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 24 
ABSTRACT 25 
  26 
The human brain has changed dramatically since humans diverged from our closest 27 
living relatives, chimpanzees and the other great apes1-5. However, the genetic and 28 
developmental programs underlying this divergence are not fully understood6-8. Here, 29 
we have analyzed stem cell-derived cerebral organoids using single-cell 30 
transcriptomics (scRNA-seq) and accessible chromatin profiling (scATAC-seq) to 31 
explore gene regulatory changes that are specific to humans. We first analyze cell 32 
composition and reconstruct differentiation trajectories over the entire course of 33 
human cerebral organoid development from pluripotency, through neuroectoderm 34 
and neuroepithelial stages, followed by divergence into neuronal fates within the 35 
dorsal and ventral forebrain, midbrain and hindbrain regions. We find that brain 36 
region composition varies in organoids from different iPSC lines, yet regional gene 37 
expression patterns are largely reproducible across individuals. We then analyze 38 
chimpanzee and macaque cerebral organoids and find that human neuronal 39 
development proceeds at a delayed pace relative to the other two primates. Through 40 
pseudotemporal alignment of differentiation paths, we identify human-specific gene 41 
expression resolved to distinct cell states along progenitor to neuron lineages in the 42 
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cortex. We find that chromatin accessibility is dynamic during cortex development, 43 
and identify instances of accessibility divergence between human and chimpanzee 44 
that correlate with human-specific gene expression and genetic change. Finally, we 45 
map human-specific expression in adult prefrontal cortex using single-nucleus RNA-46 
seq and find developmental differences that persist into adulthood, as well as cell 47 
state-specific changes that occur exclusively in the adult brain. Our data provide a 48 
temporal cell atlas of great ape forebrain development, and illuminate dynamic gene 49 
regulatory features that are unique to humans. 50 
  51 
  52 
MAIN TEXT 53 
Bulk genomic measurements in primary brain tissue from humans, chimpanzees and other 54 
apes have identified molecular features that appear specific to the human brain9-13. These 55 
studies have been limited to a snapshot of adult brain tissues, or average measurements 56 
across heterogeneous cell populations. Time course measurements of rhesus macaque 57 
brain development provide insights into developmental divergence in primates14, but it has 58 
been difficult to perform similar experiments in great apes due to the lack of available 59 
tissue. Cerebral organoids15 grown from human and other great ape induced pluripotent 60 
stem cells (iPSCs)16 offer the exciting potential to study the evolution of human brain 61 
development in controlled culture environments. Previously, we and others have shown 62 
that human and chimpanzee cerebral organoids recapitulate many aspects of in vivo cortex 63 
development17-22. In particular, low-throughput single-cell transcriptomics on cortical-like 64 
regions within human and chimpanzee cerebral organoids revealed that gene expression 65 
patterns of early fetal neocortex development were largely recapitulated in the 66 
organoids17,19, and comparative analyses revealed changes between human and 67 
chimpanzee21. Higher throughput scRNA-seq methodologies enable genomic dissection of 68 
individual organoids with the potential to study gene expression landscapes across 69 
multiple brain regions23,24 and from multiple individuals. Here, we set out to use high-70 
throughput single-cell RNA-seq, together with accessible chromatin profiling, to 71 
understand human cerebral organoid development from pluripotency, and to explore how 72 
human cortical gene expression programs have diverged from the other great apes. We 73 
further analyze adult prefrontal cortex tissue using single-nucleus RNA-Seq to reveal the 74 
potential and limits of cerebral organoids to study human-specific expression patterns 75 
observed in the mature brain.  76 
         We first used droplet-based scRNA-seq (10X genomics) to profile cell composition 77 
across a time course of human organoid development (pluripotency: 0 days (d); embryoid 78 
body: 4d; neuroectoderm: 10d; neuroepithelium: 15d; organoid stages: 1, 2, and 4 months 79 
(m)) from two human pluripotent stem cell lines (H9, embryonic stem cell (ESC), 23,226 80 
cells; 409b2, iPSC, 20,272 cells; Fig. 1a,b; Extended Data Fig. 1). Marker gene analysis of 81 
two-dimensional t-SNE projections of the data from each time point separately, as well as 82 
all time points combined, revealed distinct progenitor, neuronal, astrocyte, and 83 
mesenchymal populations that emerged across the time course, with intermixing of iPSC 84 
and ESC-derived cells (Fig. 1c; Extended Data Fig. 2). We generated pseudocells by 85 
combining nearest neighbors in the high dimension gene expression space, which resulted 86 
in a more robust transcript estimation (on average ~6,000 genes detected per pseudocell 87 
compared to ~3,000 genes per single cell). We then constructed a force-directed k-nearest 88 
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neighbors graph25 to visualize the temporal progression of the data (Fig. 1d, Extended Data 89 
Fig. 3). We track a progression through pluripotent, neuroectodermal, and neuroepithelial 90 
stem cell states during the first 15 days of differentiation. By 1 month, cells diversify into 91 
neural progenitors from multiple brain regions including the forebrain (dorsal and ventral 92 
telencephalon, diencephalon), midbrain (mesencephalon), and hindbrain 93 
(rhombencephalon). A small subpopulation resembling retinal progenitors of the developing 94 
eye field is also present, but these cells were only detected in an iPSC 409b2-derived 95 
organoid. In addition, a non-neuronal mesenchymal population appears from both cell lines 96 
early in the differentiation time course. By 2 months, excitatory and inhibitory neuronal fates 97 
have differentiated from progenitors of multiple brain regions, and by 4 months astrocytes 98 
have emerged (Fig. 1e). These observations were based on the supervised analysis of 99 
known marker genes and inspection of in situ patterns from the Allen Developing Mouse 100 
Brain Atlas, comparisons to bulk RNA-seq data from microdissected regions of the 101 
developing human brain (BrainSpan data26) and single-cell reference maps of cell 102 
prototypes from the dorsal and ventral telencephalon27, as well as the analysis of spliced 103 
and unspliced transcripts using RNA velocity28 (Fig. 1e,f; Extended Data Fig. 3-4). Together, 104 
this data provides a temporally and pseudotemporally resolved gene expression atlas of 105 
the earliest stages of human brain development. 106 
 We next analyzed the reproducibility of these gene expression patterns across PSC 107 
lines from different human individuals (Fig. 2a; Extended Data Fig. 5). In addition to the 2 108 
lines (iPSC 409b2 and ESC H9) described above, we generated single-cell transcriptomic 109 
data from 2 month old organoids from 5 additional iPSC lines (Sc102a1, 9,525 cells; Wibj2, 110 
13,356; Kucg2, 4,395; Hoik1, 2,660; Sojd3, 3,830), resulting in a total of 62,305 cells from 111 
20 organoids. We identified cells on the neuronal lineage (49,153 cells), for which we 112 
constructed pseudocells as described above. We then quantified the similarity (Pearson 113 
correlation) of each pseudocell transcriptome to each time point and brain region bulk 114 
RNA-seq reference transcriptome from the developing human brain (BrainSpan29). We used 115 
these similarities to calculate a reference similarity spectrum (RSS) score for each 116 
pseudocell, used SPRING to reconstruct the relationships between pseudocells based on 117 
RSS, and projected all single cells to the SPRING-based pseudocell embedding. This 118 
analysis revealed neuronal differentiation trajectories representing ventral and dorsal 119 
telencephalon, as well as distinct populations of cortical excitatory (GLI3, EOMES, 120 
NEUROD6), ventral telencephalon inhibitory (DLX1, SOX6, GAD1/2), diencephalon 121 
excitatory, diencephalon inhibitory (with Cajal-Retzius cell signatures), mesen- (or midbrain) 122 
and rhombencephalon (hindbrain) excitatory, and mesen- and rhombencephalon inhibitory 123 
neurons (Fig. 2b-f). Notably, the use of RSS as input for the SPRING analysis instead of the 124 
transcriptomes resulted in a well-integrated projection of the data from all human 125 
individuals without the need for further integration approaches (Extended Data Fig. 5). Cell 126 
annotations were also confirmed through comparisons to voxel maps of in situ 127 
hybridization patterns from the developing mouse brain (Extended Data Fig. 5). Molecular 128 
signatures of the annotated cell types match with those in published scRNA-seq data sets 129 
of human cerebral organoids and fetal human brain tissues (Extended Data Fig. 6)21,27. We 130 
found that each iPSC line contributed cells to multiple differentiation trajectories, however 131 
the proportions of cells in each trajectory varied across organoid and iPSC line (Fig. 2d; 132 
Extended Data Fig. 5). For example, over 90% of cells from the line Kucg2 were on the 133 
cortical excitatory (dorsal) trajectory in each of the 3 organoids, whereas Hoik1-derived 134 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 27, 2019. ; https://doi.org/10.1101/685057doi: bioRxiv preprint 

https://doi.org/10.1101/685057
http://creativecommons.org/licenses/by-nc-nd/4.0/


 4 

organoids predominantly contained cells from non-telencephalic regions. This tendency of 135 
iPSC lines to form different compendiums of brain regions and cell types is consistent with 136 
prior work in the literature23,30. Nonetheless, the brain region-specific gene expression 137 
patterns across the lines were highly correlated (median of Pearson correlation of 138 
pseudotemporally dependent genes: 0.91 and 0.90 for dorsal and ventral trajectories, 139 
respectively) and cells from each region clustered together (Fig. 2g-i). This data suggests 140 
that even though there is variation in the relative proportion of cell types that form in each 141 
organoid, the gene expression patterns within each brain region are largely reproduced 142 
across diverse human pluripotent stem cell lines, thus providing a baseline for identifying 143 
human-specific gene expression.  144 
 We next used chimpanzee organoids to identify features that differ from early 145 
human brain development. As for humans, we generated an atlas of gene expression 146 
across chimpanzee organoid development from pluripotency to 4 months in culture (Fig. 147 
3a, Extended Data Fig. 7). Similar to human, chimpanzee organoids were morphologically 148 
complex with cortical-like regions containing apically located PAX6-positive progenitor 149 
cells and basally located neurons (Fig. 3b), with intermediates in between19. From the 150 
scRNA-seq data, we identified dorsal and ventral telencephalon differentiation trajectories, 151 
as well as rhombencephalon cell populations in chimpanzee organoids with a graph 152 
topology and gene expression patterns that were very similar to those observed in human 153 
(Fig. 3c-e). One difference was that upper and deep layer neurons in these chimpanzee 154 
organoids appeared to diversify and mature at an earlier stage along the cortical excitatory 155 
trajectory (Extended Data Fig. 8). We used a time warping algorithm to align the iPSC-to-156 
cortical excitatory neuron pseudotimes from human and chimpanzee and observed that the 157 
later time points in chimpanzee failed to map to a human pseudocell counterpart (Fig. 3f,g). 158 
This observation suggested that neurons within chimpanzee organoid cortical regions may 159 
develop at a faster rate than in humans. In support of this observation we found that human 160 
dorsal telencephalon pseudocells projected to earlier parts of the developmental trajectory 161 
reconstructed in fetal human brain tissues27 than the chimp counterpart (Fig. 3h). In 162 
addition, we found that neuron maturation scores based on the cumulative expression of 163 
neuron projection, synapse assembly, and neurotransmitter secretion genes increased to 164 
higher levels in chimpanzee relative to human neurons over the time course (Fig. 3i, 165 
Extended Data Fig. 8). We also observed significantly more astrocytes relative to the 166 
number of radial glia (RG) cells in chimpanzee in 2- and 4-month organoids compared to 167 
humans (Fig. 3j). To determine the heterogeneity in organoid maturation across iPSC lines, 168 
we analyzed single-cell RNA-seq data (Smart-seq2) from additional human (15 individuals, 169 
52 organoids) and chimpanzee (11 individuals, 38 organoids) organoids19,21. Indeed, we 170 
found that there is heterogeneity in terms of upper and deep layer bifurcation timing that 171 
could be dependent on iPSC lines or organoid protocols. However, we found significant 172 
consistency across lines, organoids, and protocols in our assessment of neuron maturation 173 
based on gene expression (Extended Data Fig. 8). To determine if this difference in 174 
maturation timing is specific to humans, we generated cerebral organoids from macaque 175 
ESCs and analyzed 2 and 4 month organoids using single-cell transcriptomics (Extended 176 
Data Fig. 9). We found that upper and deep layer neurons diverge as early as 2 months, 177 
and that neurons mature over an even shorter time frame than in chimpanzees. Also, more 178 
upper layer neurons were detected in fetal macaque brain tissues compared with fetal 179 
human brain tissues with similar ages (Extended Data Fig. 8). This is consistent with 180 
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expectations from previous reports comparing human and macaque brain development in 181 
vivo14 and in vitro 2D cultures18,31. Together, this data suggests that delayed maturation of the 182 
human brain11,29,32,33 can be traced back to very early stages of brain development. 183 
 We next wanted to detect gene expression changes in the developing cortex that 184 
have occurred since humans diverged with chimpanzees (Fig. 4a). We first inspected the 185 
expression patterns of human genes resulting from duplication or rearrangement that do 186 
not exist in other apes (Extended Data Fig. 10)34-37. We found that 22 of these 41 genes are 187 
detected in our human cerebral organoid data, and four of them (ARHGAP11B, FAM72B, 188 
FAM72C, FAM72D) are highly-specific to G2M phase progenitors of the dorsal and ventral 189 
telencephalon (Extended Data Fig. 10). ARHGAP11B has previously been shown to 190 
regulate basal radial glia cell proliferation and self-renewal38 and our data highlights the 191 
specificity of expression to a distinct phase of the cell cycle, and shows that expression is 192 
highly specific to RG progenitors along the time course of cortex development.  193 
 To identify quantitative gene expression differences between the primates, we first 194 
aligned all human, chimpanzee and macaque reads to a consensus genome and then 195 
aligned pseudotimes of dorsal telencephalon progenitor to early-born deep layer neuron 196 
trajectory between the species (Fig. 4b; Extended Data Fig. 11). We searched for genes 197 
that vary in expression along the pseudotime in each species, and find that 76.6% of these 198 
pseudotemporally dynamic genes have a conserved expression pattern. They represent 199 
ancestral gene regulatory programs that have been preserved in the primate developing 200 
cortex. We then searched for genes that are differentially expressed specifically on the 201 
human branch, and identified 98 genes, 96 of which clustered into seven different 202 
pseudotemporal patterns (Fig. 4c,d). Notably, clusters 1, 2, and 3 were enriched in human 203 
RGs, IPs, and neurons, respectively, and projections onto the entire human and 204 
chimpanzee cortical differentiation trajectory from pluripotency revealed specificity of 205 
differential expression to these cortical excitatory cell populations (Fig. 4e,f). Surprisingly, 206 
we observed that most of the human-specific deviations from chimpanzee and macaque 207 
were expression gains, rather than the loss of expression, in humans (Fig. 4g). This gain of 208 
expression skew was also observed for chimpanzee-specific changes relative to human 209 
and macaque (Extended Data Fig. 11). Our interpretation is that it could be more 210 
deleterious to lose a highly conserved gene expression pattern than it is to gain the 211 
expression of a new gene. Genes with gain of human-specific expression have no specific 212 
gene ontology enrichment, but are predicted to be involved in diverse cell biological 213 
processes including RG proliferation, neuron migration, neurite formation and are localized 214 
to different components of maturing neurons including axons, dendrites, and synapses 215 
(Fig. 4h). When comparing our results to previously published datasets generated using 216 
different single-cell RNA-seq methods (Fluidigm C1, Smart-seq2), as well as to human and 217 
macaque fetal data, we find strong overlap between the datasets (Extended Data Fig. 11). 218 
We also performed a similar comparison between human and chimp using cells of ventral 219 
telencephalon identity, and find 92 human-chimp DE genes, with 17% being distinct from 220 
what was observed in the cortex (Extended Data Fig. 12). Together, this analysis identifies 221 
human-specific gene expression changes that can be specific to certain cell states within 222 
the developing human forebrain. 223 
 To identify potential mechanisms that could underlie the human-specific gain and 224 
loss of gene expression in the cortex, we performed bulk and single-cell accessible 225 
chromatin profiling (scATAC-seq, Fluidigm C1) along the differentiation time course from 226 
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pluripotency to 4 month organoids in human and chimpanzee (Fig. 5a). For the organoid 227 
time points, we enriched for dorsal telencephalon by using microdissected cortical regions 228 
as input for scATAC-seq (Extended Data Fig. 13). Aggregating the data from each single 229 
cell revealed a strong signal-to-noise ratio, and the organoid data was highly similar to bulk 230 
fetal brain DNase hypersensitivity39 (Fig. 5b), and overlapped forebrain regulatory regions 231 
(Extended Data Fig. 13). Accessible regions were scanned for transcription factor binding 232 
motifs and k-mers (7 nucleotides in length) to identify features that differ among cells and 233 
correlate with accessibility variation40. These features were used to visualize cell similarity in 234 
a two-dimensional t-SNE projection, which separated iPS, EB, neuroectodermal, 235 
neuroepithelial, cortical neural progenitor (NPC) and neuronal cells in both human and 236 
chimpanzee (Fig. 5c; Extended data Fig. 13). We then ordered cells in pseudotime using 237 
diffusion maps, allowing us to monitor transcription factor binding motifs and chromatin 238 
accessibility dynamically over the differentiation path from pluripotency to cortical neurons 239 
(Fig. 5d; Extended Data Fig. 13-14). In this way, we found that the majority of genes not 240 
expressed in cerebral organoids have inaccessible promoters in organoids (Extended Data 241 
Fig. 13). 242 
 We next searched for differential accessibility (DA) between human and chimpanzee 243 
cortical NPCs and neurons. We identified 8,099 peaks (7.4% of all accessible peaks) that 244 
gained accessibility in humans relative to chimpanzee, whereas 9,836 peaks (9% of all 245 
accessible peaks) lost accessibility (Fig. 5e). Some of these peaks (2,219, 12.4% of DA 246 
peaks) are DA in both NPCs and neurons, however most are specific to either NPCs (9,659, 247 
53.8% of DA peaks) or neurons (6,057, 33.8% of DA peaks) and are enriched for various 248 
biological processes relative to all accessible organoid peaks (Fig. 5f). Notably, the majority 249 
of DA regions are specifically accessible in organoids relative to the earlier developmental 250 
stages (Fig. 5g) and many have been shown to drive reporter expression in the mouse 251 
developing forebrain (Extended Data Fig. 15)41. Consistent with other analyses of gene 252 
regulatory evolution42,43, most DA peaks are located in intergenic or intronic non-protein 253 
coding regions of the genome (Fig. 5h). The majority of genes that are differentially 254 
expressed between human and chimpanzee along the dorsal telencephalon trajectory have 255 
one or more human-chimp DA peaks nearby (63% of differentially expressed protein-256 
coding genes, Fig. 5h). We indeed found that genes with differential expression between 257 
human and chimpanzee were significantly more likely to have a nearby differentially 258 
accessible region than genes that are not differentially expressed between the species 259 
(Extended Data Fig. 15, Kolmogorov–Smirnov test, p<0.05). DA peaks are also significantly 260 
enriched for single nucleotide changes (SNCs) that are fixed in all humans and distinct from 261 
chimpanzee and other primates44 (Fig. 5i). Furthermore, these SNCs generate new or 262 
disrupt transcription factor binding sites for TFs that are expressed in organoids (Extended 263 
Data Fig. 15).  264 

