111 

use Random Forest (RF), a machine learning technique, to generate a model that is able 112 

to discriminate true germline variants from the rest. This process is possible by identifying 113 

complex patterns based on variants annotated features coming from multiple sources. 114 

SmartRNASeqCaller is divided in two main steps. First, each variant is annotated with a 115 

set of 20 features (table 1). Seven out of them are intrinsic properties including variant 116 

type and length, as well as contextual features including external annotations such as the 117 

variant in a RepMask region from the UCSC annotation (26), and whether it is annotated 118 

into a RNA-Edit site from (25,27). In parallel, the caller specific features include GATK 119 

specific quality values, as well as others such as BaseQRankSum, MQRankSum and 120 

ClippingScore. Second, each variant is processed by a classifier that estimates the 121 

likelihood of being a true germline variant e.g. appearing in the genomic DNA. 122 

Importantly, this classifier model has been generated using a RF approximation, trained 123 

on a set of high-quality matched samples of WGS and RNA-Seq with more than 600’000 124 

variants. 125 
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Samples for the study 126 

To train and validate our tool, we processed samples from three high-quality independent 127 

datasets. First, we use 20  samples from Neuromics consortium with high-quality 128 

matching DNA sequencing data, specifically WGS from blood samples, and RNA-Seq 129 

obtained from skin fibroblast biopsies. For this work purposes, we considered the DNA 130 

variant calling results as our reference set of ground truth variants against which measure 131 

the RNA-Seq workflows results. This dataset was split into 10 samples for training and 10 132 

for validation guaranteeing the independence of both subsets as we are interested in the 133 

general applicability of the model for identifying true germline variants.  Second, we 134 

analyzed sample NA12878 from the Genome in a Bottle (GIAB) consortium (24). 135 

Specifically, we used RNA-Seq reads from SRR1153470 sample and as gold-standard 136 

the set of high-confidence SNPs, small indels, and homozygous reference calls 137 

associated to GIAB sample NA12878. Third, we used data from 365 GTEx tissue-138 

samples from 73 donors with matching whole blood WGS callsets from GTEx v7 139 

consortium (35). We limited our scope to 5 tissues per donor: Whole blood, Sun Exposed 140 

Skin, Adipose Subcutaneous tissue, Skeletal Muscle, and Fibroblasts. We chose these 141 

tissues because they represent the most common tissues collected and/or derived in the 142 

clinical practice. They are relatively easy to acquire from patients in routine biopsies, and 143 

present different expression profiles and transcriptome complexities (28), representing a 144 

good testbed for the most common scenarios in which SmartRNASeqCaller could be 145 

applied. 146 

Baseline variant calling workflow 147 

Prior to the application of SmartRNASeqCaller, we processed RNA-Seq from GIAB and 148 

Neuromics with GATK RNA-Seq best practices workflow, available at this repository 149 

[https://github.com/inab/RDConnect_RNASeq]. This workflow produces two files i) an 150 
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aligned BAM file, which is obtained with the STAR v2.35a aligner and uses GATK 3.6.0 151 

for subsequent processing steps (24), and ii) a VCF file with the initial set of candidate 152 

variants that will be used as input for SmartRNASeqCaller. 153 

GTEx samples were already aligned with TopHat 1.4, thus we used the provided BAM file 154 

as input for the variant calling workflow. This difference in the original alignment step 155 

represents an opportunity to evaluate the SmartRNASeqCaller performance on data 156 

generated following an alternative approach to the one used to train this classifier. 157 

SmartRNASeqCaller training 158 

We used 665,178 called variants from 10 matched DNA and RNA-Seq samples from the 159 

Neuromics Consortium as our training set. The training dataset size allows to build a 160 

model for discriminating true germline variants from the rest using a Random Forest (RF) 161 

algorithm with sufficient data to reduce potential overfitting to the training set. We chose 162 

to use a RF-based algorithm considering the available number of variants in the training 163 

set and the need to detect complex patterns without a predefined structure. Other 164 

methods like deep learning require at least a spatial data-structure for building a model. 165 

Moreover, RF automatically deals with different data types e.g. binaries, qualitative and 166 

quantitative, without requiring prior normalization step, and it is robust to class 167 

imbalancing (27,38). Conversely, Support Vector Machine (SVM) and others classical 168 

regression models tend to be more sensitive to the classes unbalanced and, in addition, 169 

their performances depend on data normalization strategies (38). Finally, a key aspect for 170 

choosing RF over other potential options is the robustness of this approximation to over-171 

fitting since we want the model to have consistent performances on novel samples.  172 

