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Abstract

The functional network of the human brain continually adapts to changing environmental demands. Such
adaptation spans multiple time scales, from seconds during task performance to days and weeks during motor
or cognitive training. Yet the precise consequence of behavioral automation for functional network architecture,
particularly in the context of complex tasks, remains far from understood. Here we investigated the neural
reflections of behavioral adaptation as human participants mastered a dual n-back task over 6 weeks of training.
In four fMRI scans equally spanning the training period, we assessed the level of brain network modularity, a
common substrate for adaptation in biological systems. Specifically, we investigated both static and dynamic
modularity to probe the segregation between task-relevant fronto-parietal and default mode systems, and to
assess their time-evolving recruitment and integration. We found that whole-brain modularity was higher during
the resting state than during the dual n-back task, and increased as demands heightened from the 1-back to
the 2-back condition. Modularity also steadily increased in response to training for both task conditions. In an
explicitly dynamic analysis, we found that the recruitment of both the default mode and fronto-parietal systems
during the dual n-back task was modulated by training. Moreover, the change in default mode recruitment
from the first scanning session to the last was positively correlated with behavioral improvement after training.
Reliably across static and dynamic network analyses, our findings suggest that the automation of a cognitively
demanding task may result in more segregated network organization.

INTRODUCTION

The brain constantly adjusts its architecture to meet
the demands of the ever-changing environment. Such
neural adaptation spans multiple time scales, being ob-
served over seconds to minutes during task performance
(Braun et al., 2015; Vatansever et al., 2015; Cohen and
D’Esposito, 2016; Shine et al., 2016; Finc et al., 2017),
over days to weeks during learning (Bassett et al., 2013,
2015; Mohr et al., 2016), and over years during devel-
opment (Betzel et al., 2014). Like many other com-

plex biological systems, the adaptability of the brain
is supported by its modular structure (Friston, 2009;
Sporns, 2013). Intuitively, modularity allows for dy-
namic switching between states of segregated and in-
tegrated information processing, whose balance is con-
stantly adjusted to meet the requirements of our cog-
nitive faculties (Bullmore and Sporns, 2012; Shine and
Poldrack, 2018). Understanding the patterns of these
adjustments and determining the rules that explicate
their relation to human behavior is one of the most im-
portant challenges for cognitive neuroscience.
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It is hypothesized that simple, highly automated
sensorimotor tasks can be maintained by a highly segre-
gated brain organization, while more complex and cog-
nitively demanding tasks require integration between
multiple subnetworks (Dehaene et al., 1998). Indeed,
switching from a segregated to a more costly integrated
network architecture is consistently reported as human
participants transition to challenging tasks with heavy
cognitive load (Braun et al., 2015; Kitzbichler et al.,
2011; Vatansever et al., 2015; Shine et al., 2016; Cohen
and D’Esposito, 2016; Finc et al., 2017); in contrast,
network organization during simple motor tasks re-
mains highly segregated (Cohen and D’Esposito, 2016;
Shine et al., 2016). Whether shifts towards network
integration depend on the level of task complexity or
on the level of task automation remains to be delin-
eated (Shine and Poldrack, 2018). Is it possible that a
complex, but fully automated task, can be performed
without the need for costly network integration?

Longitudinal studies, during which participants are
scanned multiple times while mastering a specific task,
can shed light on patterns of network adaptation related
to learning and task automation (Shine and Poldrack,
2018). For example, Bassett et al. (2015) showed that
training on a visuomotor task over the course of 6 weeks
leads to increased autonomy between task-relevant sub-
networks in motor and visual cortices. In another study,
Mohr et al. (2016) found increased segregation of the
default mode system after short-term visuomotor train-
ing. Collectively, these findings suggest that an increase
in network segregation and a decrease in integration
may constitute a natural consequence of task automa-
tion. However, these results refer to the training of
simple motor tasks, which do not require extensive net-
work integration, in contrast to complex tasks involv-
ing higher order cognitive functions such as cognitive
control (Shine and Poldrack, 2018). The consequence
of complex cognitive task automation on the balance
between network segregation and network integration
remains unknown.

In the present study, we investigated whether mas-
tering a demanding working memory task affects the
balance between network segregation and integration
during task performance. Does effortless performance
of the demanding cognitive task lead to the same in-
crease in network segregation that is characteristic of
simple motor tasks (Cohen and D’Esposito, 2016; Mohr
et al., 2016)? Is the breakdown of network segregation
during the changing demands of the cognitive task still
necessary when the cognitive task is automated? Fi-
nally, do we observe stronger separation of subnetworks
relevant to cognitive control when tracking dynami-
cal brain network reorganization throughout the course
of training? To address these questions, participants
underwent four functional magnetic resonance imaging
(fMRI) scans while performing an adaptive dual n-back

task taxing working memory over a 6-week training pe-
riod. To ensure that participants achieved mastery in
the task due to training, and not simply due to repeated
exposure to the task, we compared their performance
to an active control group. We examined network re-
configuration using static functional network measures
to distinguish distinct task conditions, and using dy-
namic network measures to study fluctuations of net-
work topology across short task blocks.

First, we investigated global changes in network seg-
regation (modularity) across different task conditions as
compared to rest. In line with the aforementioned re-
search, we expected modularity to decrease during dual
n-back task performance compared to rest, and also to
decrease as the demands of the n-back task increased.
We also hypothesized that over the course of training
network segregation during the n-back task would in-
crease, and the extent of demand-related modularity
change would decrease. In the systems relevant to work-
ing memory performance – the frontoparietal and the
default mode systems (Cocchi et al., 2013) – we ex-
pected an increase in autonomy throughout the course
of training. To verify this hypothesis, we utilized pre-
viously developed dynamic network methods (Bassett
et al., 2015) to assess the recruitment and integration
of the default mode and fronto-parietal systems. Fi-
nally, we expected that changes in network architecture
would correspond to the level of task automation and
training progress.