We annotated organoid-specific peaks that are DA between humans and 265 
chimpanzees and are nearby differentially expressed genes with various evolutionary 266 
signatures (Fig. 5j). This analysis identified potential regulatory regions that have human-267 
derived fixed SNCs44, have undergone accelerated evolution in humans45-47, or overlap 268 
conserved regions that have been deleted in humans48. For instance, we identified 62 269 
human accelerated regions that overlap DA peaks (32 in human DA peaks, 30 in chimp DA 270 
peaks), with one of these sites being nearby a gene with human-specific expression. In this 271 
case, the potential regulatory region is 244 Kb away from cadherin 7 (CDH7), a gene with 272 
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higher expression specifically in human cortical neurons, and has increased accessibility in 273 
human neurons relative to chimpanzee and macaque (Fig. 5k). We also find DA regions 274 
nearby two genes, Ly6/PLAUR domain-containing protein 1 (LYPD1) and Ras-related C3 275 
botulinum toxin substrate 1 (RAC1), that have human-specific expression in NPCs and 276 
neurons, respectively. LYPD1 is involved in neurotransmitter receptor-binding and anxiety-277 
related behaviors49 and RAC1 is a GTPase involved in diverse processes including glucose 278 
uptake and cytoskeletal reorganization and genetic variants in this gene can lead to micro- 279 
or macrocephaly50 (Extended Data Fig. 15). In addition, we identify 22 regions that are 280 
accessible in chimpanzee NPCs or neurons that are highly conserved in mammals, but the 281 
DNA has been deleted in humans (so-called human conserved deletion, hCONDELs)48 and 282 
1 of these are located nearby a DE gene (FADS1, Supplementary Table 10).  283 
 Finally, we wanted to know if the human-specific gene expression patterns 284 
observed in the developing brain were stage-specific or if they persist into adulthood. We 285 
generated single-nucleus RNA-Seq data from postmortem prefrontal cortex tissue of three 286 
human, chimpanzee/bonobo and macaque individuals (50,035 in human, 33,847 in 287 
chimp/bonobo and 50,403 in macaque). We obtain spatial information by isolating nuclei 288 
from sequential sections sliced from basal to apical positions, which allows us to link cell-289 
type specific differences to cortical layering (Fig. 6a)9. By integrating the species using 290 
canonical correlation analysis and clustering 51, we recover expected cell classes such as 291 
excitatory and inhibitory neurons, astrocytes, oligodendrocytes, microglia and endothelial 292 
cells (Fig 6b-d). For our purposes, we focused on these broad cell classifications but note 293 
that subtypes could be more finely resolved and characterized (Extended Data Fig. 16). 294 
Different cell classes and cell types show distinct distribution along layers (Extended Data 295 
Fig. 16), which is consistent with previous reports9. Notably, we find that the portion of the 296 
transcriptome that is specific to neurons is more highly conserved based on sequence 297 
constraint than that of other cell types (Wilcoxon’s rank sum test, P<0.001, Fig 6e). Indeed, 298 
neuronal markers also show higher conservation than genes with higher expression in 299 
earlier pluripotent and progenitor states (Extended Data Fig. 16). Inhibitory neuron markers 300 
show slightly higher conservation than excitatory neuron markers in both adult brain and 301 
organoids (Fig. 6e and Extended Data Fig. 16), and inhibitory neurons in the adult cortex 302 
and organoid ventral telencephalon had fewer human-specific DE genes in comparison 303 
with excitatory neurons in the adult cortex and organoid dorsal telencephalon trajectory, 304 
respectively. We also find that astrocytes have slightly more differential expression than 305 
neurons or oligodendrocytes in adults (Fig. 6e,f; Extended Data Fig. 16). Together, these 306 
observations suggest different levels of evolutionary constraint on specific cell types in the 307 
cortex.  308 
 A substantial fraction of the genes expressed in dorsal and ventral telencephalic 309 
organoid neurons are also detected in excitatory and inhibitory neurons in the adult cortex, 310 
respectively (Fig. 6g,h). Notably, we find that 53 and 13 genes are commonly detected as 311 
DE in the organoid and adult excitatory and inhibitory neurons, respectively, compared to 312 
hundreds of genes that are specifically DE in the adult stage (Fig. 6i). Genes with human-313 
chimp DE detected ubiquitously in the organoid dorsal telencephalon show stronger 314 
consistency with DE in adult excitatory neurons than genes with DE that is specific to either 315 
organoid NPCs or neurons, with NPC-specific DE genes having the weakest consistency in 316 
adult (Fig. 6j). In addition, DE genes restricted to organoids or adult show higher expression 317 
levels at the stage where DE is detected (Extended Data Fig. 16). There are interesting 318 
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examples of genes with human-specific DE in adult cell classes (Fig. 6k,l), including genes 319 
that are DE in developing and adult neurons, such as COL6A1 which has been shown to 320 
have a protective role limiting autophagy and apoptosis in aging neurons52 and RIC3 which 321 
regulates the number and maturation of acetylcholine-gated ion channels in neurons53. We 322 
also find genes with human-specific DE in excitatory neurons showing significant layer 323 
specificity (Fig. 6l), suggesting their functions in specific subpopulations of cells at specific 324 
layer structures. Together, these analyses suggest that, with some exceptions, cortical cell 325 
type-specific transcriptome differences between human and chimpanzee are dynamic and 326 
linked to developmental stages. 327 
 To summarize, we identified patterns of dynamic gene expression and chromatin 328 
accessibility differences between human and chimpanzee cerebral organoid development 329 
from pluripotency through neuroepithelium, into multiple regions of the ape brain. We 330 
provide strong evidence that despite differences in brain region composition, gene 331 
expression patterns in the organoid forebrain are largely reproducible across iPSC lines 332 
from different individuals. We find that delayed maturation of the human brain begins 333 
during the very early stages of brain development. Moreover, we resolve differential gene 334 
expression to dynamic cell states upon the ontogenetic path from pluripotency to cortical 335 
neurons, and identify regulatory regions that could underlie human-specific innovations in 336 
gene expression. Finally, we map human-specific gene expression to cell types in the 337 
prefrontal cortex, and identify gene expression patterns that are specific to the adult brain, 338 
as well as patterns that can already be detected during development. The data generated 339 
in this study are available for exploration via a public interactive browser 340 
(https://bioinf.eva.mpg.de/shiny/sample-apps/scApeX/). Taken altogether, these data 341 
illuminate features of individual cell states that are uniquely human, and provides an 342 
extensive resource to guide exploration into the gene regulatory mechanisms that 343 
distinguish the developing human and chimpanzee brains. 344 
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FIGURES 375 
  376 

 377 

 378 
Figure 1: Reconstructing human cerebral organoid differentiation from pluripotency. 379 
(a) scRNA-seq was performed on iPSC- and ESC-derived cells at different time points 380 
during cerebral organoid differentiation from pluripotency. (b) Immunohistochemical 381 
staining for PAX6 (green) and BCL11B/CTIP2 (pink) of a 63 day human organoid from iPSC 382 
line 409b2 with a zoom into a cortical-like region (scale bars 100 µm). (c) All time points 383 
were combined and cell heterogeneity was assessed using t-distributed stochastic 384 
neighbor embedding (tSNE). See Extended Data Fig. 2. (d) Pseudocells were constructed 385 
by pooling nearest neighbors and the entire differentiation trajectory was reconstructed 386 
using SPRING25. Pseudocells are colored by time point or cell line (inset). (e) Tracking 387 
unspliced and spliced transcripts using RNA velocity28 supports differentiation of progenitor 388 
cells into distinct regions of the developing human brain. (f) Left, magenta colored, SPRING 389 
plot colored by reference similarity spectrum (RSS) to bulk RNA-seq data generated from 390 
diverse brain regions at different time points (Allen Brain Atlas). Shown are the tissues and 391 
time points with maximum correlation. Right, cyan-blue colored, SPRING plot colored by 392 
marker gene expression.  393 
  394 
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 395 
Figure 2: Assessing the reproducibility of gene expression patterns in the human 396 
organoid forebrain from iPSC lines from different individuals. (a) To assess the 397 
reproducibility of gene expression patterns in organoids, scRNA-seq was performed on 2-398 
month-old human organoids from 6 iPSC lines and 1 ESC (H9) line. (b-c) SPRING 399 
reconstruction based on the reference similarity spectrum (RSS) of organoid cells with plots 400 
colored by (b) cell types and by (c) line. (d) Proportion of cells per organoid that are within 401 
the dorsal telencephalon, ventral telencephalon, or diencephalon, mesencephalon and 402 
rhombencephalon neuronal branches. The data shows that there is variation in the types of 403 
cells that form in each organoid. (e) Pseudotime along the dorsal telencephalon and ventral 404 
telencephalon branch. (f) Boxplots (interquartile range with minimum and maximum, outliers 405 
removed) showing expression of marker genes for major neuron populations that emerge in 406 
the human cerebral organoids. CGE/MGE, caudal/medial ganglionic eminence; LGE, lateral 407 
ganglionic eminence; Dien. ex., diencephalon excitatory; Dien. in., diencephalon inhibitory; 408 
Mesen. Rhom. ex., Mesencephalon / rhombencephalon excitatory; Mesen. Rhom. in., 409 
Mesencephalon / rhombencephalon inhibitory. (g) Pseudotemporal expression patterns of 410 
neuronal differentiation markers for the dorsal (cortex, upper) and ventral telencephalon 411 
trajectories (lower) for each line. (h) Correlations of pseudotime-dependent gene expression 412 
patterns between cells within dorsal (upper) or ventral (middle) telencephalon branches, 413 
and between dorsal and ventral cells from the same line (lower). (i) Dendrogram based on 414 
pairwise correlations between cells from different lines/branches/stages based on 415 
pseudotime-dependent gene expression patterns. The clustering shows that differences 416 
between progenitors and neurons, as well as the variation between those cell types in 417 
different brain regions, are larger than variation between cell lines. 418 
 419 
 420 
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 421 
 422 

Figure 3: Chimpanzee cerebral organoid reconstructions reveal heterochrony in early 423 
cortex development. (a) scRNA-seq was performed on chimpanzee iPSC-derived cells at 424 
different time points during cerebral organoid differentiation from pluripotency. (b) 425 
Immunohistochemical staining for PAX6 (green) and BCL11B/CTIP2 (pink) of a 63-day 426 
chimpanzee organoid from iPSC line SandraA with a zoom into a cortical-like region (scale 427 
bars 100 µm). (c) All time points were combined and cell heterogeneity was assessed using 428 
tSNE (Extended Data Fig. 7). Pseudocells were constructed by pooling nearest neighbors 429 
and the entire differentiation trajectory was reconstructed using SPRING. Cells and 430 
pseudocells are colored by time point. (d) SPRING plots of human (left) and chimpanzee 431 
(right), colored by stage and lineage pseudotimes. (e) Marker gene expression along 432 
pseudotime trajectories in chimpanzee (upper) and human (lower). (f) Alignment of human 433 
and chimpanzee pseudotimes after combining pseudocells from the early stages and the 434 
dorsal forebrain lineage. The later chimpanzee pseudotime points fail to align with human 435 
pseudocells. (g) SPRING plots of human (upper) and chimpanzee (lower) organoid 436 
development, colored by the aligned pseudotimes with chimpanzee pseudotime as the 437 
template. (h) Projection of human and chimpanzee organoid cells to human fetal brain data 438 
reveals higher similarity of chimpanzee organoid cells to later stages of development 439 
compared to human organoid cells. (i) Boxplots (interquartile range with minimum and 440 
maximum, outliers removed) showing neuron projection scores defined as the sum 441 
expression of genes related to neuron projection in human and chimpanzee along the 442 
unaligned cortical pseudotimes. (j) Number of astrocytes captured by scRNA-seq in 443 
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organoids at different time points, normalized by the number of radial glia for each 444 
respective time point.   445 
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 446 