An initial set of 20 features, generic and GATK specific, were analyzed for training the 173 

model (table 1). We employed a recursive feature elimination strategy with 10 fold cross 174 

validation applied on the training variants set (as shown in Figure 1A) to select the best 175 
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feature set for classification. Analysing the results in Figure 1A, we chose 11 features, 176 

given that the overall trade-off among average accuracy, accuracy variance, and 177 

overfitting potential of the model. With  only 11 features, the overall model accuracy is 178 

close to the maximum, is quite compact, and is able to generate robust predictions. 179 

Importantly, all excluded features fall very close to some selected feature in the tSNE plot 180 

in Figure 1B, suggesting that the information content from the excluded features are 181 

already provided by other features in the model. The model features, together with the 182 

excluded ones are listed in Table 1. We used the R (version 3.5.1) modules RangeR and 183 

caret for the model training and evaluation. 184 

The selected 11 features are a collection of heterogeneous variant descriptions (Figure 185 

1B and Table 1). It includes intrinsic variant properties as well contextual ones including 186 

GATK specific features, the later give an assessment of the trustworthiness of the variant 187 

call (table 1). We also included variants annotation from external datasets and genomic 188 

context e.g. variant overlapping with an homopolymeric stretch of 5bp or more, variant 189 

overlapping with the 4bp intronic region of exon-intron junctions, variant annotated as 190 

RNA-Edit events from (16,34). These external annotations, as remarked in (22), are flags 191 

useful to keep or discard a called variant. For instance, SNPiR implemented a series of 192 

hard-filtering rules based on those annotations in a subsequent funneling process, 193 

progressively reducing the number of potential false positive SNPs in their call set at the 194 

cost of strongly reducing the overall number of called variants.  195 

Model validation 196 

After training the RF model, we tested its predictive performance against 3 other 197 

alternative workflows on 10 skin fibroblasts samples from Neuromics, and on sample 198 

NA12878. Specifically, we evaluated its predictive performance in terms of precision and 199 

recall against the ground truth constituted by genomic high-quality variant calls. Those 200 
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are the four considered alternatives, including SmartRNAseqCaller. 201 

 202 

- GATK Best practices recommendations for calling RNA-Seq variants. 203 

- GATK Best practices recommendations plus SmartRNASeqCaller to validate 204 

whether the model refines the initial RNA-Seq called variants. 205 

- SNPiR, which is able to provide reliable calls for SNPs without being limited to 206 

somatic variant detection. 207 

- SNPiR-like hard filtering. In this alternative we assess the potential of simple 208 

filtering scheme using annotated features for the model. In this workflow we 209 

discarded all variants with an annotation of RNA-Edit, homopolymeric region, 210 

repmask region, or intron-exon junction. This should serve as a proxy to 211 

understand the impact of following a more sophisticated RNA-Seq variant calling 212 

approximation. Importantly, this approximation sets the baseline of the performed 213 

analysis. 214 

 215 

Moreover, we processed 365 samples from GTEx consortium evaluating the impact of 216 

including SmartRNASeqCaller on top of GATK best practices workflow. We used the 217 

Analysis Freeze WGS variant calls that have been used in GTEx for eQTL and Allele 218 

Specific Expression analyses (35) as true reference set. We measured the performances 219 

by precision and recall, analyzing the effect both on the bulk of samples and tissue-wise 220 

in order to highlight potential biases due to SmartRNASeqCalled being trained on 221 

fibroblast samples. 222 

Following commonly accepted practices from genomic data analysis, we focused on 223 

regions covered by at least 8 reads. We chose this threshold as it should allow reliable 224 

identification for heterozygous genotypes with sufficient sensitivity (22). All samples have 225 

been processed using the human reference genome hs37d5 (37). 226 
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Code availability and execution requirements 227 

SmartRNASeqcaller is available at https://github.com/inab/SmartRNASeqCaller. It can be 228 

downloaded and executed as a shell script with specific parameters to change its default 229 

behaviour, and/or using software containers e.g. dockers, inside a nextflow workflow (29). 230 

We expect to guarantee full analysis reproducibility following recommendations around 231 