RESULTS

Behavioral changes during training

Behavioral improvement in the task can either occur
as a result of training or occur in response to repeated
exposure to a task across multiple scanning sessions.
To distinguish the effect of intensive working memory
practice and task automation from the effect of repeated
exposure, we employed an active control group. When
participants from the experimental group underwent
the challenging, adaptive, dual n-back working mem-
ory training, participants from the control group per-
formed a single, non-adaptive, 1-back working memory
task (Fig. 1).

The dual n-back task (1-back and 2-back condi-
tions) was performed in the scanner on the first day
of the experiment (Naive), after two weeks of training
(Early), after four weeks of training (Middle), and af-
ter six weeks of training (Late). We measured partici-
pant performance as a penalized reaction time (pRT),
which incorporates a measure of accuracy (see Meth-
ods). Better cognitive performance is characterized
by lower values of pRT. We expected that participants
from the experimental group would exhibit a substan-
tial decrease of pRT during training, particularly for the
2-back condition in comparison to the 1-back condition,
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the latter being easy to master even without extensive
training.

Using multilevel modelling (see Methods), we
found that participants had significantly different pRT
depending on the training stage (Naive, Early, Middle,
Late), condition (1-back vs. 2-back), and group (Ex-
perimental vs. Control). Specifically, we found a signif-
icant session × condition × group interaction (χ2(3) =
22.83, p = 0.00004; Fig. 2). The greatest improvement
was observed in the experimental group when compar-
ing ‘Naive’ to ‘Late’ training phases during the 2-back
condition (mean 43.4% pRT improvement; Bonferroni-
corrected, t(22) = 10.39, p < 0.0001). For comparison,
the control group exhibited only a 10.7% decrease of
pRT during the 2-back condition (Bonferroni-corrected,
t(22) = 3.54, p = 0.002). The decrease in pRT was sig-
nificantly larger for the experimental group than for the
control group (Bonferroni-corrected, t(43.576) = 5.34,
p < 0.0001; Fig. 2d). In the 1-back condition, the ex-
perimental group displayed a 12.5% reduction in pRT
(Bonferroni-corrected, t(22) = 3.86, p = 0.0008); no
improvement was found in the control group (t(22) =
1.90, p = 0.07) (see Fig. 2c). The change in pRT dur-
ing the 1-back condition did not differ between the two
groups (t(44) = 1.39, p = 0.17). Interestingly, in ex-
perimental group we observed no significant difference
in performance between the 1-back condition and the
2-back condition after training (Bonferroni-corrected,
t(22) = 1.85, p = 0.08). This finding suggests that the
2-back condition, which was much more effortful before
training (’Naive’ phase), was performed effortlessly af-
ter training, at the same level as the 1-back task.

fMRI (Naive)

fMRI (Early)

fMRI (Middle)

fMRI (Late)

training 
6 x 30 min 

training 
6 x 30 min 

training 
6 x 30 min 

6 
w

ee
ks

1-back
2-back

1

2

Static FC

Dynamic FC

2 x 4 sessions St
at

ic
 m

od
ul

ar
ity

. . . 

D
yn

am
ic

 m
od

ul
ar

ity

20 x 4 sessions

Figure 1: Study design. (Left) The dual n-back working mem-
ory task was performed in the scanner on the first day of the
experiment (Naive), after 2 weeks of training (Early), after 4
weeks of training (Middle), and after 6 weeks of training (Late).
(Right) We investigated (1) changes in static modularity across
task conditions (1-back versus 2-back) and (2) dynamic fluctua-
tions in network community structure from block to block.

In sum, the results demonstrate that the experimen-
tal group gradually improved in behavioral performance
measured during the fMRI scanning sessions, and that
this improvement was significantly greater than the cor-
responding effect in the control group. We also repli-

cated these findings using an alternative measure of be-
havior, d-prime, which has historically proven useful in
probing human performance on the n-back task (see
Fig. S3).
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Figure 2: Behavioral performance modulated by training.
(a, b) Line plots representing mean behavioral performance mea-
sured as penalized reaction time (pRT), calculated for all train-
ing phases (Naive, Early, Middle, Late), dual n-back conditions
(1-back and 2-back), and groups ((a) experimental and (b) con-
trol). We found a significant interaction effect between session,
condition, and group (χ2(3) = 22.83, p = 0.00004). After train-
ing, the experimental group exhibited no difference in behavioral
performance between the 1-back and 2-back conditions. (c) No
significant difference between groups was found for pRT reduc-
tion (from Naive to Late sessions) during the 1-back task condi-
tion. (d) The experimental group showed a significant reduction
in pRT compared to the control group during the challenging 2-
back condition. Error bars represent 95% confidence intervals.
*** p < 0.001 Bonferroni corrected; ** p < 0.01 Bonferroni cor-
rected.