 447 
 448 
Figure 4: Identification of human-specific changes in corticogenic gene expression. 449 
(a) scRNA-seq was performed on 2-4 month-old organoids from human, chimpanzee and 450 
macaque lines. Reads were aligned to a consensus genome, to analyze human-specific 451 
gene expression. (b) A schematic of time warping alignment of pseudotimes of the cortical 452 
progenitor to deeper layer neuron trajectories in human, chimpanzee and macaque in order 453 
to perform differential gene expression analysis. (c) Differential expression analysis of the 454 
aligned data reveals 7 clusters of genes with distinct human-specific pseudotemporal 455 
expression patterns. Average differential expressions of cluster genes are plotted over 456 
pseudotime for organoid dorsal forebrain pseudocells with 50% and 95% confidence 457 
intervals shown in dark and light grey, respectively. The number of genes per cluster are 458 
shown in parenthesis. (d) Pseudotemporal expression pattern of exemplary genes with 459 
human-specific expression changes for each of the 7 clusters, comparing human (pink), 460 
chimpanzee (green) and macaque (blue) expression. (e) Average human-chimpanzee 461 
differential expression patterns along the trajectory from pluripotent cells to cortical 462 
neurons shown for the 7 clusters of genes with human-specific pseudotemporal expression 463 
changes in organoid cells. (f) Proportions of genes with pseudotime-dependent (dynamic, 464 
dark) or constitutive expression patterns (grey), in all (inner), expression-controlled 465 
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background (middle) and human-specific differentially expressed (outer) genes. (g) Number 466 
of differentially expressed genes in a direct human vs. chimpanzee (left) or human vs. 467 
chimpanzee and macaque (right) comparison grouped by gain or loss of expression in 468 
humans. A gain of expression specifically in humans is more likely than a loss of expression 469 
pattern conserved in all primates. (h) Functional annotations of genes with human-specific 470 
expression patterns based on GO annotations related to brain development and 471 
neurogenesis. Only the human-specific DE genes with consistent human-chimpanzee or 472 
human-macaque DE detected in at least one of the three C1-based scRNA-seq data sets 473 
are shown (Extended Data Fig. 11). Human-specific duplicated genes are marked in red. 474 
  475 
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 476 
 477 
Figure 5: Single-cell ATAC-seq reveals dynamics of chromatin accessibility during 478 
cortex development. (a) scATAC-seq was performed at different time points of human and 479 
chimpanzee cerebral organoid development from pluripotency to 4 month-old organoids. 480 
For the organoid time points, microdissected cortical regions were used as input for 481 
scATAC-seq. (b) Bulk, single-cell and aggregated (Agg.) single-cell ATAC-seq profiles from 482 
2-to-4-month-old human and chimpanzee organoids at a representative locus. Data from 483 
fetal brain DNase hypersensitivity is shown as a comparison. (c) t-SNE projections of 484 
features that differ in accessibility among cells within scATAC-seq peaks per cell40 from 485 
human (left) and chimpanzee (right) with cells color coded by time point, and 2-4 month-old 486 
organoid cells colored by cell state (NPC, neuron). (d) Heatmaps showing binding motif 487 
enrichment for selected transcription factors (rows) in all cells (columns) ordered in 488 
pseudotime for human (left) and chimpanzee (right). Pseudotime order was constructed 489 
using diffusion maps (Extended Data Figure 14). (e) Scaled differential accessibility (DA) 490 
between human and chimpanzee NPCs (y axis) and neurons (x axis). Positive values 491 
represent higher accessibility in humans. Points represent DA peaks and are color coded 492 
by their cell state specificity: NPC (gold), neurons (light red), or DA in both (dark red). (f) 493 
Barplot showing the enrichment of selected biological process gene ontology (GO) terms 494 
associated with DA peaks between human and chimpanzee in NPCs (gold) or neurons (light 495 
red) relative to all accessible organoid peaks. Gray dots next to a GO term name indicate 496 
significantly enriched terms after multiple hypothesis test correction 497 
(foreground/background hypergeometric test, FDR q<0.05 and 2-fold region-based 498 
enrichment). (g) Top, barplot showing the percentage of human-chimp organoid DA peaks 499 
that are accessible only at the cerebral organoid stage (“organoid-specific”) or accessible 500 
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at the cerebral organoid stage and an earlier stage of differentiation (“not-specific”). 501 
Bottom, barplot showing the percentage of human cells from each cell state that are 502 
accessible at DA peaks. (h) A DA peak was linked to the nearest expressed gene if it fell 503 
within 1 Mb of that gene’s transcription start site. Top, stacked barplot shows the number 504 
of DA peaks located in exonic (Ex), promoter (Pr), intronic (In), or intergenic (Intergen) 505 
regions. Middle, barplot shows the percentage of DE genes linked with DA peaks. Bottom, 506 
stacked barplot shows the proportion of DE genes with a DA peak at the promoter region 507 
(Prom. DA), distal to the promoter region (Distal DA), at both promoter and distal regions 508 
(Both), or no linked DA peak. (i) Comparison of the number of single nucleotide changes 509 
(SNCs) derived and fixed in all humans overlapping DA peaks and non-DA peaks (randomly 510 
sampled to match the number and average accessibility of DA peaks). (j) DA peaks are 511 
annotated as accessible in human or chimp (first bifurcation: up, more accessible in human; 512 
down, more accessible in chimp), linked to a differentially expressed gene between human 513 
and chimp (second bifurcation: up, yes; down, no), or having specific expression in 514 
organoids relative to other time points during organoid development (third bifurcation: up, 515 
yes; down: no). On the right, sites are highlighted that show evolutionary signatures 516 
including fixed SNCs (blue), selective sweeps (pink) or human accelerated regions (HAR, 517 
purple). (k) Cadherin 7 (CDH7) has human-specific expression that is found in human 518 
neurons and has a nearby DA site that overlaps fixed SNCs and a HAR. Signal tracks are 519 
shown for human bulk organoid ATAC-seq (bulk), as well as aggregated scATAC-seq 520 
organoid cells (sc Agg.), and aggregated scATAC-seq for NPCs and neurons, respectively, 521 
for human and chimpanzee. Aggregated scATAC-seq data from macaque organoids are 522 
also shown. The bottom-right depicts a gene correlation network from the human cerebral 523 
organoid time course scRNA-seq data with CDH7 highlighted. 524 
 525 
  526 
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 527 
Figure 6: Single-nucleus RNA-Seq of adult prefrontal cortex reveals shared and 528 
distinct patterns of gene expression change from development to adulthood. (a) 529 
Single-nucleus RNA-Seq was performed on sliced tissue cubes dissected from adult frozen 530 
prefrontal cortex tissue from human, chimpanzee/bonobo and macaque. (b) tSNE 531 
clustering on CCA integrated data shows different subclasses of major cell classes present 532 
in the different species. (c) Feature plots show expression of canonical marker genes for 533 
major cell classes based on non-integrated expression values. (d) Average cluster 534 
expression of canonical cell type markers separated by species reveal similar patterns of 535 
marker gene expression for seven cell classes across species. (e) Genomic conservation 536 
based on average phastCon scores of markers for seven cell classes (***: two-sided 537 
Wilcoxon’s rank sum test, P<0.0001). (f) Number of genes with human-specific differential 538 
expression in each of four major cell classes. Fractions with human-specific gain of 539 
expression are shown in dark, and ones with human-specific loss of expression are shown 540 
in light. (g) Detection rate in adult tissue of genes being differentially expressed between 541 
NPCs and neurons in organoids. (h) Consistency of genes differing between dorsal and 542 
ventral forebrain neurons from organoids and excitatory and inhibitory neurons in adult 543 
tissue. (i) Overlap of genes with human-chimpanzee differential expression detected in 544 
adult neurons and organoid trajectories. (j) Comparison of human-chimpanzee differential 545 
expression in adult excitatory neurons and that in organoid dorsal neurons for the robust 546 
DE genes detected in the organoid dorsal forebrain trajectory. Three categories of DE 547 
genes are highlighted: ubiquitous DE in organoids (left), DE only in NPCs (middle) and DE 548 
only in neurons (right). (k) Dotplot showing expression patterns and detection rates across 549 
adult and organoid cell classes, for differentially expressed genes in adult cell classes. (l) 550 
Predicted laminar expression patterns of six example human-specific DE genes in adult 551 
excitatory neurons. Dots on top show their expression in excitatory neurons in the three 552 
species, with sizes proportional to their detection rates and darkness showing their average 553 
expression levels. Three non-DE canonical layer markers (RASGRF2 for layer 2, RORB for 554 
layer 4, TLE4 for layer 6) are also shown.  555 
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METHODS 556 

 557 
Pluripotent stem cell lines and organoid culture 558 
We acquired 6 human induced pluripotent stem cell (iPSC) lines (Sojd3, Hoik1, Kucg2, 559 
Wibj2 from the HipSci resource54; h409b2 from the RIKEN BRC cell bank17; Sc102a1 from 560 
System Biosciences), one human ES cell line (H9, WiCell)55, three chimpanzee iPSC lines 561 
(SandraA19; PR818-519, originally generated by the Gage lab and kindly provided to us by 562 
the R. Livesey group; JoC, generated in this study), one bonobo iPSC line (Bokela, 563 
generated in this study) and one ES macaque cell line (MN118, kindly provided through the 564 
R. Livesey group from Eliza Curnow). The iPSC line JoC (chimpanzee, Tchimpounga 565 
Sanctuary) was reprogrammed from blood cells (primary lymphocytes) using plasmid based 566 
reprogramming56 and Bokela (bonobo, Zoo Leipzig) was reprogrammed from fibroblasts 567 
using the StemMACS mRNA transfection kit (Miltenyi Biotec). Cell lines were validated for 568 
pluripotency markers by immunhohistochemical stainings using the Human Pluripotent 569 
Stem Cell 3-Color Immunohistochemistry Kit (R&D Systems, SC021) and were 570 
differentiated into the three different germ layers using the Human Pluripotent Stem Cell 571 
Functional Identification kit (R&D Systems) and StemMACS Trilineage Differentiation Kit 572 
(Miltenyi Biotec). Karyotyping was carried out using Giemsa banding at the Stem Cell 573 
Engineering facility, a core facility of CMCB at Technische Universität Dresden, and 574 
karyotypes were found to be normal. Cell lines were cultivated using standard feeder-free 575 
conditions in mTeSR1 (StemCell Technologies) and StemMACS iPS-Brew XF (Myltenyi 576 
Biotec) on matrigel-coated plates and differentiated into cerebral organoids using a whole 577 
organoid differentiation protocol (Lancaster et al. 2014). iPS Brew was used for cultivation 578 
of macaque ESCs as well as for EB generation during organoid differentiation for these 579 
batches (Supplementary Table 1). Cell lines were regularly tested for mycoplasma using 580 
PCR validation (Venor GeM Classic, Minerva Biolabs) and found to be negative.  581 
 582 
Single-cell RNA-seq data generation 583 
A summary of all single-cell experiments can be found in Supplementary Table 1. For 584 
organoid experiments (1 month, 2 months, 3 months, 4 months), whole organoids were 585 
dissociated for generating single cell gene expression libraries. Briefly, organoids were 586 
transferred to HBSS (without Ca2+ and Mg2+,-/-) and cut into two pieces to clear away 587 
debris from the center of the organoid (2-3 washes in total). Organoid pieces were then 588 
dissociated using Neural dissociation kit (P) using Papain-based dissociation (Miltenyi 589 
Biotec). Organoid pieces were incubated in Papain at 37 ºC (enzyme mix 1) for an initial 15 590 
min. followed by addition of Enzyme A (enzyme mix 2) to the Papain mix. Organoid pieces 591 
were then triturated using wide bore 1000ml tips and incubated for additional intervals of 5-592 
10 min with triturations between the incubation steps, amounting to a total Papain 593 
incubation time of approximately 45 min. Cells were filtered through a 30 µm strainer and 594 
washed, centrifuged for 5 min at 300xg and washed 3 times with HBSS (-/-). Cells were 595 
then analyzed using Trypan Blue assay, counted using the automated cell counter 596 
Countess (Thermo Fisher), and diluted for an appropriate concentration to obtain 597 
approximately 6000 cells per lane of a 10X microfluidic chip device. Typically, cells from 598 
one organoid were loaded per lane in the microfluidic device, and in some cases organoids 599 
from different lines were pooled onto the same lane and demultiplexed based on single-600 
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nucleotide polymorphisms. For 1 month organoids, three pooled 409b2 and one H9 601 
organoid were dissociated and cells from the two cell lines were mixed at equal ratios to be 602 
loaded on the chip. For as set of 2 month HipSci organoid data, organoids were 603 
dissociated for all four HipSci cell lines and pooled at equal ratios to be loaded on one lane 604 
of the microfluidic device aiming for 10k cells. Fluidigm C1 data (Supplementary table 1) 605 
were generated as previously described 19 and cells from chimpanzee SandraA 75d 606 
organoids were microdissected regions from vibratome slices for which single cell 607 
suspensions were generated as described above. Single cells were then sorted into 96-well 608 
plates using a FACS Aria III sorter and further processed using the SmartSeq2 protocol57 to 609 
generate cDNA and the NexteraXT kit (Illumina) to generate sequencing libraries. All 610 
libraries (10X and Fluidigm C1/SmartSeq2) were sequenced on Illumina’s Hiseq2500 611 
platform in paired-end mode (100 bp Fluidigm C1/SmartSeq2; 26+8bp, 100bp 10x).  612 
 613 
Early stages of organoid differentiation (iPS cells to neuroepithelium) 614 
For iPSC/ESC single-cell experiments, cells were detached from cell culture dishes using 615 
TrypLExpress (Thermo Fisher) incubation for 5 min. followed by addition of mTeSR1. Cells 616 
were centrifuged for 5 min. at 200xg and resuspended in mTeSR1, filtered through a 20 µm 617 
strainer and washed with mTeSR1. Cells were then centrifuged again for 5 min. at 200xg 618 
and resuspended in mTeSR1, counted, diluted to the same concentration and mixed at 619 
equal ratios for the three cell lines to be loaded on the 10X microfluidic chip aiming for 620 
10,000 cells. Thirty embryoid bodies (EBs), 15 neuroectoderms, and 1-3 neuroepithelium of 621 
each cell line were pooled for each dissociation, respectively. Cells were obtained by 622 
papain dissociation as described above for organoid dissociation, with slightly shorter 623 
incubation times in enzyme mix 1 (approximately 30 min.). For 10X experiments, cells from 624 
the three different cell lines were diluted and mixed at equal ratios to be loaded on the 625 
microfluidic chip device.  626 
 Single-cell experiments were conducted using the 10X Chromium Single Cell 3’ v2 627 
Kit following the manufacturer’s instructions. Briefly, cells were mixed with reverse 628 
transcription mix, gel beads and oil were loaded on the chip device to be coencapsulated 629 
into droplets, which underwent first strand cDNA synthesis thereby tagging mRNAs with a 630 
unique molecular identifier (UMI) and a unique cell barcode. All following steps were 631 
conducted in bulk by breaking the droplets and cleaning up and amplifying the cDNA. 632 
Single-cell libraries were then constructed by fragmentation, end repair and adapter ligation 633 
and amplification using library specific index sequences as provided by 10X Genomics. 634 
Quantification and quality control of libraries was performed using High Sensitivity DNA 635 
assays for Agilent’s Bioanalyzer and sequenced on a HiSeq2500 in Rapid or HighOutput 636 
sequencing mode. Typically, one 10X library was sequenced on one lane of a sequencing 637 
flow cell, with the exception of the HipSci organoids for which three pooled libraries (each 638 
library contained pooled cells from four dissociated HipSci organoids from different cell 639 
lines) were sequenced on two lanes of a flow cell. See Table S1 for more details. 640 
 641 
Immunohistochemistry 642 
Organoids were washed in PBS prior to fixing in 4% PFA for 2-4 hours (h). The excess of 643 
fixative was removed with three PBS washes and organoids were then transferred to a 644 
30% sucrose solution for 24-48 h for cryoprotection. Finally, organoids were transferred to 645 
plastic cryomolds (Tissue Tek) and embedded in OCT compound 4583 (Tissue Tek) for 646 
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snap-freezing on dry ice. For immunohistochemical stainings, organoids were sectioned in 647 
slices of 20 µm thickness using a Leica CM3050 S cryostat and Microm HM 560 (Thermo 648 
Fisher Scientific) at -15 to -20ºC. Organoid sections were quickly washed in PBS to remove 649 
any residual OCT. Then, sections were incubated in antigen retrieval solution (HistoVT One, 650 
Nacalai Tesque) at 70ºC for 20 min. Excess solution was washed away with PBS and the 651 
tissue was incubated in blocking-permeabilizing solution (0.3% Triton, 0.2% Tween-20 and 652 
5% Normal Goat Serum in PBS) for 1h at room temperature. Afterwards, sections were 653 
incubated overnight at 4ºC in blocking-permeabilizing solution containing antibodies anti-654 
PAX6 (mouse, 1:1000, Thermo Fisher Scientific, MA1-109; rabbit, 1:300, Covance, PRB-655 
278P) and anti-CTIP2 (rat, 1:1000, Abcam, AB18465), anti-SATB2 (rabbit, 1:500, Abcam, 656 
Ab92446; mouse, 1:500, Abcam, Ab51502), anti-Tbr2 (mouse, 1:500, MPI-CBG Antibody 657 
Facility35). On the next day, sections were rinsed three times in PBS before incubation for 658 
1h at room temperature in secondary antibody solution, which contained blocking-659 
permeabilizing solution, DAPI (1:3000), Alexa Fluor 488-conjugated anti-rabbit antibody 660 
(goat, 1:1000, Thermo Fisher, A11008), Alexa Fluor 546-conjugated anti-mouse antibody 661 
(goat, 1:500, Thermo Fisher Scientific, A-21123), Alexa Fluor 647-conjugated anti-rat 662 
antibody (goat, 1:500, Thermo Fisher Scientific, A-21247) and Alexa Fluor 488-conjugated -663 
anti-mouse (A21202) and anti-rat antibody (A21208), Alexa Fluor 555-conjugated anti-rabbit 664 
antibody (A31572), Alexa Flour 647-conjugated anti-mouse antibody (A31571) (all donkey-665 
derived, 1:500, Molecular Probes). Finally, remainders of secondary antibody solution were 666 
washed off with PBS before covering with ProLong Gold Antifade Mountant medium 667 
(Thermo Fisher Scientific). Stained organoid cryosections were imaged using a confocal 668 
laser scanning Olympus Fluoview FV1200 microscope and Zeiss LSM 880 Airy upright 669 
microscope. Whole-section tilescans composed of 3 different z-plane images (z-step = 5-8 670 
µm) were acquired using a 10X magnification objective, Plan-Apochromat 10x/0.45 M27 671 
and Plan-Apochromat 20x/0.8 M27 objectives. Images were then stitched, stacked and 672 
further processed using the Olympus Fluoview 4.2b software and ImageJ (Fiji). 673 
 674 
Single cell RNA-seq data preprocessing 675 
We used Cell Ranger, the set of analysis pipelines suggested by 10X Genomics, to 676 
demultiplex raw base call files to FASTQ files and align reads to the human genome and 677 
transcriptome (hg38, provided by 10X Genomics) with the default alignment parameters. 678 
Pooled samples, including samples from different species or human lines, were then 679 
demultiplexed using a two-step procedure based on the read mapping results. In the first 680 
step, the genome alignment between human (hg38) and chimpanzee (panTro5) was 681 
downloaded from UCSC Genome Browser. Sites with diverged bases between human and 682 
chimpanzee were obtained based on the genome alignment. Reads covering the species-683 
diverged sites were collected for each reported cell, with the number of bases matching 684 
each species counted. Cells with more than 80% reads covering the species-diverged sites 685 
matching with one species were assigned as cells from the species. For those samples 686 
with human cells from different lines pooled, a second step of demultiplexing was done 687 
using demuxlet58, based on the genotyping information of lines downloaded from HipSci 688 
websites (Kucg2, Wibj2, Hoik1, Sojd3) or called using bcftools based on the unpooled 689 
scRNA-seq data (H9, 409b2). Cells with the best singlet likelihood no less than 50 higher 690 
than the second best singlet likelihood and estimated mixture ratio less than 30% were 691 
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labeled as their best-matched lines. All cells failing to pass any of the above threshold were 692 
classified as doublets and excluded from the following analysis. 693 