Open Science, Open Data and Open Source. An average run of SmartRNASeqCaller 232 

with Nextflow implementation takes 46 minutes, using less than 4 GB RAM with 4 CPUs 233 

in parallel.  234 

Results  235 

Our first goal was to train a reliable model to classify true germline variants using RNA-236 

Seq. Then we validated using three different independent datasets against three 237 

commonly used workflows.  As demonstrated below, SmartRNASeqCaller would enable 238 

the use of RNA-Seq variant calling in the clinic practice by reducing the burden of false 239 

positive calls.  240 

SmartRNASeqcaler obtains better precision/recall results than state-of-the-art 241 

workflows on fibroblast samples 242 

We proceeded to measure the SmartRNASeqCaller performance on variants from 10 243 

independent samples from the same Neuromics cohort used for training. We used 244 

SmartRNASeqCaller as predictor for all variants considering called variants using WGS 245 

as the gold standard. Following broadly adopted practices (19,19,30), we  evaluated 246 

single nucleotide variants in regions with a minimum coverage of  8 or more RNA-Seq 247 

reads to reduce the impact of wrong calls due to the effect of random noise on low-248 

coverage areas. 249 

We report the precision/recall results for the all available samples (10 for training set and 250 
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10 for validation set) in Figure 2. In the case of SmartRNASeqCaller we reported 251 

separately the performance for the training and validation data sets to assess the model 252 

robustness and identify potential signs of overfitting. 253 

First, the GATK Best practices workflow has an overall good performance in terms of 254 

average precision (82.9% ± 3.9%) and recall (78.7% ± 1.4%). Second, the GATK 255 

workflow has a better performance than SNPiR for the whole data set when considering 256 

average precision and recall with F1 measure (GATK: 0.81 vs SNPiR: 0.66 From Table 257 

2). Third, when comparing the performance on the training and validation samples for 258 

SmartRNASeqCaller we can observe that the model is robust to overfitting. The average 259 

performance on the training set, albeit better, is not drastically different when compared to 260 

the validation samples. Focusing on differential changes with respect to the baseline 261 

established by the GATK best practices workflow (Suppl fig. 1), the overall impact of 262 

SmartRNASeqCaller brings significant improvements in precision (on average +9% for 263 

the validation set) with a modest tradeoff in recall (on average -0.9% for the validation 264 

set). This pattern is observed consistently among training and validation samples. Finally, 265 

when compared to naïve hard-filtering strategies, we can appreciate that the average 266 

precision is marginally improved but the average recall drastically drops, showing how 267 

naïve approaches end-up doing more harm than good. These results support the idea of 268 

integrating complex patterns derived from different sources, rather than limiting to simpler 269 

intersection or union operations, using strategies based on machine learning techniques 270 

SmartRNASeqCaller improves precision on sample NA1278  271 

As a further evaluation step to study the model generalization and to exclude specific 272 

biases from the considered samples, we tested SmartRNASeqCaller on the publicly 273 

available sample NA12878 from the GIAB Consortium. On one hand, we processed raw 274 

RNA-Seq reads through the GATK best practices variant calling workflow to have a 275 
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baseline calls set. Building on this set we applied SmartRNASeq as an additional step to 276 

the GATK Best practices called variants for comparison against it, against SNPiR, and 277 

against a naïve hard-filtering strategy. We used GIAB calls from DNA sequencing as the 278 

ground truth to evaluate the RNA-Seq variant calling results. 279 

 Similarly to the previous analysis, in Figure 2B we reported the performance in terms of 280 

precision/recall obtained for SmartRNASeqCaller and other alternative approaches. 281 

Similar results to the previously analysed 20 samples were obtained confirming the 282 

general usability of our model. Importantly, the baseline established by the GATK best 283 

practices workflow yielded better results than SNPiR. This brings in the discussion the 284 

impact of previous steps e.g. choice of the alignment strategy as well as the impact of the 285 

continuous improvement of external annotation sources.  286 

Similarly to comparison for the Neuromics samples, the application of 287 

SmartRNASeqCaller to the baseline results allows to significantly improve precision (8%) 288 

with a moderate trade-off in recall (~2%) achieving the best overall results, while the 289 

naïve hard-filtering strategy confirms to be the worst performing algorithm due to its 290 

drastic effect on the final recall of variants. The baseline values of precision/recall for 291 