Whole-brain network modularity changes

To establish whether complex working memory task
training leads to increased network segregation at the
whole-brain level, we investigated network modularity
during different sessions and load conditions. Here, we
employed a common community detection algorithm
known as modularity maximization (Newman and Gir-
van, 2004), which we implemented using a Louvain-like
locally greedy algorithm. The modularity quality func-
tion to be optimized encodes the extent to which the
network can be divided into non-overlapping communi-
ties. Intuitively, a community is a group of densely in-
terconnected nodes with sparse connections to the rest
of the network (Newman and Girvan, 2004). Modular-
ity is a relatively simple measure of segregation, with
high values indicating greater segregation of the brain
into non-overlapping communities and low values indi-
cating lesser segregation. Because modularity depends
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upon the network’s total connectivity strength, we nor-
malized each modularity score by dividing it by the
mean of the corresponding null distribution calculated
on a set of randomly rewired versions of the original
networks (Maslov and Sneppen, 2002) (see Methods
for details).
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Figure 3: Modularity differences across task, sessions, and
groups. (a) Modularity differences between resting and dual
n-back task conditions. (b) Correlation between change (from
2-back to 1-back) of the normalized modularity and the change
(from 2-back to 1-back) of behavioral performance as measured
by a penalized reaction time (pRT). (c, d) Line plots repre-
senting the mean values of modularity for each scanning session
(Naive, Late, Middle, Late) and condition, separately for (c) the
experimental group and (d) the control group. (e, f) Modularity
changes from ‘Naive’ to ‘Late’ sessions for the 1-back condition
and the 2-back condition. Error bars represent 95% confidence
intervals. *** p < 0.001 Bonferroni corrected; ** p < 0.01 Bon-
ferroni corrected, * p < 0.05 uncorrected.

Functional network modularity may vary depend-
ing on the difficulty of the task. Several studies have
reported a reduction in modular structure during de-
manding n-back conditions (Kitzbichler et al., 2011;
Vatansever et al., 2015; Finc et al., 2017; Cohen and
D’Esposito, 2016). Here, we first investigated the dif-
ferences between the high-demand 2-back condition and
the low-demand 1-back condition as compared to a
baseline resting state scan acquired during the first ses-
sion (‘Naive’) for all subjects. Using multilevel mod-

eling we found a significant main effect of condition
(χ2(2) = 84.13, p < 0.00001). Planned contrast anal-
ysis revealed that network modularity during the dual
n-back task was lower than network modularity dur-
ing the resting state (β = -0.20, t(88) = -11.37, p <
0.00001). Furthermore, modularity was significantly re-
duced during the 2-back condition relative to the 1-back
condition (β = -0.08, t(296) = -2.60, p < 0.05; Fig. 3a).
We also found that the difference in modularity between
the 2-back condition and the 1-back condition was sig-
nificantly correlated with the difference in penalized re-
action time between the two conditions (Pearson’s r
= 0.30, p = 0.04; Fig. 3b). The greater the decrease
in modularity from 1-back to 2-back, the smaller the
decline in performance, as measured by pRT, from 1-
back to 2-back. This result is consistent with several
prior studies which have reported an inverse associa-
tion between modularity and behavioral performance
(Vatansever et al., 2015; Shine et al., 2016; Finc et al.,
2017). We note that the results reported here use a
functional brain parcellation comprised of 264 regions
of interests provided by Power et al. (2011); in robust-
ness tests, we performed the same analyses using the
Schaefer parcellation, and obtained similar results (see
Supplementary Materials).

The modularity of functional brain network archi-
tecture decreases appreciably during challenging task
conditions, but is the breakdown in modularity still
present when the demanding task is mastered? To
address this question, we tested whether modularity
during the dual n-back task changed depending on the
session, task condition, and group. Using a multilevel
model (see Methods), we found a significant main ef-
fect of session (χ2(2) = 19.40, p = 0.0002). A planned
contrast comparison showed that participants’ whole-
brain functional network modularity significantly in-
creased from ‘Naive’ to ‘Middle’ sessions (β = 0.15,
t(114) = 2.61, p = 0.01) and from ‘Naive’ to ‘Late’ ses-
sions (β = 0.24, t(114) =4.05, p = 0.0001). We observed
no significant change in modularity between ‘Naive’
and ‘Early’ sessions (β = 0.08, t(114) = 1.42, p =
0.15; Fig. 3cd). However, the experimental and control
groups did not differ by session (χ2(1) = 1.44, p = 0.69),
nor did we observe a significant session by condition
interaction (χ2(1) = 1.50, p = 0.68). To summarize,
we showed that the modularity of the functional brain
network generally increased during the training period.
However, the degree to which modularity changed be-
tween load conditions remained stable. Groups did not
differ significantly in the change of modularity. These
results suggest that the functional brain network shifts
towards a more segregated organization as a result of
behavioral improvement after training and also after
repeated exposure to the task. Although network mod-
ularity increased to a similar extent in both conditions,
the demand-dependent change in modularity remained
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stable. One could interpret these results as suggesting
that a general increase in modularity reflects the fact
that less expensive information processing is required
within segregated brain subsystems after automation
of the complex task.

To further explore the changes in modularity that
might be specific to each group and condition, we per-
formed additional analyses comparing modularity mea-
sured before and after training (Fig. 3ef). Specifically,
we employed separate paired t-tests to investigate dif-
ferences in modularity for each group and condition be-
tween ‘Naive’ and ‘Late’ sessions; because four separate
tests were performed, we used a Bonferroni adjusted al-
pha level of 0.0125 per test to minimize the potential for
false positives due to multiple comparisons. We found
a significant increase of modularity in the experimen-
tal group in the 1-back condition (Bonferroni-corrected,
t(20) = -3.66, p = 0.001) and in the 2-back condition
(Bonferroni-corrected, t(20) = -3.33, p = 0.003). The
increase in modularity observed in the control group
was not significant after Bonferroni correction for ei-
ther the 1-back condition (Bonferroni-corrected, t(20)
= -2.35, p = 0.03) or the 2-back condition (t(20) = -
1.88, p = 0.07). The change of modularity from ‘Naive’
to ‘Late’ sessions did not significantly differ between
groups for the 1-back condition (t(39.88) = -0.80, p =
0.42) or for the 2-back condition (t(39.99) = -1.05, p
= 0.30). Collectively, these results demonstrate that
modularity increased for both 1-back and 2-back task
conditions in the experimental group but only during
the 1-back condition for the control group. The find-
ings suggest that higher brain network segregation dur-
ing the 2-back condition may be a consequence of the
6-week working memory training.