Seurat59 was then applied for further data processing. Cells with more than 6,000 694 
or less than 200 detected genes, as well as those with mitochondrial transcripts proportion 695 
higher than 5% were excluded. After the log-normalization, confounding factors including 696 
the number of detected genes and proportions of mitochondrial transcripts were also 697 
regressed out. Highly variable genes were then obtained as genes with dispersion higher 698 
than 0.5 and normalized expression level between 0.0125 and 3, followed by principal 699 
component analysis (PCA) based on the z-transformed expression levels of the identified 700 
highly variable genes (Supplementary Table 2). The top-20 PCs were used to do clustering 701 
using Seurat. Additional quality controls of the measured cells were based on primary cell 702 
type predictions by using public human fetal brain scRNA-seq data (Nowakowski data 703 
set)27. In brief, a Lasso logistic regression model was built, using gene expression ranks of 704 
the Nowakowski data set as the training set, to predict the primary cell type identity of each 705 
single cell in two-month-old and four-month old organoids. Cells which were predicted to 706 
be of 'glycolysis' identity were excluded, so as cells in the Seurat clusters where more than 707 
80% of cells were predicted as of 'glycolysis' identity. Heterogeneity analysis of human 708 
(Extended Data Figure 1, Extended Data Figure 2, Supplementary Tables 3 and 4) and 709 
chimpanzee (Extended Data Figure 6, Supplementary Tables 5 and 6) full lineage data was 710 
performed using t-stochastic neighbor embedding based on the top principal components 711 
identified (top 20 PCs for human, top 15 PCs for chimpanzee). Cluster identities were 712 
assigned based on cluster gene markers (Supplementary Table 6) as determined by 713 
FindAllMarkers function in Seurat (min percentage of cells expressed = 0.25 and log fold 714 
change threshold = 0.25) and gene expression of known marker genes. For human data, 715 
cells from 409b2 and H9 and were integrated using canonical correlation analysis (CCA) as 716 
implemented in Seurat (v3). Briefly, data were normalized and the top 2000 highly variable 717 
genes for 409b2 and H9 cells were determined using the vst method. The datasets were 718 
integrated based on the top 20 CCs using the Seurat method by identifying anchors and 719 
integrating the datasets. The resulting integrated data were scaled and principal component 720 
analysis was performed. Clustering was performed based on the top 20 PCs and using a 721 
resolution of 0.6. Feature plots show non-integrated expression values. Cluster markers 722 
were determined using Wilcoxon test considering only genes that show a minimum log fold 723 
expression change of 0.25 in at least a fraction of 0.25 of cells in the clusters using the non-724 
integrated expression values.  725 
 726 
 727 
Reference similarity spectrum (RSS) and construction of pseudocell transcriptomes 728 
The reference similarity spectrum (RSS) of one cell to the Human Developing Brain (HDB) 729 
atlas was defined as the normalized similarity between gene expression levels of the cell 730 
and gene expression levels of each of the 237 fetal samples with RNA-seq data in the 731 
BrainSpan database in Allen Brain Atlas (Extended Data Fig. 3). To increase discrimination 732 
of different reference samples, only the highly variable genes of the HDB data set (see 733 
Supplementary Table 2), defined based on expression variation-mean comparison of the 734 
reference data set, were used for the RSS calculation. Between each cell and each sample 735 
in the HDB data set, Pearson correlation coefficient (PCC) was calculated across the HBD-736 
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highly variable genes. Z-transformation was then applied to PCCs between each cell to the 737 
237 fetal HDB samples to get the normalized similarities. 738 
 To construct pseudocells, single cells were firstly grouped based on their sample 739 
sources and Seurat clusters. Within each group of cells, i.e. those cells from the same 740 
sample and in the same Seurat cluster, cells were selected randomly with a selection 741 
probability of 20%. The selected cells were called pseudocell seeds or territory capitals 742 
(Extended Data Fig. 3). The ten nearest neighbors (NN) of each seed, based on Euclidean 743 
distances of the top-20 PCs, were then assigned to the seed, forming a pseudocell 744 
territory. If one cell was assigned to multiple pseudocell territories, one territory was chosen 745 
randomly. The expression level of one gene in each pseudocell was then calculated as the 746 
average gene expression level across cells in the pseudocell territory. 747 
 748 
Visualization, lineage identification and pseudotime estimation of pseudocells for 749 
reconstructing human cerebral organoid differentiation from pluripotency 750 
First, PCA was applied to a pseudocell expression matrix using the z-transformed 751 
expression levels of the highly variable genes as input. Euclidean distance between the top 752 
10 PCs of each pair of pseudocells was calculated and a KNN-network (K=100) was then 753 
calculated with the constraint to only consider pseudocells from the same or nearby stages 754 
when screening for nearest neighbors. The kNN-network was visualized using SPRING25. 755 
To construct the pseudotime course of human cerebral organoid differentation from 756 
pluripotency, the Walktrap community identification algorithm (implemented in the R 757 
package igraph) was applied to the above kNN-network to identify network communities. 758 
The resulting communities were manually aggregated into four groups to minimize 759 
branches in each group. A diffusion map algorithm (implemented in R package destiny60) 760 
was applied to pseudocells in each of the four groups, with the expression levels of the 761 
highly variable genes of pseudocells as the input. The ranks in DC1 were used as the 762 
pseudotimes. We used an F-test based ANOVA analysis to identify genes with pseudotime-763 
dependent expression patterns. In brief, we established a natural splined linear regression 764 
model (ns function in the R package splines) with six degrees of freedom (df), with 765 
expression levels as the response variable and pseudotimes as the independent variable, 766 
for each of the highly variable genes. An F-test was applied, to compare variation explained 767 
by the splined linear model with that of the residuals normalized by degrees of freedom. 768 
Bonferroni correction was performed across tested genes, with a corrected p-value 769 
threshold 0.01 to identify genes with pseudotime-dependent expression. The analysis was 770 
applied to the four groups of pseudocells separately. 771 
 772 
Visualization, lineage identification, pseudotime estimation of cells in human two-773 
month-old cerebral organoids from different individuals 774 
Pseudocells were constructed for the human two-month-old organoids as above with 775 
constraint on samples and based on cells with predicted primary cell types as one of radial 776 
glia, intermediate progenitor (IPC), excitatory neuron, and inhibitory neuron. RSS to the 777 
BrainSpan fetal samples was calculated for each pseudocell, with distance between two 778 
pseudocells defined as the correlation distance between RSS of the two pseudocells. The 779 
kNN-network (k=20) was then constructed and SPRING was used to determine coordinates 780 
of pseudocells for visualization. To further discriminate pseudocells representing different 781 
neuronal lineages, a Walktrap algorithm for network community identification was applied 782 
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to the RSS-based kNN-network (k=100). Communities that were significantly connected 783 
and showing concordant marker expression or similarity spectrum were aggregated, which 784 
resulted in three progenitor-to-neuron trajectories. Based on gene expression level ranks of 785 
cells in the three defined trajectories, two Lasso logistic regression models were trained, 786 
one for classification of cortical and ventral lineage, while the other one for classification of 787 
all the three trajectories. The first model was applied to pseudocells in the community C6 788 
which was significantly connected to cortical and ventral trajectories, while the second 789 
model was applied to pseudocells in the community C4, which was significantly connected 790 
with both the non-telencephalon pseudocells and community C4. With a unique lineage 791 
label defined for each pseudocell, a 1*500 self-organizing-map (SOM) model was trained 792 
for each of the three trajectories, using RSS of pseudocells within the lineage as the 793 
training data. The index of neuron that one pseudocell was assigned to was used as its 794 
pseudotime. Diffusion map analysis was also applied to pseudocells at each trajectory, 795 
with highly variable gene expression as the input, with ranks of DC1 defined as alternative 796 
pseudotime of pseudocells. Pseudotimes obtained by the two methods are highly 797 
correlated (Spearman correlation is 0.91 and 0.92 for the dorsal and ventral telencephalon 798 
trajectories, respectively). 799 

To project the single-cell data to the cell embedding space that was defined for 800 
pseudocells, two support vector regression (SVR) models (implemented in the R package 801 
e1071), each of which was for one dimension of the embedding, were trained using RSS of 802 
pseudocells as the training set. The trained models were applied to RSS of single cells for 803 
their predicted coordinates. Such coordinates were further refined by pushing each cell to 804 
its nearest pseudocell with smallest correlation distance of RSS to be 70% closer. 805 
Similarly, a support vector machine (SVM) model was trained (implemented in the R 806 
package e1071) using RSS of pseudocells for the three trajectories, and applied to RSS of 807 
single cells for their lineage identity. After that, the corresponding SOM model for 808 
pseudotime estimation was applied to RSS of each single cell for its estimated pseudotime. 809 
 810 
Dynamic time warping (dtw)-based alignment of pseudotime courses 811 
We used a dynamic time warping algorithm to align different pseudotime courses. In brief, 812 
each pseudotime course was evenly broke into 50 blocks. Average gene expression levels 813 
of pseudocells or cells within each block was calculated. Pairwise distances between 814 
blocks from the two courses were calculated as the Pearson correlation distance, i.e. 1-815 
PCC, across the highly variable genes in cells of both pseudotime courses. Suppose di,j 816 
represents the distance between the i-th block in the reference pseudotime course and the 817 
j-th block in the query pseudotime course. We defined D as the alignment distance matrix, 818 
where 819 

𝑫",$ = min)𝑫"*+,$, 𝑫",$*+, 𝑫"*+.$*+- + 𝑑",$ 820 
 821 
A trace-back procedure was then performed to get the alignment. Three modes of 822 
alignment were implemented. In the first mode, the 'fixed-end' alignment, the initialization 823 
of D was done as: 824 

𝑫",$ = 0
𝑑",+, 𝑖𝑓	𝑗 = 1

𝑫+,$*+ + 𝑑+,$, 𝑖𝑓	𝑖 = 1 825 

 826 
In the other two modes, the 'fixed-start' and 'end-to-end' alignments, D was initialized as: 827 
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 828 

𝑫",$ = 6
𝑑+,+, 𝑖𝑓	𝑖 = 1	𝑎𝑛𝑑	𝑗 = 1
𝑫+,$*+ + 𝑑+,$, 𝑖𝑓	𝑖 = 1
𝑫"*+,+ + 𝑑",+, 𝑖𝑓	𝑗 = 1

 829 

 830 
In the trace-back step, a 'fixed-end' and 'end-to-end' alignment was started from DM,N, 831 
where M and N are the numbers of blocks at the reference and query pseudotime courses, 832 
respectively. On the other hand, the trace-back step was started from Dm,N, where 𝑚 =833 
𝑎𝑟𝑔𝑚𝑖𝑛"(𝐷",>). In our study, the 'fixed-end' alignment was used to align the cortical and 834 
ventral lineage pseudotime course of human organoid cells; the 'fixed-start' alignment was 835 
used to align pseudotime courses of human and chimpanzee cortical pseudocells; the 836 
'end-to-end' was used in the truncated alignment of pseudotime courses of different 837 
species. 838 
 839 
Reconstruction of chimpanzee cerebral organoid differentiation from pluripotency 840 
We applied a similar procedure as mentioned above describing the reconstruction of 841 
human cerebral organoid differentiation from pluripotency to reconstruct the organoid 842 
differentiation trajectory from chimpanzee single-cell RNA-seq data. In brief, the single-cell 843 
RNA-seq reads were mapped to the human-chimpanzee-macaque consensus genome and 844 
counted using Cell Ranger. Seurat was used for further preprocessing including gene 845 
expression normalization, confounding factor regression, PCA and clustering, Cells from 846 
organoid samples with predicted primary cell type identity of ‘glycolysis’, as well as cells 847 
within clusters with more than 80% cells having ‘glycolysis’ identity, were excluded. 848 
Pseudocells were then constructed with a seed selection probability of 20% and 849 
constraints on samples and Seurat clusters. PCA was applied to expression levels of highly 850 
variable genes across pseudocells, and pairwise distances of pseudocells were calculated 851 
as the Euclidean distances between the top-10 PCs. The kNN network (k=100) of 852 
pseudocells was constructed, linking every pseudocell with its 100-nearest pseudocells 853 
representing the same or nearby stages. Three-month-old and four-month-old organoids 854 
were seen as the same stage. The Walktrap network community identification algorithm 855 
was applied and the resulted community labels (walktrap communities) of pseudocells were 856 
compared with the predicted community labels (projected communities) based on a Lasso 857 
logistic regression model trained by ranks of gene expression levels of the human 858 
pseudocells representing the human organoid differentiation from pluripotency as 859 
described above. Any walktrap community with < 1000 kNN connections with other 860 
communities was discarded. One of the four labels: early, cortical, ventral, non-861 
telencephalon was assigned to one walktrap community if more than 95% of pseudocells 862 
within the community were from the same group according to their projected communities. 863 
For one community with more than 10% of pseudocells with projected communities 864 
belonging to both ventral and midbrain-hindbrain groups, the non-telencephalon label was 865 
only assigned to pseudocells with projected communities in the non-telencephalon group. 866 
The diffusion map algorithm was applied to each of the four pseudocell groups, using the 867 
expression levels of highly variable genes as input, to estimate their pseudotimes. For the 868 
cortical, ventral and midbrain-hindbrain groups, the ranks of DC1 was used as the 869 
pseudotimes. For the early group, a principal curve (implemented in the R package 870 
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princurve) was fitted in the DC1-DC2 space. The order of pseudocells projecting to the 871 
resulted principal curve was used as the pseudotimes. 872 
 873 
Human-chimpanzee-macaque consensus genome 874 
The construction of the consensus genome was performed using the procedure as 875 
described9,61. In brief, the chained and netted pairwise genome alignments of the human 876 
(hg38) and chimpanzee (panTro5) genomes, and the human and macaque (rheMac8) 877 
genomes, were downloaded from UCSC Genome Browser. Based on the downloaded 878 
pairwise genome alignments, a multiple genome alignment of human-chimpanzee-879 
macaque was constructed using multiz. Based on the human-chimpanzee-macaque 880 
genome alignment, we constructed the consensus genome by masking all discordant sites 881 
including mismatches, insertion/deletion (indels), as well as 6-bp flanking regions of indels 882 
on the human genome. The obtained consensus genome was indexed with gene 883 
annotation in GENCODE v27 for read mapping to the consensus genome with Cell Ranger. 884 
 885 
Pseudotime estimation of cerebral organoid cells in different species 886 
Single cell RNA-seq data of organoids with ages from two-month-old to four-month-old in 887 
human, chimpanzee, and macaque were mapped to the human-chimpanzee-macaque 888 
consensus genome and counted using Cell Ranger. Further preprocessing using Seurat 889 
was applied separately for data from the three species. Only cells with predicted primary 890 
cell type identities as radial glia, intermediate progenitors, excitatory neurons, or inhibitory 891 
neurons were included in the later analysis. Pseudocells were constructed for humans and 892 
chimpanzees, both with a coarse grain ratio of 20% and constraints on samples and Seurat 893 
clusters. The RSS to the HDB data set was calculated for each pseudocell, and the SVM 894 
model for lineage estimation was applied to estimate the lineage identity of each 895 
pseudocell. Focusing on the cortical lineage, a diffusion map analysis was applied to 896 
cortical pseudocells of the three species, respectively. The ranks of DC1 were used as the 897 
pseudotimes of the pseudocells. In macaque, similar procedure was applied directly to 898 
single cells without pseudocell construction. 899 
 900 
Truncated dtw-based alignment of pseudotime courses representing neural 901 
progenitors and deeper layer neurons in different species 902 
We used the first DC discriminating BCL11B+ and SATB2+ cortical neurons (DC3 in 903 
chimpanzee, DC4 in macaque) to identify upper layer (UL) neurons, as the pseudocells in 904 
the branch with highest expression level of SATB2. To identify potential upper layer 905 
neurons in human, we first retrieved markers of upper and deeper layer (DL) excitatory 906 
neurons27. The sum expression levels of UL and DL markers was then calculated for each 907 
pseudocell in human and chimp, with the UL-specificity score (sUL) being defined as the 908 
UL/DL markers expression ratio. The distribution of sUL in UL neurons in chimpanzee was 909 
used to determine the threshold to discriminate UL neurons from other cell types (sUL > 0). 910 
All UL neurons in the three species were excluded from the following analysis. 911 