NA12878 are worse than the average values with Neuromics samples as absolute 292 

values. Nevertheless, the change brought by SmartRNASeqCaller is robust and in the 293 

same direction, showing how the model behaves consistently across different initial 294 

conditions.  295 

SmartRNASeqCaller is robust to both tissue-of-origin differences, and alignment 296 

algorithm   297 

We then assessed SmartRNASeqCaller performance on a large independent cohort from 298 

365 GTEx (8) samples with matching WGS data. We chose tissue from 5 tissues that 299 

represent most biopsies in clinical settings: Whole Blood, Skin Sun Exposed, Adipose 300 
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Subcutaneous, Skeletal Muscle, and Fibroblasts. These tissues have diverse 301 

transcriptome complexity and may be a closer representation of datasets used for clinical 302 

applications. 303 

GTEx v7 data have been aligned using TopHat v1.4, rather than STAR v3.5.1, which we 304 

used to align the training set for SmartRNASeqCaller. Thanks to this, we could test how 305 

robust SmartRNASeqCaller is to alternative upstream workflows, as aligners present 306 

systematic differences between them. This is a particularly challenging dataset since 307 

TopHat 1.4 has been shown to have many limitations and artifacts when compared to 308 

recent aligners like STAR or Hisat2 (12,31). 309 

In Figure 3A, precision/recall results comparing the performance of the baseline 310 

TopHat+GATK workflow and SmartRNASeqCaller applied as an additional step to the 311 

baseline TopHat+GATK workflow are presented. The overall effect of strong precision 312 

improvement with small sensitivity loss observed in Figure 2 is maintained on GTEx data. 313 

Indeed, SmartRNASeqCaller improves precision on average by 20.9%, a 6.25 fold 314 

greater than the reduction in recall (3.2%).  315 

In Figure 3B, we present the precision values separated by tissue and workflow. The 316 

median precision values for the TopHat+GATK workflow strongly depend on the tissue of 317 

origin, ranging from 61.4% for Whole Blood, to 73.9% for Skeletal Muscle. After the 318 

application of SmartRNASeqCaller, the precision levels range increase and are more 319 

compact ranging from 85.6% in Whole Blood to 89.1% in Skeletal Muscle samples, 320 

reducing dramatically (~50%) the differences between tissues. Similarly to Figure 3B, we 321 

present in Figure 3C recall values for tissue of origin and workflow. SmartRNASeqCaller 322 

effect is stable across tissues, reducing the sensitivity on average by 3.2% while keeping 323 

the average recall between 85%-90% for all analyzed tissues. This is important because 324 

we are able to capture much more true germline variants with higher precision that the 325 

standard baseline. 326 
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 327 

In general terms, SmartRNASeqCaller strongly improves the overall precision of RNA-328 

Seq variant calling with a small cost of sensitivity, even for data generated with different 329 

aligners and collected from different tissues in the body demonstrating its general 330 

applicability. 331 

Discussion  332 

In this work we developed SmartRNASeqCaller, a random forest model to reliably 333 

discriminate true germline variants from the rest using RNA-Seq. SmartRNASeqCaller 334 

combines intrinsic variant characteristics, with external annotation sources in a unique 335 

model able to reduce the burden of false positive calls from RNA-Seq. 336 

We trained our model using more than 600’000 variants from 10 high-quality samples 337 

with matching WGS data  from Neuromics Consortium. We then validated it against a 338 

dataset of 10 independent samples from the same cohort, as well as on an independent 339 

validation set composed by the broadly used sample NA12878 from the GIAB Consortium 340 

(24), and by 365 samples from GTEx consortium (8). In all cases, applying 341 

SmartRNASeqCaller significantly reduced the number of false positive calls almost 342 

halving the number, without hindering recall e.g. average 0.9% loss in recall for the 343 

validation samples from GIAB and Neuromics, and 3.2% on GTEx samples. 344 

SmartRNASeqCaller allowed to achieve the best precision/recall performance when 345 

compared against state-of-the-art workflows e.g. GATK best practices variant calling 346 

workflow and SNPiR (16). 347 

A whole set of technical challenges for the wide adoption of RNA-Seq as a source of data 348 

for germline variant calling have been described in the literature i.e. split read mapping, 349 

alternative splicing, RNA-Edit, RNA polymerase errors during transcription, and allele 350 

specific expression (12,15,16). Several tools have now been released to address these 351 
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task-specific challenges. Examples are tools such as STAR and Histat2 (17,18), which 352 

aim to improve read alignment; or REDITools and DeepRed, which are tools to detect 353 