Behavioral gains resulting from working memory
training differed across participants, suggesting the ex-
istence of individual differences in learning capabilities.
Therefore, we also tested whether the increase of mod-
ularity observed during the 2-back condition in the ex-
perimental group was correlated with behavioral per-
formance after training as measured by a decrease in
pRT. However, we did not find a significant relation-
ship between these two variables (Pearson’s correlation
coefficient r = 0.03, p = 0.73). This finding suggests
that the change of modularity is a general consequence
of training and may not reflect individual differences in
behavioral improvement.

Our results confirmed the existence of a decrease
in modularity during increased cognitive demands and
an association between modularity and performance.
However, changes in modularity during training were
not different across conditions or experimental groups.
A significant increase in modularity from ’Naive’ to
’Late’ sessions was found for the 1-back and 2-back con-
ditions for the experimental group, which suggests the
enhancement of network segregation associated with

task automation.

Dynamic reorganization of default mode and
fronto-parietal systems

The modular architecture of functional brain networks
is not static but instead can fluctuate appreciably over
task blocks. Here, we used a dynamic network ap-
proach to answer the question of whether systems rel-
evant to working memory – the fronto-parietal and the
default mode – change in their fluctuating patterns of
expression during training. Based on a previous study
of motor sequence learning (Bassett et al., 2015), we
expected that these two systems would become more
autonomous over the 6 weeks of working memory train-
ing. To formally test our expectation, we investigated
the dynamic reconfiguration of the network’s modular
structure as subjects switched between blocks of the
dual n-back task. Pooling across conditions and ses-
sions, we constructed a multilayer network model of the
data in which each block corresponds to a unique layer,
each region corresponds to a node, and each functional
connection corresponds to an edge. We then employed
a multilayer community detection algorithm that esti-
mates each node’s module assignment in each network
layer (Mucha et al., 2010). The presence of fluctua-
tions in community structure across task blocks is in-
dicated by variable assignments of nodes to modules
across layers. For each subject and session, we summa-
rized these data in a module allegiance matrix P, where
each element Pij represents a proportion of blocks for
which node i and node j were assigned to the same
module. From P we calculated the recruitment and
integration of the default mode and fronto-parietal sys-
tems (Fig. 4a; see Methods for details). Recruitment
is defined for each system separately, while integration
is calculated for the pair of systems. Intuitively, high
recruitment indicates that nodes of the system are con-
sistently assigned to the same module across different
layers. High integration indicates that pairs of nodes
(where one region of the pair is located in one sys-
tem and the other region of the pair is located in the
other system) are frequently classified in the same mod-
ule across layers. We used a multilevel model to test
whether recruitment and integration differed between
scanning sessions and experimental groups.

Using a multilevel model, we observed a signifi-
cant session × group interaction effect when considering
changes in the recruitment of the fronto-parietal system
during training (χ2(3) = 11.90, p = 0.0079)(Fig. 4d).
The largest increase in fronto-parietal recruitment was
observed in the experimental group when comparing
‘Naive’ to ‘Late’ training phases (9.3% ; t(20) = -3.51,
p < 0.002, Bonferroni-corrected; Fig. 4b). No signif-
icant changes from ‘Naive’ to ‘Late’ training phases
were observed in the control group (t(20) = -1.69, p
= 0.11). Turning to an examination of the default
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Figure 4: Changes in module allegiance of the fronto-parietal (FP) and default-mode (DM) systems. (a) Module alle-
giance matrices for default mode and fronto-parietal systems. Each ij-th element of the matrix represents the probability that node i
and node j are assigned to the same module within a single layer of the multilayer network. (b) Recruitment changes from the ‘Naive’
to the ‘Late’ stages of training. Increased recruitment suggests better functional communication among the nodes within each system.
(c) Both experimental and control groups exhibited increases in default mode recruitment between ‘Naive’ and ‘Late’ stages of training.
(d) Only the experimental group exhibited increases in fronto-parietal recruitment across sessions. (e) In both groups, the integration
between the fronto-parietal and default mode systems decreased from ‘Naive’ to ‘Late’ sessions.
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mode, we found a significant main effect of session
(χ2(3) = 28.09, p < 0.0001) and of group (χ2(1) =
4.22, p = 0.04) on system recruitment (Fig. 4c). How-
ever, the interaction effect between session and group
was not significant (χ2(3) =4.52, p = 0.21). Next we
assessed differences between ‘Naive’ and ‘Late’ training
phases for each group separately. The recruitment of
the default mode system increased markedly in the ex-
perimental group (13.5%; t(20) = -4.67, p = 0.0001,
Bonferroni-corrected), and less markedly in the con-
trol group (8.6%; t(20) = -2.93, p = 0.008, Bonferroni-
corrected). We found a significant main effect of session
on the integration between the fronto-parietal and de-
fault mode systems (χ2(3) = 9.74, p < 0.02) (Fig. 4e).
The integration between these two systems decreased
from ‘Naive’ to ‘Late’ sessions (β = 0.08, t(123) = -
2.18, p = 0.03). The main effect of group was not sig-
nificant (χ2(1) = 0.03, p = 0.87), and neither was the
interaction between session and group (χ2(3) = 6.60,
p < 0.08).