To correct for the DL neuron maturation timing differences between human and 912 
the other two species, a two-step pseudotime course alignment strategy was used. The 913 
first step, namely the trimming step, aims to determine the pseudotime points in 914 
chimpanzee and macaque which correspond to the latest pseudotime point in human. In 915 
brief, an SVR model with Gaussian-kernel was firstly constructed, with chimpanzee or 916 
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macaque pseudotimes as the response variables and the RSS as the dependent variables. 917 
Two models were trained with the chimpanzee pseudocells and macaque cells 918 
respectively, and applied to the human pseudocells to predict their corresponding 919 
chimpanzee and macaque pseudotime points. Two constrained B-splines regression 920 
models (FHC, FHM) were then fitted (implemented in the R package cobs): human 921 
pseudotimes of human pseudocells (th) versus their predicted chimpanzee (𝑡AB ) or macaque 922 
(𝑡CD ) pseudotimes, with constraints of 𝐹FG(𝑡H = 0) = 𝐹FJ(𝑡H = 0) = 0. FHC(th=1) and FHM(th=1) 923 
were used as the pseudotime thresholds to select chimpanzee pseudocells and macaque 924 
cells. Chimpanzee DL neurons with pseudotime tC > FHC(th=1), as well as macaque DL 925 
neurons with pseudotime tM > FHM(th=1), were excluded in following analysis. The second 926 
step, namely the alignment step, was then applied to the remaining pseudotime courses of 927 
the three species. An ‘end-to-end’ dtw-based alignment, as described above, was used to 928 
align the human pseudotimes with pseudotimes of each of the other two species using the 929 
human pseudotime course as the template. 930 
 931 
Conserved developmental trajectories from NPCs to neurons in primates 932 
Genes with pseudotime-dependent expression changes in organoids were identified in 933 
each of the three species, using the F-test based ANOVA analysis as described above. 934 
Those genes with significant pseudotime-dependent expression changes (BH-corrected 935 
P<0.05) in all the three species were defined as the genes with universal pseudotime-936 
dependent expression changes, or pseudotime-dependently expressed genes. To estimate 937 
the similarities of the expression trajectories among the three species for those genes, 938 
Pearson’s correlation coefficient (PCC) was calculated for each gene between each pair of 939 
species, across its interpolated expression levels at 50 evenly distributed points along the 940 
aligned pseudotimes based on a natural spline regression model (df=6). To determine the 941 
threshold of a conserved trajectory, we performed 100 pseudotime permutations of 942 
pseudocells in the three species. Pairwise PCCs between species were calculated for each 943 
of the pseudotime-dependently expressed genes based on the randomized pseudotimes. 944 
Minimal PCC of each gene based on each permutation was obtained, and the PCC 945 
threshold was determined as the average of the second highest minimal PCC among 946 
permutations across all genes of interest. Pseudotime-dependently expressed genes with 947 
PCC higher than the threshold between any species pairs were defined as genes with 948 
conserved expression pseudotemporal patterns in primates. 949 
 950 
Identification, clustering, and species specificity of differentially expressed genes 951 
between humans and chimpanzees 952 
To compare transcriptome changes of the developmental trajectory from cortical neural 953 
progenitors to deeper layer neurons between human and chimpanzee, an F-test based 954 
comparison was applied to the expression profile along pseudotimes of the two species. In 955 
brief, for each gene, a natural spline linear regression model (df=6) was constructed for 956 
human and chimpanzee pseudocells along the aligned pseudotime course, without 957 
discriminating human and chimpanzee samples, and used as the null model (m0). The 958 
alternative natural spline linear regression model was also constructed, with each species 959 
having its own slopes and intercept (m1). The residuals of the variation, which cannot be 960 
explained by each model, were compared by an F test. Non-ribosomal genes with BH-961 
corrected P<0.01 were identified as differentially expressed genes (DE genes) between 962 
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human and chimpanzee along the developmental trajectory from cortical neural progenitors 963 
to deeper layer neurons (Supplementary Table 7). 964 

To estimate the robustness of the identified differential expression (DE) to the 965 
number of used lines, as well as the pseudocell distribution along the pseudotime course, 966 
we used a series of replaceable pseudocell sampling procedure with constraints. In brief, in 967 
each round of replaceable pseudocell sampling, the candidate pseudocells to be selected 968 
are restricted to be those from a certain number of human cell lines. In addition, the 969 
subsampling in human pseudocells is performed to recapitulate the pseudocell distribution 970 
along the aligned pseudotime of chimpanzee pseudocells, i.e. each of the ten pseudotime 971 
bins contains the same number of human and chimpanzee pseudocells. This sampling 972 
procedure was performed 100 times for each possible number of human lines, ranging 973 
from one to seven. DE analysis, as described above, was applied to compare gene 974 
expressions of human pseudocells in each sampling with the chimpanzee pseudocells. 975 
Robust DE genes were determined as DE genes which can be detected in at least 80% of 976 
tests performed with replaceable pseudocell samplings with any number of used human 977 
cell lines. 978 

A similar strategy was also used to estimate the false positive human-979 
chimpanzee DE genes due to differences between cell lines. In each sampling, two lines 980 
were randomly selected as group one, and a certain number of lines, ranging from one to 981 
five, were selected from the remaining lines as group two. For each group, pseudocells 982 
were randomly sampled from the selected lines to recapitulate the pseudocell distribution 983 
along the aligned pseudotime of chimpanzee pseudocells. Such sampling was performed 984 
100 times for each possible number of lines used in group two. The transcriptome 985 
trajectory from cortical neural progenitors to deeper layer neurons in macaque organoids 986 
was used as the evolutionary outgroup to determine species specificity of the identified 987 
human-chimpanzee DE genes. First, the cumulative expression divergences of each gene 988 
between human and macaque (dHM), and between chimpanzee and macaque (dCM), were 989 
calculated. The cumulative expression divergence was calculated by summing up absolute 990 
values of average expression differences between species at the 50 pseudotime bins of 991 
equal sizes along the aligned pseudotimes. The human-chimpanzee DE of one gene is seen 992 
as human-specific if 𝑑FJ − 𝑑GJ > max	(𝑑FJ, 𝑑GJ) 2⁄ . Genes with chimpanzee-specific DE 993 
were identified in the same way. Genes with human-specific DE were then clustered based 994 
on their human-chimpanzee DE along pseudotimes. Average expression differences 995 
between human and chimpanzee at each of the 50 pseudotime bins along the pseudotimes 996 
was calculated for each gene with human-specific DE (denoted as dt at pseudotime bin t), 997 
and then normalized as 𝑑QR = 𝑑Q (maxQ 𝑑Q − minQ 𝑑Q)S . Hierarchical clustering (Ward algorithm) 998 

was then used to cluster those genes into nine clusters, with distances between genes 999 
calculated as the Euclidean distances between their normalized DE spectrums. Clusters 1000 
with fewer than five genes were discarded. We annotated genes with human-specific 1001 
expression patterns using the Homo sapiens Gene Ontology Annotation file (validation 1002 
date: 21/04/2017) provided by the Gene Ontology Consortium. 1003 
 1004 
Processing of the Fluidigm C1 based scRNA-seq data of cerebral organoids 1005 
In addition to the newly generated Fludigm C1 (SmartSeq2)-based scRNA-seq data, we 1006 
further retrieved published sequencing data of 786 and 344 single cells from human and 1007 
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chimpanzee cerebral organoids17,19, in the format of FASTQ files from GEO accession 1008 
numbers GSE75140 and GSE86207 (CMK data set). All the reads were mapped to the 1009 
human-chimpanzee-macaque consensus genome using STAR (v2.6.1d) with ‘--quantMode’ 1010 
parameter set to ‘TranscriptomeSAM’ and GENCODE v27 annotation provided. Gene 1011 
expression levels in each cell were quantified as TPM by RSEM (v1.3.1). Additionally, we 1012 
retrieved the recently published gene expression matrix representing 3211 cells from 1013 
human and chimpanzee cerebral organoids (excluding redundant cells from GSE75140 and 1014 
GSE86207) and 4854 cells from human and macaque fetal brains21. 1015 

Based on the resulting gene expression profile, RSS to the fetal Brainspan data set 1016 
was calculated as described above for each cell, with 248 genes with significant differential 1017 
expression between cortical neurons measured by Smart-seq and Smart-seq2 excluded 1018 
from the references. Distances between organoid cells were calculated as the Pearson’s 1019 
coefficient distances between RSS of cells. Distances between cells from fetal brains were 1020 
calculated in the same way. The resulted distance matrices of all organoid cells and fetal 1021 
brain cells were used as the input to generate tSNE embeddings. kNN-network (k=50) was 1022 
generated for organoid cells and fetal brain cells separated based on the RSS-based 1023 
distances, and a Walktrap algorithm for network community identification was applied to 1024 
identify cell clusters, which were further annotated based on their marker genes. Based on 1025 
the cell type annotation, the diffusion map analysis, with the RSS profiles as input, was 1026 
applied to the dorsal forebrain NPCs and neurons in organoids and fetal brains, 1027 
respectively. The ranks of DC1 were used as the pseudotimes. 1028 
 To validate the human-chimpanzee differential expression identified in our droplet-1029 
based scRNA-seq data using the C1-based cerebral organoid data, the organoid dorsal 1030 
telencephalon pseudotemporal trajectory was firstly split into ten intervals. In each 1031 
pseudotemporal interval, the human-chimpanzee DE was calculated as the log2-1032 
transformed fold change (log2FC) between the average expression of human and 1033 
chimpanzee cells in the interval. Here, the CMK data set and other data sets which used a 1034 
distinct quantification method were processed separately. A similar strategy was also 1035 
applied to the aligned droplet-based human and chimpanzee pseudotemporal trajectories. 1036 
Generalized log2-transformed fold change (gLog2FC), defined as the average log2FC 1037 
across the pseudotemporal intervals, as well as the maximum log2FC across the intervals 1038 
(mLog2FC), was further calculated for each human-chimpanzee robust DE genes in 1039 
organoids. A DE gene is seen as being consistent in the two data sets if both gLog2FC and 1040 
mLog2FC of the C1-based and droplet-based human-chimpanzee comparisons are of the 1041 
same signs (refer as consistent DE genes). The pseudotemporal intervals with the 1042 
maximum fold change in the droplet-based and C1-based trajectories were also obtained 1043 
and compared for the consistent DE genes. This procedure was also applied to compare 1044 
human-macaque differential expression of the human-specific DE genes along the droplet-1045 
based pseudotemporal trajectory and the C1-based fetal brain pseudotemporal trajectory. 1046 
 1047 
Single-cell and bulk ATAC-seq data generation 1048 
Organoids of 2 to 4 months old were washed twice with PBS in a Tissue-Tek Cryomold 1049 
(Sakura), then embedded in 4% low-melting agarose (Sigma) and sliced into 150 μm 1050 
sections using a vibrating microtome (Ci 7000 smz, Camden Instruments). Slices were 1051 
placed on microscope slides containing Differentiation medium with vitamin A (Diff +VA) 1052 
and inspected under a stereomicroscope to dissect cortical regions. Selected regions were 1053 
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washed twice in 500 μL PBS and incubated at 37°C in 500 μL Accutase (Sigma) plus 0.5 μL 1054 
DNase I (New England Biolabs) for ~45 minutes. Trituration was performed for additional 1055 
mechanical dissociation. Cells were passed through a 30 μm pre-separation filter (Miltenyi 1056 
Biotec), washed with Diff+VA medium, and spun down at 300 x g (Heraeus Megafuge 40R, 1057 
Thermo Scientific) for 5 minutes. The cell pellet was resuspended in 200 μl of Diff+VA 1058 
medium. Cells were viewed under a microscope to ensure a single cell suspension was 1059 
obtained, and then counted using a Countess Automated Cell Counter (Invitrogen). Single 1060 
cell suspensions for the early stages of organoid differentiation (iPS cells to 1061 
neuroepithelium) were obtained as described above.  1062 

From the cell suspension, 50,000 cells were used as input for bulk ATAC-seq as 1063 
described62. The remaining cells were diluted to a final concentration of 300 cells/μl and 1064 
used for microfluidics based single-cell ATAC-seq as described63. Briefly, cells were mixed 1065 
with Suspension Reagent (Fludigm) at a 3:2 ratio and loaded onto a primed medium (10-17 1066 
μm) integrated microfluidic circuit (Fludigm) for capturing. Cell capture sites were examined 1067 
under a microscope and noted for containing 0, 1, or multiple cells. Lysis, transposition, 1068 
and amplification were performed on the Fluidigm C1 platform. DNA from each cell was 1069 
transferred to an individual well of a 96-well plate and barcoded with unique combinations 1070 
of 24 adapter-index i7 and 16 adapter-index i5 primers 63. Quantification and library size 1071 
distribution was assessed on an Agilent 2100 Bioanalyzer using High Sensitivity DNA chips. 1072 
Excessive primer contamination was removed using SPRIselect (Beckman Coulter Life 1073 
Sciences) size selection. Up to 192 cells were pooled and sequenced in paired-end, dual-1074 
index mode for 50+8+50+8 cycles on one lane of an Illumina HiSeq 2500. A summary of all 1075 
single-cell experiments can be found in Supplementary Table 1. 1076 
 1077 
Single-cell and bulk ATAC-seq data processing 1078 
Base calling was performed using Bustard (Illumina), adapter trimming with leeHom64, and 1079 
demultiplexing with deML65. Reads were aligned to hg19 for human, panTro4 for chimp, 1080 
and rheMac8 for macaque using bowtie2 with a maximum fragment length of 2000. PCR 1081 
duplicates were marked and removed using Picard tools 1082 
(http://broadinstitute.github.io/picard). Samtools66 was used to retain properly paired reads 1083 
with mapping quality greater than 30, while reads mapping to the mitochondrial genome, Y 1084 
chromosome, and blacklisted genomic regions that show excessively high read mapping, 1085 
several of which correspond to nuclear mitochondrial DNA segments (identified in 1086 
Buenrostro et al.63 and the ENCODE Project67) were removed. For scATAC-seq, single cell 1087 
BAM files were merged, excluding data from any capture site with 0 or more than 1 cell, to 1088 
create an aggregated BAM file. Peaks, which represent regions enriched in mapped pair-1089 
end sequences, were called using MACS268 with options nomodel, nolambda, keep-dup all, 1090 
and call-summits. Peak summits were extended by ±250 bp. In the event of overlapping 1091 
peaks, the peak with the lowest p-value was kept. A single-cell ATAC-seq consensus peak 1092 
set was obtained by requiring a peak to be accessible in a minimum of 5% of cells. Data 1093 
visualization was carried out using the Integrative Genomics Viewer (IGV)69. 1094 
 1095 
Enrichment for validated human VISTA enhancers 1096 
We overlapped scATAC-seq peaks detected in human cerebral organoids with positive 1097 
human VISTA enhancers using bedtools intersect. For each tissue annotated in the VISTA 1098 
Enhancer Browser, we counted the number enhancers that did or did not overlap a peak. 1099 
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We compared these values to the number of all other tissue elements that did or did not 1100 
overlap a peak. Fisher’s exact tests were performed to determine which tissues’ enhancers 1101 
had a higher likelihood of being represented. The significance values were corrected for 1102 
multiple testing using the qvalue package in R. 1103 
 1104 
Cell state identification using single cell ATAC-seq on cerebral organoids and 1105 
pseudotime estimation  1106 
The accessibility at each site in the consensus peak set for every single cell was used to 1107 
create a count matrix. Cells with fewer than 5000 reads and less than 5% of reads in peaks 1108 
were filtered out from further analyses. chromVAR40 was used to scan the peaks for 1109 
transcription factor binding motif occurrences, using a curated collection of 1,765 human 1110 
motifs from the cisBP database, and to identify significantly variable motifs among cells. In 1111 
addition to TF binding motifs, peaks were scanned for 7-mers. Cell similarity was visualized 1112 
in a two-dimensional t-SNE plot using the bias-corrected deviations in accessibility for 7-1113 
mers with a variability score greater than 1.5.  1114 

Each cell’s t-SNE coordinates and the consensus peaks were passed to Cicero70 1115 
and the densityPeak algorithm was used to identify two clusters of cells Statistically 1116 
significant differences in TF motif accessibility between the two clusters was calculated 1117 
using chromVAR, and those motifs corresponding to marker TFs known to distinguish 1118 
neural progenitors and neurons was used to for cell state identification. Statistically 1119 
significant differences in accessibility of additional annotations between the two clusters 1120 
were used to support cell state identities. These annotations included differentially 1121 
accessible chromatin peaks identified as being enriched in developing mouse brain radial 1122 
glial cells or excitatory neurons 71, as well as accessibility in peaks nearby genes showing 1123 
pseudotime-dependent expression in cortical neural progenitors or cortical neurons 1124 
identified as part of this study.  1125 

We identified differentially accessible (DA) peaks between the two clusters using the 1126 
command differentialGeneTest in Cicero. A count matrix was generated with featureCounts 1127 
72 using the top 250 DA peaks in each cluster. This count matrix was used as input for a 1128 
diffusion map in order to obtain a pseudotemporal ordering of the cells73. Projecting 1129 
transcription factor binding motif deviation Z-scores on the cells revealed a gradient of 1130 
known neural progenitor to neuronal markers along the first diffusion map component and 1131 
we took a cell’s rank along this component as its pseudotime value. 1132 

DA peaks identified between the two clusters were used as input test regions for 1133 
GREAT (version 3.0.0)74 with all accessible organoids peaks serving as background regions. 1134 
We used the default basal plus extension genomic association rule with its default values. 1135 
All gene ontology (GO) Biological Process terms and their associated hypergeometric p-1136 
values were exported. For each term, we plotted the p-value obtained using cluster 1 1137 
(identified as NPCs) DA peaks and the p-value obtained using cluster 2 (identified as 1138 
neurons) DA peaks as input. Terms with a p-value < 0.05 were considered enriched. 1139 
Informative enriched terms were highlighted based on their significance value in one cell 1140 
state relative to the other, and for small differences between the cell states when 1141 
highlighting terms enriched in both. 1142 
 1143 
Single cell ATAC-seq pseudotime estimation for cells in early states of differentiation 1144 
and cerebral organoids 1145 
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Similar to the analysis of the cerebral organoids, we used chromVAR to calculate bias-1146 
corrected deviations in accessibility for TF motifs and 7-mers for each cell. Here, we 1147 
included the scATAC-seq consensus peak sets called in the iPSC, embryoid body, 1148 
neuroectoderm, and neuroepithelial time points, in addition to the scATAC-seq consensus 1149 
peak set from the cerebral organoid time point. In the event of overlapping peaks, the peak 1150 
with strongest signal was retained. Cells with fewer than 5,000 reads and less than 5% of 1151 
reads in peaks (fraction of reads in peaks, FRiP) were removed from further analyses 1152 
(Supplementary Table 8). Cell similarity was visualized in a two dimensional t-SNE plot 1153 
using the bias-corrected deviations in accessibility for 7-mers.  1154 