RNA Editing events (19,20). Resources like REDIPortal and RADAR (25,27) collect 354 

regions with evidence of RNA-Edit activity along the human genome and are a valuable 355 

resource to spot potential false positive calls. 356 

However, few workflows have been developed to reliably call and filter germline 357 

mutations from RNA-Seq. Those developed though rely on a set of hard-filtering rules 358 

implying a trade-off between quality and quantity of selected variants. Some examples 359 

are eSNV-detect (21), SNPiR (12), and Opossum (22). eSNV-detect (21) combines 360 

multiple aligners to reduce aligner-specific errors prior to the variant calling itself. Once 361 

this step is completed, eSNV-detect calls variants using SAMtools (32). However, this 362 

practice introduces significant computational costs and questions their use in routinary 363 

analysis. SNPiR (12) uses BWA-aln (23) to map spliced reads combined with GATK 364 

UnifiedGenotyper (24) to generate an initial set of variant calls, which are then filtered 365 

using external annotations about variant characteristics e.g. RNA-Edit site, homopolymer 366 

region, repmask site. This filtering allows to improve precision at the cost of reduced 367 

sensitivity. Opossum (22) employs a different strategy by preprocessing and filtering 368 

RNA-Seq raw data to make it suitable for haplotype-based variant calling with Platypus 369 

(25). This strategy renders remarkable results, albeit limited to the easily aligned portion 370 

of the genome. Moreover, a priori exclusion of all sites prone to RNA-Edit, which include 371 

many true germline variant e.g. 25% of RNA-Edit positions in RADAR and REDI-Portal 372 

databases are located in exonic areas overlap with documented DNA mutations in 373 

GnomAD dataset (26), may limit the use of Opossum into routine clinical practice. 374 

Methods evaluation in most of these works is not standardized and is heavily dependent 375 

on the annotations used to determine the scope of analysis e.g. gene definitions, 376 

inclusion or exclusion of specific regions/SNP type, publicly available gold standard 377 
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dataset, etc. There is therefore a need to joint efforts in the community to standardize 378 

those efforts including the definition of relevant datasets and metrics.  379 

The main driver to develop SmartRNASeqCaller was to obtain the highest reliability for 380 

variants called from RNA-Seq experiments for its use in routine clinical practice. For this 381 

we focused on improving the precision of the generated variant calls. We first chose to 382 

integrate heterogeneous and non-redundant variants features to generate a rich and 383 

complex description of each variant. Tools like SNPiR use a similar approach to apply 384 

simple filters to exclude variants if characterized by unreliable features, which improved 385 

precision compared to baseline. However, a simple filtering strategy is unable to properly 386 

exploit the potential of a rich and complex multidimensional space. It can generate a 387 

strong tradeoff between precision and sensitivity that can be detrimental for tasks such as 388 

diagnosis. For that, we chose to train a Random Forest classifier on more than 600’000 389 

variants from 10 samples. We chose Random Forests because it has been previously 390 

applied in complex scenarios with many training samples, producing remarkable results in 391 

terms of precision and robustness including DNA variant calling (21). We then evaluated 392 

SmartRNASeqCaller following standard practices of processing independent samples 393 

from different studies to ensure the general usability of this model across a wide variety of 394 

samples from different tissues, and different upstream alternative workflows to generate 395 

the initial calls sets. 396 

Here we show that switching from a naïve hard-filtering schema to a more powerful, data-397 

driven solution enabled a qualitative and quantitative improvement in terms of 398 

precision/recall. When compared to a SNPiR-like strategies of filtering all variants 399 

annotated by some unreliable characteristic, the drastic reduction in recall does not 400 

compensate for the improvement in terms of precision. This effect is mostly due to the 401 

improvement and expansion of available annotations since the SNPiR publication, as well 402 

as to the quality filtering already implemented in the baseline workflow that removes 403 
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plenty of unreliable variants from RNA-Seq. 404 

SmartRNASeqCaller builds on existing literature for variant calling using RNA-Seq, 405 

improving overall performances and trustworthiness of the obtained results. Nevertheless, 406 

as noted in (16,24), its discovery potential is inherently limited by the nature of RNA-Seq 407 

experimental set-ups: there is no hope to detect variants in areas of the genome that are 408 

not expressed. Similarly, tissue-specific gene expression can limit the discovery of 409 

phenotypic-causing variants as many experiment tend to use easily accessible tissues 410 

rather than the affected one. Those accessible tissues might not express the genes of 411 

interest for dissecting the genetic causes of the observed phenotype. However, recent 412 

results showed that it is possible to obtain reliable mutation profile data of not easy-to-413 

reach tissues from other accessible tissues by generating suitable reprogrammed cells 414 