Next, we used multilevel modeling to investigate the
relationship between across-session change in system
recruitment or integration and across-session change
in behavioral performance (see Methods). For both
brain and behavioral variables, we measured the change
from the first (‘Naive’) to the last (‘Late’) training ses-
sions. We found a significant main effect of default
mode recruitment change (χ2(1) = 4.70, p < 0.05;
Fig. 5a), indicating that an increasing recruitment of
the default mode was associated with improved behav-
ioral performance, as operationalized by a change in
pRT. Interestingly, the effect held irrespective of group
membership, suggesting the relevance of this relation-
ship to general task improvement. The groups did dif-
fer in the intercept (χ2(1) = 12.65, p < 0.001), with
the experimental group displaying a greater predicted
change in default mode recruitment for small changes
in behavior, than was observed in the control group. In
considering the fronto-parietal system, we did not find
a main effect of the relationship between the change in
recruitment and the change in behavior. We did, how-
ever, observe a main effect of group (χ2(1) = 13.68,
p < 0.001; Fig. 5b), with a strong positive relationship
between brain and behavior in the experimental group.

Dynamic fluctuations of default mode
recruitment

We further examined changes in the default mode and
fronto-parietal recruitment by calculating allegiance
matrices for each task block. Does network recruitment
vary between task conditions? To address this question,
we took the module assignment vector of each network
layer, and calculated the probability that a node was
classified within the same community across all runs
of the modularity optimization algorithm. We found
a significant effect of condition (χ2(3) = 83.97, p <

0.00001; Fig. 6), such that the recruitment of the de-
fault mode fluctuated between task conditions and was
significantly higher in the 1-back condition (M = 0.40)
than in the 2-back condition (M = 0.36; t(167) = -10.43,
p < 0.00001). However, the session × condition inter-
action was not significant (χ2(3) = 2.82, p = 0.40).
When considering the fronto-parietal recruitment, we
found no significant effect of condition (χ2(3) = 2.65,
p = 0.10) or session × condition interaction (χ2(3) =
4.95, p = 0.17). Collectively, these results suggest that
the default mode recruitment is not only modulated by
working memory training, but also by the changing de-
mands of the cognitive task.
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Figure 6: Fluctuations in the recruitment of the default
mode system across task blocks. Across-block fluctuations
in default mode recruitment in (a) the experimental group and
(b) the control group. Differences between task conditions for (c)
the experimental group and (d) the control group, across training
stages.

Training related changes in other large-scale
systems

We further investigated whether training-related
changes were restricted to the default mode and fronto-
parietal systems. To approach this question, we cal-
culated the recruitment of each large-scale system and
the integration between each pair of systems for the
‘Naive’ and ‘Late’ training phases (Fig. 7a). In the
experimental group, we found that the recruitment of
the default mode and fronto-parietal systems increased
from the ‘Naive’ to the ‘Late’ training phase, as did the
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Figure 5: Relationship between change in the recruitment of the default mode system and change in behavioral per-
formance. Change in system recruitment was calculated as a difference between the recruitment estimated in the ’Late’ and ’Naive’
scanning sessions. Change in behavioral performance was calculated as a difference in penalized reaction time (pRT) (2-back – 1-back)
estimated in the ’Late’ and ’Naive’ scanning sessions.

recruitment of the ventral attention, salience, cingulo-
opercular, and auditory systems (p < 0.003, Bonfer-
roni corrected; Fig. 7b). In the control group, we only
found increased recruitment in the auditory system.
Importantly, after working memory training we also
observed increased integration between salience and
fronto-parietal systems, between somatomotor and au-
ditory systems, between salience and cingulo-opercular
systems, between visual and cingulo-opercular systems,
between ventral attention and somatomotor systems,
and between dorsal attention and cingulo-opercular sys-
tems (Fig. S7). In sensitivity and robustness analyses,
we observed a similar pattern of changes in recruit-
ment and integration when we subdivided the brain
differently, using the so-called Schaefer parcellation (see
Supplementary Materials).

DISCUSSION

In the present study, we aimed to verify the hypothe-
sis that training on an effortful cognitive task – a dual
n-back – increases the segregation of task-related func-
tional brain networks. We examined these training-
related changes utilizing both static and dynamic net-
work approaches. While performing a dual n-back task,
participants were scanned using fMRI four times: prior
to training, after two weeks of training, after four weeks
of training, and after six weeks of training. We exam-
ined the effect of training on whole-brain modularity,
as well as on the dynamic expression of that modu-
larity through measures of segregation and integration
in task-relevant default mode and frontoparietal sys-
tems. We found that whole-brain modularity signifi-
cantly differed between task conditions, being highest
in the resting state, lower in the 1-back condition, and
even lower in the 2-back condition. In the experimen-
tal group, modularity increased in response to work-
ing memory training. We also observed greater re-

cruitment and lower integration of the default mode
and fronto-parietal systems, suggesting enhanced intra-
system communication and decremented inter-system
communication. In particular, the session-dependent
recruitment of the fronto-parietal system differed be-
tween control and experimental groups. The general
behavioral improvement in the task in response to train-
ing was positively correlated with increased recruitment
of the default mode system. Collectively, these findings
suggest that dynamic communication within the de-
fault mode system supports general improvement in the
task, while dynamic communication within the fronto-
parietal system supports more specific network changes
related to working memory training.

Modularity differences across task conditions
and sessions

Modularity is a fundamental property of the organiza-
tion of many complex networks including those repre-
senting transportation, social, and biological systems
(Newman, 2018). The existence of modular architec-
ture supports parallel information processing and allows
the network to evolve in response to a changing envi-
ronment (Simon, 1962). Together with the existence of
inter-modular connections, modularity provides a ba-
sis for the emergence of segregated and integrated neu-
ronal states in the brain (Tononi et al., 1994; Park and
Friston, 2013). The balance between segregated and in-
tegrated brain states is constantly re-negotiated in the
face of challenges posed by the external world (Bullmore
and Sporns, 2012).