As the cerebral organoid cells’ pseudotimes were previously resolved, we focused 1155 
on ordering the earlier stages. For this we used Cicero’s differentialGeneTest to identify DA 1156 
peaks among the iPSC, embryoid body, neuroectoderm, and neuroepithelial time points. A 1157 
count matrix was generated using the top 250 DA peaks in each time point and used as 1158 
input for a diffusion map. Projecting TF motif deviation Z-scores of the cells revealed a 1159 
gradient of pluripotent to more differentiated marker TFs along the first three diffusion map 1160 
components. We fit a principle curve through the map, and used the pluripotent cells as a 1161 
starting point to guide the curve. The rank of a cell along this curve was used as its 1162 
pseudotime. We then added the cerebral organoid cells pseudotime ranks to the end of 1163 
this earlier stage resolved pseudotime. We used the pheatmap R package to visualize the 1164 
dynamics of significantly variable motifs across pseudotime.  1165 
 1166 
Annotation of Accessible Chromatin Peaks 1167 
Peaks were linked to an expressed protein-coding gene using the nearest (maximum 1168 
distance 1 Mb) transcription start site of the canonical transcript as defined by GENCODE 1169 
(comprehensive gene annotation, release 19). Promoter regions were defined as 1000bp 1170 
upstream a TSS, and distal regions refer to non-promoter regions. Exon and intron 1171 
annotations were also obtained from GENCODE (comprehensive gene annotation, release 1172 
19). BEDtools75 was used to annotate peaks for several evolutionary signatures, including: 1173 
human accelerated regions45-47; selective sweeps compared to great apes76 and archaic 1174 
humans77; single nucleotide changes (SNC) in modern humans that happened since the 1175 
split with great apes and before or after the split with the ancestor of Neandertals and 1176 
Denisovans, first identified in Prüfer et al. 201444 and updated for this analysis using the 1177 
most current 1000 Genomes Phase 3 allele frequencies, with a global allele frequency 1178 
≥99.5% defined as fixed in all modern humans; small insertions and deletions (up to 5 1179 
nucleotides) fixed in modern humans that happened since the split with great apes and 1180 
before or after the split with the ancestor of Neandertals and Denisovans78; and, human 1181 
deletions that are highly conserved in mammals (hCONDELs, Supplementary Table 10)48.  1182 
 1183 
Identification of genomic regions with differential accessibility between human and 1184 
chimpanzee organoid neural progenitors and neurons 1185 
To compare the chromatin accessibility of NPCs and neurons in cerebral organoids 1186 
between human and chimpanzee and identify putative regulatory regions that may 1187 
contribute to transcriptome divergence between human and chimpanzee, we applied a 1188 
likelihood ratio test based on a generalized linear model with binomial error distribution to 1189 
each regulatory region identified in human and chimpanzee organoids. More specifically, 1190 
we identified open chromatin regions in human and chimpanzee organoids separately as 1191 
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described above. To compare an equal number of human and chimpanzee regions, we 1192 
took the top 77,611 peaks (corresponding to the number of human consensus peaks) in 1193 
each species and performed reciprocal liftOver, requiring a 50% minimum ratio of based 1194 
that must remap, in order to identify their orthologous counterparts in the other species. 1195 
Peaks that successfully lifted over (>99%) were merged using bedtools and re-named (i.e. 1196 
mergePeak#). Count matrices were generated at these merged peaks in the species own 1197 
genome, and the matrices were then joined on the common peak name. Considering the 1198 
higher read coverage in human cells, we subsampled reads in human cells to equalize the 1199 
medians of total number of reads mapped to the regions of interest in human and 1200 
chimpanzee. This procedure was applied separately to NPCs and neurons. The resulting 1201 
count matrices were binarized. We then fitted a generalized linear model for each region 1202 
across all human and chimpanzee cells, with the accessibility as the response variable and 1203 
species as the independent variable. Another model with the species variable replaced by a 1204 
scaling coefficient was also fitted as the null model. The scaling coefficient is fixed to one 1205 
for human cells and pc/ph for chimpanzee cells, where pc and ph are the average 1206 
accessibility across all regions and all cells in chimpanzee and human, respectively. We 1207 
compared the two models and got the p-values by using the likelihood ratio test. Regions 1208 
with BH-corrected P<0.01 were defined as differentially accessible (DA) regions 1209 
(Supplementary Table 9). This procedure was applied to NPCs and neurons separately to 1210 
obtain DA regions in the two cell states. 1211 
 1212 
Functional and evolutionary characterization of genomic regions with differential 1213 
accessibility 1214 
We performed permutations to determine if differentially accessible (DA) peaks were 1215 
significantly more likely to overlap a given annotation compared to non-differentially 1216 
accessible (non-DA) peaks. In more detail, we first resized all peaks to an equal length of 1217 
500bp and calculated the average accessibility of human and chimp cells in the resized DA 1218 
and non-DA peaks. Peaks were then placed into average accessibility bins of 5% intervals. 1219 
Given the number of DA peaks in each accessibility bin, the same number of non-DA peaks 1220 
was chosen at random from the corresponding accessibility bin. The random set of non-DA 1221 
peaks was then overlapped with the given annotation using bedtools intersect. The random 1222 
sampling of non-DA peaks and annotation overlap was repeated 2000 times. For each 1223 
annotation, we counted the number of times a non-DA peak permutation resulted in a 1224 
higher overlap than what was observed for DA peaks. This number was divided by the 1225 
number of permutations to determine significance (p<0.05).  1226 

We used fixed SNCs, organoid-specific peaks, and linked differentially expressed 1227 
(DE) genes as annotations. When overlapping peaks with fixed SNCs, we restricted the 1228 
analysis to include only regions that passed a stringent genome alignability filter 1229 
("map35_100%")44, in which SNCs could be called. Organoid-specific peaks were defined 1230 
as peaks detected in 2-month and 4-month old cerebral organoid stages, but not detected 1231 
in earlier stages of differentiation (pluripotency to neuroepithelial stages). Cell state-specific 1232 
peaks were those identified as differentially accessible between NPCs and neurons in 1233 
either human or chimp. 1234 

To study putative effects of fixed SNCs on transcription factor binding in the 1235 
accessible genomic regions, we used funseq279 to scan and statistically evaluate all 1236 
possible transcription factor binding motifs created by fixed SNCs in DA peaks. To 1237 
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generate a list of TF motifs lost on the human lineage, we used the human allele as the 1238 
reference allele and the ancestral allele44 as the alternative allele. To generate a list of TF 1239 
motifs gained on the human lineage, we flipped the state of the reference and alternative 1240 
allele. This allowed us to directly compare the sequence scores of TF motifs gained or lost 1241 
in humans. We subtracted the sequence score with the alternative allele from the sequence 1242 
score with reference allele and performed min-max normalization. Human TF motif gains 1243 
were plotted as positive values, while human TF motif losses were plotted as negative 1244 
values. The genomic location of SNCs predicted to alter TF motif binding are provided in 1245 
Supplementary Table 10. The alteration rate for TF motifs gained in humans was calculated 1246 
by dividing the number of gains in DA peaks by the number of occurrences of that motif 1247 
when scanning all organoid accessible peaks using chromVAR and the human genome 1248 
sequence. The alteration rate for TF motifs lost in humans was calculated by dividing the 1249 
number of losses in DA peaks by the number of occurrences of that motif when scanning 1250 
all organoid accessible peaks using chromVAR and the chimpanzee genome sequence. 1251 
The alteration rates of human TF gains and losses were also calculated per TF family, using 1252 
TF motif family assignments obtained from80. 1253 

We used the macaque cerebral organoid scATAC-seq data to determine species 1254 
specificity of the peaks identified as differentially accessible between human and 1255 
chimpanzee (Supplementary Table 9). In brief, we counted read coverage of each 1256 
accessible region we compared between human and chimp which can lift over to the 1257 
macaque genome in each macaque cell. Regions failed during liftover were seen as 1258 
inaccessible in all macaque cells. A random sampling of reads in human and chimpanzee 1259 
cells was applied to equalize median read coverage in the three species. This procedure 1260 
was applied 100 times and to the two cell states separately. Accessible probability was 1261 
then calculated for the two cell states in the three species. In human and chimpanzee, 1262 
averages across the 100 read-subsampling-based estimation were used. The difference of 1263 
accessible probability between human and macaque (H-M), and that between chimpanzee 1264 
and macaque (C-M), was then calculated for each human-chimpanzee DA peak in each cell 1265 
state. The identified DA was considered as human-specific if its H-M difference is at least 1266 
four times larger than the C-M difference, while its H-M difference is no less than 2%. 1267 
Similar criteria was also applied to define chimp-specific DA. 1268 

To investigate potential biological processes that may be influenced by DA peaks, 1269 
we used human-chimp DA peaks for each cell state (NPC or neuron) as input test regions 1270 
for GREAT (version 3.0.0)74 with all accessible organoids peaks serving as background 1271 
regions. This analysis was then carried out the same way as explained above. 1272 
 1273 
Single-nucleus and bulk RNA-Seq data generation  1274 
Cubes were dissected from prefrontal cortex from human, chimpanzee, bonobo and 1275 
macaque on dry ice aiming for cubes with few curvature to obtain reproducible slicing 1276 
results. Briefly, the thickness of grey matter at all facets of the cube was measured to obtain 1277 
a mean gray matter thickness. The mean thickness was divided by 10 to obtain the 1278 
thickness for each of the segments, whereby each of the segments consisted of several 1279 
slices at 50 um thickness. Sectioning was performed in a cryostat (Microm, Thermo Fisher), 1280 
with slices being alternately immersed in Trizol (Invitrogen) for bulk RNA isolation or 1281 
transferred to a dry tube (low binding) for single nucleus isolation on dry ice. Segments 11 1282 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 27, 2019. ; https://doi.org/10.1101/685057doi: bioRxiv preprint 

https://doi.org/10.1101/685057
http://creativecommons.org/licenses/by-nc-nd/4.0/


 35 

and 12 were collected as well but were considered being derived from white matter of the 1283 
cortex. Samples were then stored at -80°C until further use. 1284 

For nuclei isolation from frozen tissue, all following steps were performed on ice with 1285 
precooled buffers and centrifugation steps were performed at 4°C. Briefly, tissue was spun 1286 
down, thawed on ice and 1 ml PBSE (PBS (Gibco), 2 mM EDTA (Life Technologies)) was 1287 
added to the tissue. The tissue slices were incubated at 4°C on a shaker at 1500 rpm for a 1288 
total of 45-60 min with trituration steps in between using 1000p and 200p to homogenize 1289 
the tissue. Generally, segments 1-10 were used for single-nucleus experiments. Two 1290 
segments were pooled to obtain sufficient material for single nucleus isolation, resulting in 5 1291 
segments per individual. To reduce batch effects and increase the number of nuclei per 1292 
experiment, material from three different individuals (originating from human, chimp/bonobo 1293 
and macaque respectively) was pooled for each segment. After homogenization, solutions 1294 
were combined in a 5 ml tube and spun down at 900xg for 5 min. The pellet was 1295 
resuspended in 1.5 ml PBSE + 1% NP-40 (BioVision), triturated 20 times using 1000p and 1296 
incubated for 7 min incubation on ice. Samples were then spun down at 900xg for 5 min and 1297 
resuspend in 1.5 ml PBSE + 1% BSA (Serva) two times. Samples were then spun down 1298 
again at 900xg for 5 min and resuspended in PBS + 1% BSA. Before sorting, samples were 1299 
filtered through a 30 um cell filter (Miltenyi Biotec) and stained using DAPI (1:1000, BD 1300 
Pharmingen). Nuclei were sorted in yield sort mode (BD FACS AriaIII and BD FACS Fusion) 1301 
based on a defined nuclei population by excluding debris using FSC and SSC and by 1302 
sorting DAPI positive events. Nuclei were sorted in bulk into 96 well plates and spun down 5 1303 
min at 600xg to enrich for nuclei in the pellet.  1304 

For each of the pooled samples, 2 lanes on a 10X Chromium microfluidic chip were 1305 
loaded if feasible, aiming for the maximum possible number of nuclei to be targeted 1306 
obtained from the sorting. Single-nucleus experiments were performed using the 10X 1307 
Genomics Single Cell 3’ kit v2 to encapsulate nuclei along with barcode tagged beads, 1308 
generate and amplify cDNA and to generate sequencing libraries. Each pooled library was 1309 
barcoded using i7 barcodes provided by 10X Genomics. cDNA and sequencing library 1310 
quality and quantity were determined using Agilent’s High Sensitivity DNA Assay. Libraries 1311 
were pooled and sequenced in 150bp paired-end mode on Illumina’s NovaSeq platform as 1312 
provided in Supplementary table 1.  1313 

RNA isolation for bulk-RNA Seq was performed using the Direct-zol 96 RNA kit 1314 
(Zymo Research) and was quantified using Agilent’s Bioanalyzer RNA 6000 Nano and Pico 1315 
kit. Libraries were prepared using the NEBNext Ultra Low RNA Library Prep Kit (New 1316 
England Biolabs). Library quantification was performed using Agilent’s Bioanalyzer DNA 1317 
1000 chip kit. All bulk RNA Seq libraries were pooled at equal ratios and sequenced on one 1318 
lane of an Illumina NovaSeq platform in 150 bp paired-end mode.  1319 
 1320 
Processing of single-nucleus and bulk RNA-seq data from human, chimpanzee and 1321 
macaque adult brains 1322 
Single-nucleus libraries were demultiplexed based on their i7 index sequences using 10x 1323 
Cell Ranger (v2.1). Mapping to the human-chimp-macaque consensus genome and 1324 
generation of count matrices was then performed using the same Cell Ranger, with the 1325 
GENCODE v27 human annotation provided. Nuclei were assigned to species based on 1326 
species specific sites using a two-step approach by separating all great ape from macaque 1327 
nuclei first and subsequently assigning nuclei to either human or chimp/bonobo. Nuclei 1328 
with a support of less than 80% for either of the groups were removed from further 1329 
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analysis. Moreover, nuclei with less than 200 and more than 6,000 genes detected, so as 1330 
those with more than 5% detected transcripts being transcribed from mitochondria, were 1331 
removed from further analyses. 1332 
 The full single-nucleus RNA-seq data set including all species was further analyzed 1333 
using Seurat (v3) (Supplementary Table 12). Single-nucleus expression values were 1334 
normalized and highly variable genes were identified using a variance stabilizing function to 1335 
detect the top 2000 variable genes (Supplementary Table 11). Data were then integrated by 1336 
finding corresponding anchors between the species using 30 dimensions. Scaling and 1337 
principal component analysis were performed using the integrated data. The top 20 1338 
principal components were used to identify neighbors of cells and clusters and to visualize 1339 
the clustering using tSNE embedding. Cluster identities were assigned using unbiased 1340 
identification using cluster markers by running Seurat’s FindAllMarkers function (Wilcoxon 1341 
test, min.pct = 0.25, min logFC = 0.25) using non-integrated expression values, known 1342 
marker genes reported elsewhere (Lake et al., PMID: 27339989, 29227469) and by cell type 1343 
prediction using Seurat’s TransferData function to anchor to the published Drop-seq based 1344 
human adult frontal cortex snRNA-seq data (Lake et al. Nature Biotech, PMID: 29227469). 1345 
Two potential doublet clusters (c11, c19) were excluded from further analysis. For analysis 1346 
of the major cell classes (excitatory neurons, inhibitory neurons, astrocytes, 1347 
oligodendrocytes, oligodendrocyte precursor cells, microglia, endothelial cells) subtype 1348 
clusters were combined and cell type markers recalculated using Seurat’s FindAllMarkers 1349 
function (Wilcoxon test, min.pct = 0.25, min logFC = 0.25) using non-integrated expression 1350 
values (Supplementary Table 13). 1351 

Since nuclei of the three species have significantly different transcriptome coverage, 1352 
pseudo-nuclei were constructed for more robust transcriptome measurement, as well as 1353 
for more fair and efficient comparison, using a similar procedure as described above to 1354 
generate pseudocells, under the constraint of merging only nuclei from the same segment 1355 
of the same sample and grouped in the same cell cluster. The probabilities of nuclei 1356 
selected as pseudo-nuclei seed were 1/13 for human, 1/8 for chimpanzee and 1/10 for 1357 
macaque. 1358 