(18). How RNA-Seq data is obtained can also directly affect the sensitivity of our method 415 

as nonsense variants can be missed as a result of the nonsense-mediated decay 416 

mechanisms (33).  417 

Despite these factors limiting the scope of potential discoveries from RNA-Seq, they can 418 

simultaneously be turned into a powerful filter against noise. Provided that the sequenced 419 

tissue is relevant for the studied disease, RNA-Seq variants can limit the focus to those 420 

genes that actually are being used by the affected cells, as well as inferring if there are 421 

“missing genes” e.g. genes that are normally expressed in the tissue that are not present 422 

in the experiment when considering reference datasets.  423 

An additional factor contributing towards the divergence between RNA-Seq variants and 424 

variants extracted from DNA is the existence of genes in which only one parental allele is 425 

expressed (16,34). Previous work in this direction suggests that only 5% – 10% of human 426 

genes are subject to monoallelic gene expression (34), which could account for up to half 427 

of the missing recall in our results. Strategies to improve the overall recall will require then 428 

restructuring baseline variant calling workflows, specifically about the calling and filtering 429 
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criteria 430 

Although SmartRNASeqCaller allows to drastically reduce false positives from the 431 

analyzed data, similarly to other tools e.g. SNPiR, and approximations, our model may 432 

miss to filter variants due to systematic errors in the preceding workflows. Different 433 

strategies have been proposed to overcome those systematic errors including merging 434 

results from multiple samples to exclude novel recurrent rare variants (34). However, we 435 

believe that with a much wider and diverse training dataset, the occurrence of systematic 436 

errors can be strongly reduced. Moreover, our model can easily incorporate extra 437 

features that may characterize systematic errors e.g. DNA sequence surrounding each 438 

variant, in future developments. 439 

A go-to RNA-Seq reliable variant calling workflow like SmartRNASeqCaller can help 440 

filtering out genomic variants that may look promising from DNA data analysis but are 441 

either not expressed in the tissue of interest, or removed by post-transcriptional 442 

modifications, reducing the burden of false positive calls and enhancing the diagnosis 443 

potential of these analyses.  444 

Importantly, an additional benefit of reliable RNA-Seq variant calling would allow to detect 445 

post-transcriptional RNA-specific variants that are not present at genomic level but could 446 

have functional effects by themselves and/or jointly with nearby genomic variants. 447 

Accurate variant calling results can help investigating if RNA-Edit, generally not 448 

considered as source of disease, may act detrimentally towards the cell. It is theoretically 449 

possible to detect RNA-Edit events acting like germline variants for further annotation and 450 

interpretation for disease generation (35). 451 

 452 

Conclusions 453 

Despite the limitations of calling genomic variants from RNA-Seq, our work demonstrates 454 

improvements in the field of RNA-Seq variant calling to detect germline variants with high 455 
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precision and recall using appropriate machine learning tools. 456 

SmartRNASeqCaller can be a go-to tool for reliable variant calling from RNA-Seq, with 457 

the potential to enhance diagnostic yield and have better disease characterization in the 458 

tissue of interest. SmartRNASeqCaller allows to harness information from RNA-Seq and 459 

to generate a very precise calls set with good sensitivity. These characteristics are of 460 

paramount importance in clinical settings and can provide relevant benefits. RNA-Seq 461 

can be used to integrate DNA mutation information with tissue specific results providing 462 

an independent source of information to filter and validate disease-causing candidate 463 

variants. 464 

Furthermore it can palliate the absence of genomic data for specific samples, presenting 465 

a viable way to extract a reliable variant calls, and generate a new knowledge base of 466 

RNA mutations. This could allow RNA-Seq samples processing for tissues cohorts in 467 

clinic to extract a very precise and context-specific mutational landscape without requiring 468 

additional DNA sequencing. 469 

Finally, SmartRNASeqCaller can be used as an additional step of any existing variant 470 

calling workflow. This makes possible to even reanalyze existing cohorts with the goal of 471 

detecting germline variations without requiring expensive computation. 472 
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Availability of data and material 479 