The degree of modularity in functional brain net-
works can change over a variety of time scales (Betzel
and Bassett, 2017), from that of seconds as probed by
intracranial recordings (Khambhati et al., 2017) to that
of years as driven by development (Gu et al., 2015) or
aging (Chan et al., 2014; Song et al., 2014; Onoda and
Yamaguchi, 2013). Modularity can also be modulated
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Figure 7: Whole-brain changes in module allegiance between the ‘Naive’ and ‘Late’ stages. (a) Changes in node allegiance
as reflected in t-statistic values from a two-tailed t-test. (b) In addition to a significant increase in the default mode and fronto-parietal
recruitment, the experimental group exhibited an increase in the recruitment of the ventral attention, salience, cingulo-opercular, and
auditory systems (*p < 0.003, Bonferroni corrected for multiple comparisons). In the control group, we only observed a significant
increase in the recruitment of the auditory system.

at an intermediate temporal scale, by task demands and
cognitive effort. Several studies have reported a de-
crease in functional brain network modularity during in-
creasing demands on executive function, for example by
varying the level of the n-back task (Kitzbichler et al.,
2011; Vatansever et al., 2015; Finc et al., 2017). Here,
we were curious to understand whether and how whole-
brain network modularity changes when a demanding n-
back task is intensively trained. We expected that net-
work modularity would gradually increase during dual
n-back task training, suggesting more segregated, and
therefore less costly, information processing, after task
automation.

The n-back is a classical task used to measure work-
ing memory, a primary component of executive function
that broadly supports goal-directed behavior (Gallen
and D’Esposito, 2019). Successful performance during
the n-back task requires the participant to engage mul-
tiple cognitive processes, including encoding, storage,
inhibition, and temporal ordering, as well as to exe-
cute an accurate motor response (Jonides et al., 1997).
Here, in line with previous studies, we observed that
modularity during the resting state was higher than
during performance of the dual n-back task. Moreover,
we found that the modularity during the low-demand
task condition (1-back) was higher than the modularity
during the high-demand task condition (2-back). Al-
though modularity significantly increased after train-

ing in the experimental group in both conditions (1-
back and 2-back), these changes did not differ signif-
icantly between the experimental and control groups.
Our results are consistent with previous studies provid-
ing evidence that network segregation is lowest (while
integration is highest) during a demanding n-back task,
when compared to a less demanding motor task or rest-
ing state (Cohen and D’Esposito, 2016; Shine et al.,
2016). Moreover, the observed difference between work-
ing memory loads is consistent with a previous study
from Vatansever et al. (2015) who reported higher mod-
ularity during the 3-back condition compared to the
0-back condition, and also consistent with a previous
study from Finc et al. (2017) who reported higher mod-
ularity during the 2-back condition compared to the 1-
back condition. Collectively, the findings also support
the Global Workspace Theory (GWT) (Dehaene et al.,
1998), by showing that less demanding, highly auto-
mated tasks can be performed within segregated mod-
ules, while more challenging tasks require integration
between multiple modules.

Despite the consistency between our findings and
prior work, it is important to note that these previ-
ous studies did not address the question of whether a
fully mastered demanding cognitive task would still re-
quire a costly integrated workspace or could instead be
executed within specialized brain modules. Here, our
study expands upon prior work by offering the first ev-
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idence supporting the latter hypothesis. We observed
that although modularity of the network generally in-
creased through n-back training, as measured during
both 1-back and 2-back conditions in the experimental
group, the modularity difference between the two condi-
tions was preserved. This finding suggests that training
resulted in the increase of the baseline network segre-
gation during the task, which supports our hypothesis
that mastered cognitive tasks can be executed within a
segregated network. Modularity measured during the
high-demand 2-back condition after training exceeded
the modularity during the low-demand 1-back condition
before training. However, even if the baseline network
segregation increased after the training, some level of
modularity breakdown during increasing cognitive de-
mands seems to be induced.

It is interesting to consider how this intermediate
temporal scale of modular reconfiguration might re-
late to modular dynamics occurring at other temporal
scales. Recently, Gallen and D’Esposito (2019) sug-
gested that higher modularity of human brain func-
tional networks can be used as a biomarker for higher
cognitive plasticity during cognitive training interven-
tions. Relatedly, Mattar et al. (2018) reported evidence
that greater modularity of task-relevant systems at rest
predicted the future rate of learning over 6 weeks of
training. Both cognitive plasticity and the capacity to
learn can change in late aging. Previous studies have
demonstrated that modularity of the human brain func-
tional networks decreases with aging, suggesting an age-
related blurring of the modular structure (Chan et al.,
2014; Song et al., 2014; Onoda and Yamaguchi, 2013).
It would be interesting in future to examine whether
there exists a significant interaction between age and
the time scale of modular reconfiguration; is the de-
creased baseline modularity assessed at rest accompa-
nied by a decrease or increase in dynamic modular re-
configuration during cognitively demanding tasks? And
which is most predictive of behavioral performance?

Importantly, modularity is also altered in patients
with disorders of mental health or patients sustaining
brain injury. Studies have found that modular organiza-
tion of a network is disrupted in patients with cognitive
control deficits (Alexander-Bloch et al., 2010, 2012),
and increases over the early stage of stroke recovery in
a manner that is related to the recovery of higher cogni-
tive functions (Siegel et al., 2018). Further longitudinal
studies in these patient populations could provide clar-
ity on the role of modularity – and its variation over
a range of time scales – in higher-order cognitive func-
tion. Our findings suggest that there is a possibility to
increase brain network modularity via intensive working
memory training. This phenomenon may have potential
beneficial implications for designing cognitive training
interventions to prevent aging-related cognitive decline,
reduce cognitive control deficits, or intensify effects of

neurorehabilitation through increasing brain plasticity.