Reads of the bulk RNA-seq samples were mapped to the human-chimpanzee-1359 
macaque consensus genome using STAR (v2.6.1d). The Python utility hiseq-count was 1360 
used to count the numbers of uniquely mapped reads of genes annotated in GENCODE 1361 
v27 human annotations. DESeq2 was used for normalization and retrieving FPKM as the 1362 
expression level measurement. 1363 
 To determine the laminar origin of each segment, genes with segment-dependent 1364 
expression were firstly screened for each cortical cube. In brief, an ANCOVA analysis was 1365 
applied to compare two models: the natural spline (df = 6) linear model with log10-1366 
transformed FPKM as the response and the segment order as the variable; the null model 1367 
of expression values without any linear relationship with segments. For each of the resulted 1368 
gene, its enriched segments in the cube were identified, as the segments with the gene’s 1369 
expression at least one standard deviation higher than the mean across segments. Genes 1370 
with enriched expression at each segment were then overlapped with the layer markers 1371 
identified in 9. Segments with enriched genes significantly overlapping with markers of only 1372 
one layer were seen as pure-layer original, others were seen as mixture of multiple layers. 1373 
For each mixture segment, a quadratic-programming-based transcriptome deconvolution 81 1374 
was applied to determine the relative contribution of the enriched layers. A layer index was 1375 
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then obtained for each segment, as the average layers weighted by contributed proportion 1376 
of the enriched layers. 1377 
 1378 
Estimation of cell type distribution across cortical layers and gene expression 1379 
patterns in neurons across cortical layers 1380 
 To estimate the cell type composition of each layer, nuclei from each sample were 1381 
randomly assign to one layer, based on the layer mixture proportions estimated above. The 1382 
proportion of each of the six major cell classes: excitatory neurons, inhibitory neurons, 1383 
astrocytes, oligodendrocytes, oligodendrocyte precursor cells (OPCs), microglia and 1384 
endothelial cells, was then calculated for nuclei assigned to each layer in human. This 1385 
procedure was repeated 100 times, with the resulted average as the final estimation. The 1386 
laminar distribution of each cell cluster was also estimated based on the described 1387 
procedure. In addition, a subsampling procedure with replaceable manner of the same 1388 
number of nuclei (n = 200) from each layer was further applied to each of the 100 nuclei 1389 
layer random assignment to control differences on the detected nuclei number of each 1390 
layer. To get more precise estimation of layer origins on the nuclei level for excitatory and 1391 
inhibitory neurons, both of which show a distinct layer distribution pattern across different 1392 
subtypes, we trained an elastic net linear regression model (alpha = 0.5) on excitatory and 1393 
inhibitory neurons separately, with the sample layer indices as the training response and 1394 
expression levels of the highly variable genes as the variables. To enhance model 1395 
robustness, pseudo-nuclei from all the three species together were used for model 1396 
trainings. The trained models were then applied to the excitatory and inhibitory pseudo-1397 
nuclei again. The predicted layer indices were used as the estimated relative laminar 1398 
location of the pseudo-nuclei. The projection of the predicted layer indices to layers were 1399 
done by averaging expression patterns of markers of different layers9.  1400 
 1401 
Differential expression analysis between human and chimpanzee cell types in adult 1402 
brains and determination of their species-specificity 1403 
Due to the sparse nature of the snRNA-seq data and the unequal coverage of nuclei from 1404 
different species, commonly used statistical test for differential expression analysis (e.g. 1405 
Wilcoxon’s rank sum test) failed to provide reliable estimation of DE, even with the state-of-1406 
art VST normalization methods82. As detection rates of genes are correlated with their 1407 
expression levels82, we therefore compared gene expression levels of the same cell type in 1408 
human and chimpanzee by comparing their detection rates, using a GLM-ANCOVA 1409 
analysis similar to the one described above to identify genomic regions with differential 1410 
accessibility. In brief, the pseudo-nuclei expression matrix was binarized. A binomial GLM 1411 
model was trained for each gene, with its detection as the response variable and species of 1412 
pseudo-nuclei as the independent variable. This model was compared to the null model 1413 
with the species variable replaced by a scaling coefficient. The scaling coefficient is fixed to 1414 
one for human pseudo-nuclei and pc/ph for chimpanzee pseudo-nuclei, where pc and ph are 1415 
the average detected gene numbers across pseudo-nuclei involved in the test in 1416 
chimpanzee and human, respectively. 1417 
 While the described DE test was applied to four cell classes with sufficient numbers 1418 
of pseudo-nuclei: excitatory neurons, inhibitory neurons, astrocytes and oligodendrocytes, 1419 
the heterogeneity within the two neuron types, as well as their uneven distributions in 1420 
human and chimpanzee, needed to be considered. A subsampling procedure with 1421 
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replaceable manner was therefore applied. In every subsampling, an equal number of 1422 
pseudo-nuclei (n = 200) from each species were sampled, with pseudonuclei in clusters 1423 
annotated as the cell class of interest sharing equal probability being selected. The 1424 
described DE test was then applied to the sampled nuclei of this cell class. This 1425 
subsampling procedure was repeated for 100 times, and DE genes of each cell class were 1426 
defined as genes with significant DE (BH-corrected P<0.005) in at least 80 times of the 1427 
subsampling. Additional filtering was then applied, requiring the same direction of human-1428 
chimpanzee difference on detection rates and VST-normalized expression values. 1429 
 Macaque pseudo-nuclei were then introduced to investigate species specificity of 1430 
the identified DE. Similar procedure sampling the same number of pseudo-nuclei from 1431 
clusters annotated to be the same cell class was repeated 100 times to the macaque 1432 
pseudo-nuclei. For each sampling, average VST-normalized expression values were 1433 
calculated for each cell class in human, chimpanzee and macaque, with which differences 1434 
between human and macaque (dHM), as well as between chimpanzee and macaque (dCM), 1435 
were calculated. The identified human-chimpanzee DE was defined as human-specific if 1436 
|dHM| > 4 * |dHC|. Genes with chimpanzee-specific DE were identified in the same way 1437 
(Supplementary Table 14).  1438 
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EXTENDED DATA FIGURES 1439 
 1440 

 1441 
Extended Data Figure 1. Differentiation and immunohistochemical characterization of 1442 
human and chimpanzee cerebral organoids. (a) Phase contrast (iPSC stage – 1443 
neuroepithelium, scale bar 200 µm; H9 for human, SandraA for chimpanzee) and bright 1444 
field images (organoid stages, scale bar 1 mm; H9 and Wibj2 for human, JoC and SandraA 1445 
for chimpanzee) of different stages of organoid development for human and chimpanzee 1446 
organoid differentiation. (b) Immunohistochemical stainings of human (Sc102a1 and 409b2) 1447 
and chimpanzee (all SandraA) organoids reveal proper formation of cortical-like regions 1448 
(scale bar 200 µm).  1449 
  1450 
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 1451 
Extended Data Figure 2: Heterogeneity analysis during human cerebral organoid 1452 
development from pluripotency. (a) Cells from different human cell lines were integrated 1453 
using canonical correlation analysis and visualized using t-stochastic neighbor embedding 1454 
(tSNE). (b) tSNE color coded based on cell line and batch. (c) tSNE colored based on time 1455 
point. Heterogeneity analysis was performed on combined cells from day 0 of 1456 
differentiation to 4 month old organoids for iPSC and ESC-derived cells. (d) Distribution of 1457 
number of genes and UMIs for different time points and cell lines. (e) Clustering was 1458 
performed using the top 20 principal components as input for tSNE and cluster names 1459 
were assigned based on expression of cluster marker genes and known marker genes. SC 1460 
– stem cells, NEC – neuroectoderm-like cells, NSC – neural stem cells, (g/o)RGC – 1461 
(gliogenic/outer) radial glia cells, G2M/S NPC – neural progenitor cells in G2M/S phase, 1462 
G2M/S DP – dorsal progenitor cells in G2M/S phase, IP – intermediate progenitor, CN – 1463 
cortical neurons, G2M/S vP – ventral progenitors in G2M/S phase, M/H – 1464 
midbrain/hindbrain, CP – choroid plexus, M – mesenchymal-like cells. (f) tSNE plot colored 1465 
with respect to expression of selected marker genes based on non-integrated expression 1466 
values. (g) Heatmap showing averaged cluster expression for representative marker genes 1467 
for clusters ordered according to their differentiation time from early to later stages and 1468 
regional identity from dorsal to ventral forebrain and non-forebrain cells.   1469 
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 1470 
Extended Data Figure 3: Pseudocell construction, monitoring differentiation using 1471 
RNA velocity, and reference similarity spectrum calculation. 1472 
(a) Pseudocells are constructed based on kNN networks of single cells. Random cells in the 1473 
network are selected as seeds or ‘territory capitals’, with their neighbors as initial members 1474 
belonging to the territories; cells assigned to multiple territories are randomly assigned to 1475 
one to finalize pseudocell territories, with the transcriptome of each pseudocell calculated 1476 
as the average transcriptome of cells in its territory. (b) Boxplots (box, interquartile range 1477 
(IQR); whisker, 1.5*IQR) showing the number of detected genes significantly increased in 1478 
the constructed pseudocells compared to single cells. (c) RNA velocity analysis applied to 1479 
the constructed pseudocells suggests the neurogenesis trajectories of the three different 1480 
neuronal branches of cortical neurons, ventral forebrain neurons and non-forebrain 1481 
neurons. Velocity transition probabilities are shown for five example neural progenitor 1482 
pseudocells (red). (d) Reference Similarity Spectrum (RSS) is calculated for each cell or 1483 
pseudocell against RNA-seq data of 237 fetal macrodissected human brain samples in 1484 
Allen Brain Atlas (Brainspan). Pearson correlation coefficients are calculated across 2,256 1485 
highly variable genes of the Brainspan data set. Correlations of one cell to different 1486 
reference samples are normalized by z-transformation, which represents its normalized 1487 
similarity to reference samples. The normalized correlation to each reference sample across 1488 
cells represent similarity patterns of a cell to each reference sample, while the resulting 1489 
normalized RSS of each cell is seen as its dimension-reduced representation. (e) SPRING 1490 
plot with pseudocells colored by normalized similarities to six Brainspan reference 1491 
samples. 1492 
 1493 
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 1494 
 1495 
Extended Data Figure 4: Marker gene expression during the human organoid time 1496 
course. (a) In situ hybridization images from the Allen Developing Mouse Brain Atlas 1497 
showing expression of Foxg1, Neurod6, and Dlx5 in the mouse developing forebrain, and 1498 
human whole-trajectory SPRING plots colored by the corresponding genes. (b) Whole-1499 
trajectory SPRING plot colored by marker gene expression. (c) Pseudotemporal expression 1500 
of example genes with pseudotemporal expression changes in the whole human cerebral 1501 
organoid developmental trajectory. (d) Umbrella plot showing the similarity of each 1502 
organoid cell to a cell “prototype” generated from a reference scRNA-seq cell atlas of the 1503 
human fetal cortex27. (e) Plots show the proportion of organoid cells per time point that 1504 
match a reference prototype. 1505 
 1506 
 1507 
 1508 
  1509 
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 1510 
Extended Data Figure 5: Analysis of human cerebral organoid single-cell 1511 
transcriptomes from 7 individuals. 1512 
(a) scRNA-seq was performed on 2-month old cerebral organoids from human ESC and six 1513 
iPSC lines. (b) All data were combined and cell heterogeneity was assessed using t-1514 
distributed stochastic neighbor embedding (tSNE) with the top-20 principal components 1515 
(PCs) as the input. Cells are also colored by marker gene expression and RSS. (c) tSNE plot 1516 
with RSS against Brainspan fetal reference data as the input (RSS-tSNE), colored by cell 1517 
lines. Cells from different lines are well integrated. (d) SPRING plot of 2-month old human 1518 
organoid pseudocells, colored by neuronal trajectory branches and pseudotimes. (e) 1519 
SPRING plot of 2-month old human organoid cells, colored by marker gene expression. (f) 1520 
Correlations of expression trajectories of genes with pseudotime-dependent expression 1521 
patterns between cortical cells from each line to the others (pink), ventral cells from each 1522 
line to others (blue), and cortical and ventral cells from the same lines after or before 1523 
aligning the cortical and ventral pseudotimes (purple). (g) Spatial location inference of 1524 
neuron subtypes in human cerebral organoids. (Left) Barplots show proportion of cells of 1525 
each cell type which show highest gene expression pattern similarity to the average 1526 
expression patterns in different structures, based on the processed in situ hybridization 1527 
image data (E13.5) provided in Developing Mouse Brain database of Allen Brain Atlas. 1528 
Expression similarity was calculated based on highly variable genes of the scRNA-seq data 1529 
(top), or regional markers defined with the ISH data (bottom left). (Right) Correlation 1530 
patterns of average regional marker gene expression of each neuron subtype to voxels in 1531 
five example sections (E13.5), as well as the structural annotation of the sections. (h) 1532 
Expression of two marker genes of Diencephalon inhibitory neurons (PCP4, RSPO3) in the 1533 
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SPRING embeddings, and their spatial expression patterns in E13.5 mouse brain (data 1534 
from Allen Brain Atlas). 1535 
  1536 
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Extended Data Figure 6: Supplementary analysis on cell type heterogeneity of 1538 
cerebral organoids and fetal cortical tissues based on scRNA-seq data from Fluidigm 1539 
C1. 1540 
(a) Overview of the Fluidigm C1 scRNA-seq data. Each dot represents a cerebral organoid 1541 
or fetal brain sample from one cell line or species at a certain age, with its size showing the 1542 
number of cells measured. The left panel shows organoid sample information as published 1543 
in Pollen et al. 2019 (excluding redundant cells from Camp et al. 2015 and Mora-Bermudez 1544 
et al. 2016), including the data initially published in Sloan et al. 2017. The middle panel 1545 
shows organoid sample information generated in Camp et al. 2015, Mora-Bermudez et al. 1546 
2016, and in this manuscript. The right panel shows fetal prefrontal cortex sample 1547 
information reported in Nowakowski et al. 2017. (b) All cerebral organoid data were 1548 
combined and cell heterogeneity was assessed using t-distributed stochastic neighbor 1549 
embedding (tSNE) with the reference similarity spectrum (RSS) profiles to the fetal 1550 
Brainspan data as the input. Cells are colored by cell type/cluster, species, institutions 1551 
generating the data, dorsal trajectory pseudotimes, and marker gene expression. (c) tSNE 1552 
plots for all fetal brain data to assess cell heterogeneity, with the RSS profiles to the fetal 1553 
Brainspan references as the input. Cells are colored by cell type/cluster, species, dorsal 1554 
excitatory neuron trajectory pseudotimes, and marker gene expression (d) Heatmap 1555 
showing marker gene expression patterns across different cell types in the droplet-based 1556 
organoid scRNA-seq data generated in this manuscript and the above described C1-based 1557 
scRNA-seq data. 1558 
  1559 
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 1560 
 1561 
Extended Data Figure 7: Heterogeneity analysis during chimp cerebral organoid 1562 
development from pluripotency. (a) Heterogeneity analysis for iPSC-derived chimpanzee 1563 
cells from day 0 of differentiation to 4 months of organoid development for one cell line. (b) 1564 
Heatmap visualizing averaged cluster expression for marker genes with columns ordered 1565 
based on differentiation progress from early to late time points and regional identity sorted 1566 
from dorsal to ventral forebrain to non-forebrain cells and non-ectodermal-derived cells. (c) 1567 
Cluster identification and t-stochastic neighbor embedding using the top 15 principal 1568 
components for clustering. Cluster assignment was based on cluster markers as well as 1569 
expression patterns of known marker genes. SC – stem cells, NSC -  neural stem cells, 1570 
RGC – radial glia cells, G2M/S DP – dorsal progenitors in G2M/S phase, IP – intermediate 1571 
progenitors, CN – cortical neuron, dlN – deep layer neuron, ulN – upper layer neurons, vP/N 1572 
– ventral progenitor/neuron, H – hindbrain, M – mesenchymal-like cells, OL – off lineage 1573 
cells, MIC - microglia. (d) tSNE plots colored based on gene expression of representative 1574 
marker genes used to assign cluster identities.   1575 
  1576 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 27, 2019. ; https://doi.org/10.1101/685057doi: bioRxiv preprint 