     Project name:  SmartRNASeqCaller 480 

     Project home page: https://github.com/inab/SmartRNASeqCaller  481 

     Operating system(s):  Platform independent 482 

     Programming language: Python, Bash, Nextflow, R 483 

  Other requirements: GATK 3.6-0, Samtools, Bcftools, Bedtools,tabix,Python 2.7: 484 

(pysam, pandas), R 3.5.0 (caret, ranger). Optional: Docker 485 

     License: GNU GPLv3 486 

  487 

Datasets availability:  488 

- GIAB NA12878 data are available at : https://jimb.stanford.edu/giab-resources  489 

- Neuromics cohort: The data that support the findings of this study are available 490 

from Neuromics consortium but restrictions apply to the availability of these data, 491 

which were used under license for the current study, and so are not publicly 492 

available. Data are however available from the authors upon reasonable request 493 

and with permission of Neuromics consortium. https://rd-neuromics.eu/project-494 

welcome/  495 

- GTEx data: The data that support the findings of this study are available from 496 

GTEx Consortium but restrictions apply to the availability of these data, which were 497 

used under license for the current study, and so are not publicly available. Data 498 

are however available from the authors upon reasonable request and with 499 

permission of  GTEx consortium.  https://gtexportal.org/home/datasets  500 

List of abbreviations: 501 

RF: Random Forest 502 

WES: Whole Exome Sequencing 503 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 27, 2019. ; https://doi.org/10.1101/684993doi: bioRxiv preprint 

https://doi.org/10.1101/684993
http://creativecommons.org/licenses/by-nc/4.0/


 

21/33 

WGS: Whole Genome Sequencing 504 

GATK: Genome Analysis ToolKit 505 

GIAB : Genome In a Bottle 506 

GTEx : Genotype Tissue Expression 507 
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FIGURES 530 

Figure 1: Random forest model construction and iterative feature selection. 531 

 532 

A) Training performances for recursive feature elimination process. From 11 features on 533 

there is no apparent benefit in terms of classification accuracy. 534 

B) tSNE representation of the 20 features studied using the training data set. Features 535 

are color and shape coded to reflect if they are part of the final model, and if they are 536 

generic e.g. intrinsic and contextual properties, or GATK specific. All excluded features 537 
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are very close to at least one selected one, suggesting that their information content was 538 

redundant. 539 

C) Variant importance for the prediction model. Light gray darks represent generic 540 

annotations, Darker grey bars represent GATK specific annotations. 541 

 542 

Figure 2: Precision/Recall results on Neuromics and NA12878 GIAB samples 543 

 544 

A) Precision/recall results analysing two separated sets of 10 samples each from the 545 

same cohort from the Neuromics consortium, which are available at the RD-Connect 546 

platform. It compares the SmartRNASeqCaller application against the baseline GATK 547 

Best practices variant calling workflow, against an alternative naive filtering method 548 

depicted as Hard Filtering, and against SNPiR. We report the results for the training and 549 

validation samples for SmartRNASeqCaller separately to show that there is not sign of 550 

overfitting to the model. Moreover, we can observe how the strong improvement of 551 

precision at a moderate loss of recall behavior is conserved for the validation set of 552 

samples, which have not been used at all for generating the Random Forest model As 553 

expected, the precision/recall values for the samples in the training set are better than for 554 

the validation samples, but the overall effect is similar and robust on the 10 validation 555 

samples. Indeed, for the training data set SmartRNASeqCaller achieves +12.0% 556 
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precision, and 0.1% less recall while that for the validation data set it obtains a +9.3% 557 

precision and 0.9% less recall compared to the GATK best practices workflow 558 

(supplementary figure 1). 559 

B) Precision/recall results after analysing sample NA12878. It compares 560 

SmartRNASeqCaller against the baseline GATK best practices variant calling workflow, 561 

against an alternative naive filtering method depicted as Hard Filtering, and against 562 

“SNPiR”. We can observe how the strong improvement of precision at a moderate loss of 563 

recall behavior is conserved in this independent sample as well. Here too, the overall 564 

relationships among method are conserved, confirming the results previously obtained on 565 

the 20 samples from the Neuromics Consortium. 566 

Figure 3: Precision/Recall on 365 GTEx samples 567 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 27, 2019. ; https://doi.org/10.1101/684993doi: bioRxiv preprint 

https://doi.org/10.1101/684993
http://creativecommons.org/licenses/by-nc/4.0/


 