Increased default mode and fronto-parietal
system recruitment

The modular structure of functional brain networks is
not static, but instead undergoes dynamic reconfigura-
tion throughout a range of cognitive processes (Bassett
et al., 2011; Cole et al., 2013; Braun et al., 2015; Peder-
sen et al., 2018; He et al., 2018; Chai et al., 2016). Re-
cently developed dynamical approaches to study brain
networks are sensitive to the temporal nature of the
underlying neural signal, and therefore can be used to
probe the fluctuating patterns of connectivity elicited
by task performance. Using just such a dynamical ap-
proach, Bassett et al. (2015) showed that the modu-
lar structure of human brain functional networks fluc-
tuates appreciably during motor-visual learning, and
moreover that the degree of fluctuations changes during
a 6-week training paradigm. Task-relevant, motor and
visual networks exhibited increasing autonomy as the
duration of training increased, marking the emergence
of automatic behavioral responses. In light of this prior
work, we hypothesized that networks relevant to work-
ing memory function – including the frontoparietal and
default mode systems – would increase their autonomy
after extensive training on a working memory task.

In testing our hypothesis, we held in mind the ob-
servations of previous studies, which have noted that
the fronto-parietal and default mode systems can both
cooperate and compete during tasks that require cog-
nitive control, such as the n-back task (Spreng et al.,
2010; Cocchi et al., 2013). Understanding the nature of
interactions between these two systems is therefore es-
sential for explaining the neural adaptation that occurs
in response to evolving cognitive demands. It is also not
known whether dynamic interactions between these two
networks may evolve during cognitive training. Here,
we used a multilayer community detection algorithm to
determine whether fluctuations in the modular struc-
ture of the default mode and fronto-parietal systems
change in response to n-back training. Using dynamic
network metrics, we showed that the default mode sys-
tem increased its recruitment as training progressed,
indicating that regions within this system coupled to
other communities less often. The experimental and
control groups did not differ significantly in the degree
to which default mode recruitment increased, but they
did differ in the degree to which the fronto-parietal re-
cruitment increased, with the experimental group show-
ing greater increases than the control group. Addition-
ally, in both groups we observed reduced integration
between the default mode and fronto-parietal systems,
suggesting the existence of a trade-off between segrega-
tion and integration.

In interpreting these observations, it is useful to re-
call that the activity of the fronto-parietal system is
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commonly linked to the performance of tasks requir-
ing cognitive control, such as the n-back working mem-
ory task (Badre, 2008; Miller and Cohen, 2001; Vincent
et al., 2008). The fronto-parietal system is comprised
of spatially distributed brain areas including the lat-
eral prefrontal cortex, anterior cingulate, and inferior
parietal cortex (Vincent et al., 2008). Prior work of-
fers evidence that the fronto-parietal system is highly
flexible and dynamically interacts with other systems
in response to the changing demands of cognitive tasks
(Cole et al., 2013; Braun et al., 2015). In contrast,
prior work frequently reports decreases in the activity
of the default mode system during cognitively demand-
ing tasks, suggesting that the system may not be con-
sistently engaged in goal-directed cognitive processes
(Shulman et al., 1997; Raichle et al., 2001). The default
mode system is comprised of spatially distributed brain
areas including the medial prefrontal cortex, posterior
cingulate, lateral parietal cortex, and both lateral and
medial temporal cortices (Buckner et al., 2008; Raichle
et al., 2001). This system exhibits high activity dur-
ing internally directed cognition, such as mind wander-
ing and autobiographical memory (Buckner et al., 2008;
Christoff et al., 2009).

The default mode’s activity is frequently anticorre-
lated with the activity of systems that engage in de-
manding cognitive tasks such as the fronto-parietal and
dorsal attention systems (Fox et al., 2005; Fransson,
2005). Some studies suggest that competitive inter-
actions between the task-positive front-parietal system
and the task-negative default mode system might be
essential for higher order cognitive functions (Spreng
et al., 2010; Cocchi et al., 2013). Moreover, recent evi-
dence suggests that default mode regions may dynam-
ically switch their connections to meet the demand of
cognitive tasks and support inter-module communica-
tion (Vatansever et al., 2017; Finc et al., 2017). The
location of the default mode system in the center of
the macroscale cortical organization suggests that the
system might indeed participate in wide-scale network
integration (Margulies et al., 2016). The strength of de-
fault mode activation and functional connectivity has
also previously been related to behavioral performance
during working memory tasks (Hampson et al., 2006;
Anticevic et al., 2010; Finc et al., 2017). Our observa-
tions expand upon these prior studies by demonstrating
that the increase in default mode recruitment is posi-
tively correlated with behavioral improvement during
working memory training. Taken together, more segre-
gated default mode connectivity in response to working
memory training may be an indicator of greater cogni-
tive plasticity.

Changes in integration and recruitment beyond
the default mode and fronto-parietal systems

Recent studies have provided evidence that the de-
fault mode and fronto-parietal systems may interact
in a task-dependent manner with the salience, cingulo-
opercular, and dorsal attention systems (Bressler and
Menon, 2010; Cocchi et al., 2013; Christoff et al., 2009).
Consistent with these prior observations, we demon-
strated here that recruitment also increased within the
salience, cingular-opercular, ventral attention, and au-
ditory systems, particularly for the experimental group.
Moreover, the salience system increased its integration
with the fronto-parietal system and with the cingulo-
opercular system, while the cingulo-opercular system
increased its integration with the dorsal attention sys-
tem. A similar pattern of changes was observed across
two different subdivisions of the cortex into systems
(Power and Schaefer), collectively suggesting that the
salience and cingulo-opercular systems that are thought
to be responsible for switching between antagonistic
fronto-parietal and default mode systems, appear to be
more integrated with the fronto-parietal system and less
integrated with the default mode system. This pattern
of relations may be due to diminished requirements for
switching between these two systems when the task is
well learned.