https://doi.org/10.1101/685057
http://creativecommons.org/licenses/by-nc-nd/4.0/


 48 

 1577 
Extended Data Figure 8: Supplementary analysis on timing difference of neuron 1578 
maturation in human and chimpanzee cerebral organoids. 1579 
(a) Boxplots (interquartile range with minimum and maximum, outliers removed) showing 1580 
sum expression levels (in RPKM) of genes with Gene Ontology annotation ‘neuron 1581 
projection’, ‘neuron differentiation’, ‘synapse assembly’ and ‘neurotransmitter secretion’ in 1582 
Brainspan fetal cortical samples aged from 8 post conception weeks (pcw) to 17 pcw. (b) 1583 
Boxplots showing sum expression levels of the same gene lists in fetal human dorsal 1584 
excitatory neurons along the estimated developmental pseudotimes (Nowakowski et al. 1585 
2017 data set). (c) Boxplots showing sum expression levels of genes with specific 1586 
annotation to only one of the four GO terms in human and chimpanzee along the cortical 1587 
pseudotimes. Heatmaps showing expression of example genes from the GO terms for 1588 
human and chimp along pseudotime bins. The Venn diagram on the left shows the overlap 1589 
of genes related to the four GO terms. (d) Distribution of neuron projection scores of human 1590 
and chimpanzee cortical cells reported in Pollen et al. 2019 along the cortical pseudotimes. 1591 
Each dot represents one cell, and is colored by the organoid cell line. Light colors represent 1592 
human cell lines, and dark colors represent chimpanzee ones. Two-sided Wilcoxon’s rank 1593 
sum test (*: P<0.1; **: P<0.01). (e) Observed timing difference of upper-deeper layer 1594 
specification in human and chimpanzee cerebral organoids from 10X genomics data 1595 
generated in this study. The left panel shows expression of cortical deep (BCL11B, left) and 1596 
upper (SATB2, right) layer marker genes projected onto the chimpanzee (top) and human 1597 
(bottom) SPRING plot. BCL11B and SATB2 become anti-correlated in their 1598 
pseudotemporal expression profile in both human and chimpanzee (right), while the onset 1599 
of anticorrelation happens earlier in chimpanzee than in human. (f) Abundance of upper 1600 
layer neurons relative to deeper layer neurons in human and macaque fetal prefrontal 1601 
cortex samples in Nowakowski et al. 2017 grouped by early time points (<100 days old) or 1602 
all time points combined. 1603 
  1604 
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 1605 
Extended Data Figure 9: Single-cell RNA-seq analysis of macaque cerebral organoids. 1606 
(a) scRNA-seq was performed on 2 to 4-month cerebral organoids from a macaque iPSC 1607 
line. The SPRING plot of pseudocells was constructed with the top 20 PCs as the input. 1608 
The heterogeneity analysis suggests multiple cell types in the macaque organoids, 1609 
including cortical neurons, NPCs, astrocytes and other cell types such as retina and 1610 
mesenchyme-like cells. (b) SPRING plot colored by pseudotimes of cortical pseudocells, 1611 
which are the pseudocells’ quantiles of DC1 of the cortical pseudocells diffusion map. (c) 1612 
SPRING plot colored by marker gene expression. (d) The onset of anti-correlation between 1613 
SATB2 and BCL11B occurs earlier along the macaque pseudotime, relative to human and 1614 
chimpanzee, when focusing on the 2-month cerebral organoids. (e) Boxplots (box, 1615 
interquartile range (IQR); whisker, 1.5*IQR) showing the neuron projection scores in human, 1616 
chimpanzee and macaque along the unaligned cortical pseudotimes. 1617 
  1618 
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 1619 
Extended Data Figure 10: Expression of human-specific genes along human organoid 1620 
development from pluripotency.  1621 
(a) Reported human-specific genes were collected from four previous publications, and the 1622 
expression of these genes was analyzed along the human organoid developmental 1623 
trajectory from pluripotency to 4 month old organoids. (b) SPRING plot colored by 1624 
expression of the human-specific genes. 1625 
  1626 
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 1627 
Extended Data Figure 11: Pseudotime alignment between primates and differential 1628 
expression between human and chimpanzee. (a) SPRING plots visualizing the kNN 1629 
networks of human and chimpanzee pseudocells, and macaque cells, which represent 1630 
neural progenitors (NPC) and neurons of different brain regions. Cortical NPCs and neurons 1631 
are colored by their pseudotimes. (b) Ratios of upper layer (UL) to deeper layer (DL) neuron 1632 
marker expression in human (black), chimpanzee (dark grey) and macaque (light grey) 1633 
organoids. The dashed line indicates the cutoff applied to human pseudocells to filter out 1634 
those representing UL neurons. (c) Truncated dynamic time warping (dtw)-based alignment 1635 
was applied to align human, chimpanzee and macaque cortical pseudotime courses. Two 1636 
support vector regression models were trained to predict chimpanzee (upper) and 1637 
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macaque (lower) pseudotimes of human pseudocells. A constrained B-splines regression 1638 
model was fitted to determine the trimming point at the chimpanzee and macaque 1639 
pseudotime courses, respectively. An end-to-end dtw-based alignment was applied to the 1640 
human pseudotime course to the trimmed chimpanzee and macaque pseudotime courses 1641 
for the final alignments (middle). (d) Pseudotemporal expression profiles of GLI3, EOMES 1642 
and BCL11B along the human, chimpanzee and macaque cortical pseudotimes, before 1643 
(left) and after (right) the pseudotime alignment procedures. (e) Robustness and false 1644 
positive rate of differential pseudotemporal expression between human and chimpanzee 1645 
based on the number of cell lines involved in the analysis with constrained replaceable 1646 
pseudocell subsampling. In each subsampling, pseudocells representing cells from a 1647 
certain number of human lines were sampled in a replaceable manner to recapitulate 1648 
pseudocell distribution along pseudotime course of the chimpanzee pseudocells. 1649 
Differential expression (DE) analysis was applied to compare all chimpanzee pseudocells 1650 
and the sampled human pseudocells to estimate robustness to cell line numbers (dark grey 1651 
boxes), and to compare sampled human pseudocells to human pseudocells from another 1652 
two lines sampled with the same procedure to estimate false positive rate (light grey 1653 
boxes). Boxplots: box, interquartile range (IQR); line, 1.5*IQR; dots, outliers. (f) Robustly 1654 
detected human-chimpanzee DE genes (robust DE genes) are defined as the non-1655 
ribosomal genes which were detected as DE genes in at least 80% of the subsampling-1656 
based human-chimpanzee DE analysis using any number of human lines (black). The 1657 
dendrogram shows the hierarchical clustering of robust DE genes, based on their human-1658 
chimpanzee pseudotemporal DE patterns along the aligned pseudotimes of cortical 1659 
organoid pseudocells, resulting in eight clusters of robust DE genes. (g) Pseudotemporal 1660 
differential expression patterns between human and chimpanzee of the eight clusters of 1661 
genes along the pseudotimes of cortical organoid pseudocells with 50% and 95% 1662 
confidence intervals shown in dark and light grey, respectively. (h) Number of differentially 1663 
expressed genes in chimpanzee vs. human and macaque comparison grouped by gain or 1664 
loss of expression in chimpanzees. A gain of expression specifically in chimpanzees is 1665 
more likely than a loss of expression pattern conserved in the other primates. (i) 1666 
Comparison of the reported human-chimpanzee pseudotemporal DE based on 10X 1667 
Genomics data with the Fluidigm C1-based scRNA-seq data of human and chimpanzee 1668 
cerebral organoids. The two rows show the results based on C1 data generated in this 1669 
manuscript and combined with data from Camp et al. 201517, Mora-Bermudez et al. 201619, 1670 
Pollen et al. 201921. The first two columns show estimated human-chimpanzee DE 1671 
directionality and magnitude in the reported droplet-based scRNA-seq data and the C1-1672 
based measurement, with the first column presenting the generalized DE along the whole 1673 
cortical pseudotimes, and the second column presenting the maximum DE along the 1674 
pseudotimes. The red dots represent consistent DE genes, which have consistent DE 1675 
directionalities in the two data sets. The right panel shows pseudotime intervals with the 1676 
largest human-chimpanzee DE in the two data sets in comparison to the consistent DE 1677 
genes. Dot sizes represent frequencies. (j) Comparison of the estimated human-macaque 1678 
DE directionality and magnitude of the human-specific DE genes using human and 1679 
macaque fetal prefrontal cortex scRNA-seq data21,27.  1680 
  1681 
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 1682 
Extended Data Figure 12: Organoid ventral forebrain cell heterogeneity and 1683 
differential expression between human and chimpanzee.  1684 
(a) Ventral forebrain cell heterogeneity in organoids was investigated by tSNE embeddings, 1685 
with RSS profiles of human and chimpanzee ventral pseudocells combined as the input. 1686 
Pseudocell clusters were annotated based on marker gene expression. Pseudocells were 1687 
also colored by species and diffusion map based on medial ganglionic eminence (MGE) 1688 
neuron developmental pseudotimes. (b) tSNE plots colored by marker gene expression, 1689 
and in situ hybridization images from the Allen Developing Mouse Brain Atlas showing 1690 
expression of Dlx5, Isl1 and Sox6 in the mouse developing ventral forebrain (E13.5).  (c) 1691 
Human-chimpanzee ventral DE genes are largely shared along the dorsal forebrain 1692 
developmental trajectories. (d) Human-chimpanzee DE directionalities and magnitudes, and 1693 
DE genes detection rates on the two trajectories. DE directionalities and magnitudes are 1694 
consistent on the dorsal and MGE trajectories, with most of the shared DE genes showing 1695 
the highest human-chimpanzee expression divergence at NPC. DE genes specifically 1696 
detected on one trajectory have tendency of higher detection rates on the trajectory with 1697 
detected human-chimpanzee DE. 1698 
  1699 
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 1700 
Extended Data Figure 13: Chromatin accessibility in cerebral organoids. 1701 
(a) t-SNE projection of highly variable gene expression in Fluidigm C1-based scRNA-seq 1702 
data of cerebral organoids. Cortical cells are colored red, with larger points corresponding 1703 
to cells with paired expression and chromatin accessibility data (data generated from the 1704 
same cell suspension). 94.4% of cells with paired data are cortical, validating the cortical 1705 
origins of the dissected cerebral organoid regions. (b) Cerebral organoid accessible peaks 1706 
are significantly and highly enriched for overlapping human VISTA enhancers active in the 1707 
forebrain relative to all other tissues (left). Three representative human VISTA enhancers 1708 
with validated expression in E11.5 mouse forebrain that overlap cerebral organoid peaks 1709 
are shown (out of 268 such enhancers). (c) Barplot showing the percentage of genes with 1710 
accessible chromatin at the promoter of genes that are expressed or not expressed in 1711 
human cerebral organoids. (d-f) t-SNE projection of bias-corrected deviations in 1712 
accessibility for 7-mers within organoid scATAC-seq peaks per cell, with cells color coded 1713 
by cell state (NPC, neuron) for human (d), chimpanzee (e), and macaque (f). Binding motif 1714 
deviation Z-scores for representative transcription factors are shown, as well as deviation 1715 
Z-scores for overlapping differentially accessible (DA) snATAC-seq peaks in mouse 1716 
developing forebrain excitatory neurons71. (g) Signal intensity tracks of aggregated and 1717 
individual single-cell chromatin accessibility data per cell state in human organoids at a 1718 
NPC-specific promoter peak (left) and a neuron-specific promoter peak (right). For 1719 
comparison, cerebral organoid bulk ATAC-seq chromatin accessibility data and human 1720 
fetal brain bulk DNase-seq is shown. (h) Peaks identified as DA between NPC and neurons 1721 
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in human organoids were used as input for gene ontology enrichment analysis using the 1722 
tool GREAT. Barplot showing the enrichment of representative enriched biological process 1723 
gene ontology (GO) terms associated with human NPC DA peaks (gold) or human neuron 1724 
DA peaks (light red) relative to all human organoid accessible peaks. Each point in the 1725 
scatter plot represents a GO term and is colored by their enrichment in NPCs (yellow), 1726 
neurons (red), both (dark red), or neither (grey). (i) tSNE plots colored by pseudotime, and 1727 
heatmaps showing binding motif deviation Z-scores for selected transcription factors 1728 
(rows) in all cells (columns) ordered in pseudotime for human (left) and chimpanzee (right).   1729 
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 1730 
Extended Data Figure 14: Chromatin accessibility during development from 1731 
pluripotency to cortex formation in human cerebral organoids.  1732 
(a) t-SNE projection of bias-corrected deviations in accessibility for 7-mers within scATAC-1733 
seq peaks per cell, with cells color coded by time point, and organoid data color coded by 1734 
cell state (NPC, neuron). Binding motif deviation Z-scores for representative transcription 1735 
factors are shown to the right. (b) t-SNE plot with cells colored by their deviation Z-score 1736 
for overlapping differentially accessible snATAC-seq peaks from mouse developing 1737 
forebrain71 radial glia cells (left) or excitatory neurons (right). (c) Diffusion map projection 1738 
using the top 250 differentially accessible peaks per time point/cell state. The principle 1739 
curve fit through the cells is shown as a black line. (d) Proportion of cells scaled by row is 1740 
shown for each time point/cell state over pseudotime. (e) Heatmap representing the 1741 
deviation Z-score of TF motifs that vary over the time course plotted for each cell across 1742 
pseudotime.  1743 
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 1744 
Extended Data Figure 15: Chromatin accessibility differences in human and 1745 
chimpanzee cerebral organoids. 1746 
(a) Signal intensity tracks of aggregated single-cell and bulk chromatin accessibility data 1747 
from human, chimpanzee, and macaque at a human-specific NPC-specific differentially 1748 
accessible (DA) peak (left) and a human-specific neuron-specific DA peak (right). (b) The 8 1749 
most significant human-chimp organoid DA peaks containing a fixed SNC and accessible 1750 
only in the cerebral organoid stage that overlap a VISTA human enhancer with validated 1751 
activity in the developing mouse forebrain (out of 68 such cases). For each DA peak, the 1752 
accessibility across pseudotime is shown for human and chimpanzee with heatmaps 1753 
depicting cells where the peak is accessible (yellow) or inaccessible (black). The expression 1754 
pattern of the overlapping VISTA enhancer in E11.5 mouse embryos is shown to the right. 1755 
(c) Shown are the proportion of differentially expressed (DE) genes (dark color) or all 1756 
expressed genes as background (light color) with a human-chimp organoid DA peak 1757 
overlapping the promoter region (blue) or is distal to the promoter region (pink). The plot 1758 
shows that DE genes between human and chimpanzee organoids are more likely to have a 1759 
nearby DA peak than background. (d) Fixed SNCs predicted to significantly alter 1760 
transcription factor binding within human-chimp organoid DA peaks, with the name of the 1761 
altered motif shown for peaks linked to DE genes (red points). On the right, signal intensity 1762 
tracks for a human motif gain (top) and human motif loss (bottom) within a human-chimp 1763 
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DA peak. (e) Altered transcription factor motifs grouped by family plotted for their alteration 1764 
rate, which is the number of times a family member’s motif is altered in human-chimp 1765 
organoid DA peaks divided by the number of times it’s detected in all accessible organoid 1766 
peaks. (f) 20 transcription factors with the highest alteration rate, which is the number of 1767 
times a motif is altered in human-chimp organoid DA peaks divided by the number of times 1768 
it’s detected in all accessible organoids peaks. Heatmaps show their expression level in 1769 
human and chimpanzee NPCs and neurons, with the bars to the left representing the 1770 
average expression level across NPCs and neurons. (g) Example of an accessible peak in 1771 
chimpanzee and macaque that overlaps a computationally-verified, non-polymorphic 1772 
human conserved deletion (hCONDEL). (h-i) Signal intensity tracks of aggregated single-cell 1773 
or bulk chromatin accessibility data from human, chimpanzee and macaque for two genes, 1774 
(h) LYPD1 and (i) RAC1, that have higher expression specifically in humans. Gene 1775 
expression is shown in heatmaps (below).  1776 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 27, 2019. ; https://doi.org/10.1101/685057doi: bioRxiv preprint 

https://doi.org/10.1101/685057
http://creativecommons.org/licenses/by-nc-nd/4.0/


 59 

 1777 
Extended Data Figure 16: Supplementary analysis of human, chimpanzee and 1778 
macaque adult brain single-nucleus RNA-seq. 1779 
(a) The snRNA-seq data of adult brains in human, chimpanzee/bonobo and macaque were 1780 
integrated using Seurat v3. (b) Boxplots (box, interquartile range (IQR); whisker, 1.5*IQR) 1781 
showing the number of detected genes in single nuclei and pseudonuclei. (c) Heatmap 1782 
showing the average prediction scores of each of the 20 identified clusters to each of the 1783 
cell types reported by Lake et al. 2017, as well as their estimated distributions in different 1784 
cortical layers in humans. Clusters are grouped in major cell classes. (d) Cell type 1785 
composition of layers and layer distribution of cell types in human. (Left) Stacked bars 1786 
showing the estimated cell type composition of different layers. (Right) Boxplots (box, 1787 
interquartile range (IQR); whisker, 1.5*IQR) showing the estimated proportion per layer for 1788 
four cell classes: excitatory neurons, inhibitory neurons, astrocytes and oligodendrocytes. 1789 
(e) Genomic conservation based on average phastCon scores of developmental stage 1790 
markers from iPSCs to neurons in human cerebral organoids (***: two-sided Wilcoxon’s 1791 
rank sum test, P<0.0001). (f) Hierarchical clustering of the average transcriptome of seven 1792 
cell classes in the three species. (g) Expression of layer markers (RASGRF2, RORB, ETV1, 1793 
TLE4) in excitatory neurons and inhibitory neuron subtype markers (PVALB, SST) in 1794 
inhibitory neurons, along the predicted laminar origin of the pseudonuclei in human, 1795 
chimpanzee/bonobo and macaque. (h) Comparison of gene detection rates in organoid 1796 
dorsal neurons and adult excitatory neurons, with human-chimpanzee DE genes in adult 1797 
excitatory neurons colored in yellow, DE genes in organoid dorsal neurons colored in 1798 
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green, and shared DE genes colored in black. The dashed curve shows the fitted 1799 
relationship between the two systems using all genes. Area below the curve represents 1800 
higher detection rate in organoid neurons than adult neurons, and that above the curve 1801 
represents higher detection rate in adult neurons. (i) Comparison of human-chimpanzee DE 1802 
(left) between organoid dorsal neurons and adult excitatory neurons, as well as (right) 1803 
between organoid ventral MGE neurons and adult inhibitory neurons. Densities are shown 1804 
as grey scale shadows, with human-chimpanzee DE genes highlighted (yellow: DE only in 1805 
adult; green: DE only in organoids; black: DE in both). (j) Number of human and chimp 1806 
differentially expressed genes for cell classes based on all cell types, a subset of cell types 1807 
and specific cell types. (k) Number of chimpanzee-specific DE genes across cell classes. 1808 
The majority of the chimpanzee-specific DE genes have gain of expression (dark) rather 1809 
than loss of expression (light). 1810 
 1811 
  1812 
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