25/33 

 568 

A) Precision/recall results analysing 365 tissue samples from GTEx cohort. Samples are 569 

from five different tissues and 73 patients. Precision/recall plot comparing TopHat+GATK 570 

Best practices variant calling workflow against SmartRNASeqCaller applied on 571 

TopHat+GATK results. SmartRNASeqCaller shows a strong effect improving precision on 572 

average by 20.9%, reducing Recall by 3.2% on average. 573 

B) Boxplots comparing precision values for GATK best practices and 574 

SmarRNASeqCaller. We observe how samples from different tissues have different 575 

burden of false positives in GATK. After SmartRNASeqCaller application the differences 576 
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are less evident and the boxplots overlap across tissues. C) Boxplots comparing Recall 577 

values for GATK best practices and SmarRNASeqCaller. On average, the application of 578 

SmartRNASeqCaller reduces recall by 3.2%. The impact of SmartRNASeqCaller is to 579 

increase the overall precision, levelling the performance across tissues close to 90%, 580 

simultaneously keeping high levels of Recall (between 85 and 90%). 581 

Tables 582 

Table 1. Features considered to train the random forest model.  583 

 Name Selected? Extra information 

Intrinsic 

properties 

 Allele ratio Yes Alternative allele percentage 

Alt Len Yes Length of the alternative allele 

Genotype Yes Heterozygous or homozygous call 

DP Yes Depth of coverage 

Ref-Alt Len Yes 
Length difference of alternative and 

reference alleles 

RefLen No Length of reference allele 

Type No SNP / Indel 

Contextual 

features 

RNA-Edit  Yes 
Annotated as RNA-Edit event in 

databases 

RepMask Yes 
Included in RepeatMasker track from 

UCSC Genome Browser 
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Homopolymer Yes 
Is the variant within a homopolymeric 

region of genome (5 bases or more) 

SpliceSite No 

Is the variant within 4 nucleotide 

distances from an exon-intron 

junction 

GATK-specific 

Annotations 

BaseQRankSum Yes 

Compares the base qualities of the 

data supporting the reference allele 

with those supporting any alternate 

allele. 

ReadPosRankSum Yes 

Tests whether there is evidence of 

bias in the position of alleles within 

the reads that support them, between 

the reference and alternate alleles. 

LikelihoodRankSum Yes 

Compares the likelihood of reads to 

their best haplotype match, between 

reads that support the reference 

allele and those that support the 

alternate allele.  

ClippingRankSum No 

Tests whether the data supporting 

the reference allele shows more or 

less base clipping (hard clips) than 

those supporting the alternate allele. 

ExcessHet No Estimates excess heterozygosity in a 
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population of samples 

MLEAF No 

Maximum likelihood expectation 

(MLE) for the allele frequency for 

each ALT allele 

MLEAC No 

Maximum likelihood expectation 

(MLE) for the allele counts for each 

ALT allele 

MQ0 No 
Count of all reads that have MAPQ = 

0, it can be used for quality control; 

MQRankSum No 

Compares the mapping qualities of 

the reads supporting the reference 

allele with those supporting the 

alternate allele.  

This table contains a brief description of all features, as well as if they have been selected 584 

for the final SmartRNASeqCaller model. Features are split by type, and the selected ones 585 

are sorted by the relevant importance for the prediction model, as from Figure 1C.  586 

 587 

 588 

Table 2: Summary of F1 statistic on Neuromics samples         589 

F1 

measure 

Hard 

Filtering 
GATK 

SmartRNASeqCaller 

Train 

SmartRNASeqCaller 

Test 
SNPiR 

Mean 0.41 0.81 0.87 0.84 0.66 
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Median 0.41 0.81 0.87 0.85 0.68 

Standard 

Deviation 
0.04 0.02 0.01 0.03 0.08 

Minimum 0.33 0.73 0.85 0.75 0.43 

Maximum 0.48 0.83 0.88 0.86 0.70 

F1 measure(geometric mean of precision and recall on 20 samples from a cohort from 590 

the Neuromics Consortium. From this summary statistic we can infer how the baseline 591 

GATK variant calling workflow achieves better results than the simple hard filtering 592 

strategy, and the SNPiR algorithm as well. The application of SmartRNASeqCaller to the 593 

GATK best practices workflow, allows to further improve the F1 results. We split train and 594 

validation values for SmartRNASeqCaller, to avoid bias of the training samples on the 595 

overall result.  596 
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