CONCLUSIONS

Dynamic adaptation of the functional networks in the
central nervous system occurs across multiple time
scales. Our results demonstrate that adult human brain
functional networks not only reorganize during a work-
ing memory task, but also can be modulated by the
level of expertise in the task. After working memory
training, brain networks are more segregated. The in-
crease in segregation is visible at the whole-brain level
for static networks, and also evidenced by increased
task-relevant system recruitment when considering dy-
namic networks composed of task blocks. Together,
these results shed new light on the mechanisms under-
lying brain network reorganization accompanying the
automation of performance on cognitively demanding
tasks.

METHODS

Subjects

Fifty-three healthy volunteers (26 female; mean age:
21.17; age range: 18–28 years) were recruited from the
local community through word-of-mouth and social net-
works. All participants were right-handed, had nor-
mal or corrected-to-normal vision, and had no hearing
deficits. Seven participants did not complete the study:
one due to brain structure abnormalities detected at the
first scanning session, and six due to not completing
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the training procedure. The final sample consisted of
forty-six participants who completed the entire train-
ing procedure, participated in all four fMRI scanning
sessions, and had no history of neurological or psychi-
atric disorders nor gross brain structure abnormalities.
After the first fMRI scan, participants were matched
by sex and randomly assigned to one of the two train-
ing groups: experimental and control (see next section
on “Experimental Procedures”). Each group consisted
of 23 subjects with no group differences in age (two-
sample t-test: t(42.839) = 0.22, p = 0.83) or fluid intel-
ligence (two-sample t-test: t(42.882) = 0.51, p = 0.61)
as measured by Raven’s Advanced Progressive Matri-
ces (RAPM) (Raven and Raven’s Progressive Matrices,
1994). Informed consent was obtained in writing from
each participant, and ethical approval for the study
was obtained from the Ethics Committee of the Nico-
laus Copernicus University Ludwik Rydygier Collegium
Medicum in Bydgoszcz, Poland, in accordance with the
Declaration of Helsinki.

Experimental Procedures

The study was performed at the Centre for Modern In-
terdisciplinary Technologies, Nicolaus Copernicus Uni-
versity in Toruń (Poland). Each participant who com-
pleted the entire study procedure attended a total of
24 meetings at the laboratory. During the first meet-
ing, participants were familiarized with the study pro-
cedure and timeline, and were asked to provide basic
demographic information and informed consent. Dur-
ing the second meeting, participants performed fluid
intelligence testing with RAMP (Raven and Raven’s
Progressive Matrices, 1994). Then, participants were
scheduled for fMRI testing, which was performed be-
fore training, after two weeks of training, after four
weeks of training, and after 6 weeks of training. Each
fMRI session was scheduled to be on the same day of
the week and at the same hour for each participant.
These schedules varied in exceptional cases (holidays,
illness of participant, emergency). However, scanning
procedures were always performed between 24h to 48h
after the last training session. After the first fMRI ses-
sion, participants were randomly assigned to one of two
training groups: (1) experimental, which trained work-
ing memory with an adaptive dual n-back task (Jaeggi
et al., 2008), and (2) a passive control group which in-
terchangeably performed an auditory and spatial 1-back
task. We included this second group to control for dif-
ferences in the effect of training on task performance
and fMRI signatures driven by repeated exposure to a
task.

The dual n-back task performed by the experimental
group consisted of visuospatial and auditory tasks per-
formed simultaneously. Visuospatial stimuli consisted
of 8 blue squares presented sequentially on the 3×3 grid
with a white fixation cross in the middle of the black

screen; auditory stimuli consisted of 8 Polish consonants
(b, k, w, s, r, g, n, z) played sequentially in headphones.
Participants were asked to indicate by pressing a but-
ton with their left index finger whether the letter heard
through the headphones was the same as the letter n-
back in the sequence, and by pressing a button with
their right index finger to indicate whether the square
on the screen was in the same location as the square
n-back in the sequence. The n level of the dual n-back
task increased adaptively when participants achieved
80% correct responses in the trial, and the n level de-
creased when participants made more than 50% errors
in the trial. After each trial, the n level achieved by a
participant was recorded, and the mean n level during
each of 18 training session was used later to calculate
the total training progress. Participants from the con-
trol group performed a single 1-back with auditory or
visuospatial stimuli variants. To minimize boredom of
participants, the order of the 1-back variants was ran-
domly selected at the beginning of each training session.
Therefore, each participant from the control group had
the same number of training trials on single auditory
and visuospatial n-back tasks.

Participants completed a total of 18 sessions (30 min
each) under the supervision of the experimenter. Each
participant completed 20 blocks (each consisting of 20
+ n trials, depending on the n level achieved by the
participant) of the n-back task during each training ses-
sion. The study was double-blind; the experimenter
performing the fMRI examination was not aware of
the group assignment of the participants, and partic-
ipants were not aware that the study was designed
in a way that there were two groups (experimental
and control). The apparatus used in the study con-
sisted of two 17” Dell Inspiron Laptops, and two pairs
of Sennheiser headphones. Stimulus delivery was con-
trolled by a Python adaptation of the dual n-back task
used by Jaeggi et al. (2008) (http://brainworkshop.
sourceforge.net/). All participants received equal
monetary remuneration (200 PLN) for study partici-
pation together with a radiological description and a
CD containing their anatomical brain scans.

Data acquisition

Neuroimaging data were collected using a GE Dis-
covery MR750 3 Tesla MRI scanner (General Electric
Healthcare) with a standard 8-channel head coil. Struc-
tural images were collected using a three-dimensional
high resolution T1-weighted gradient-echo (FSPGR
BRAVO) sequence (TR = 8.2 s, TE = 3.2 ms, FOV =
256 mm, flip angle = 12 degrees, matrix size 256× 256,
voxel size = 1 × 1 × 1 mm, 206 axial oblique slices).
Functional scans were obtained using a T2*-weighted
gradient-echo, echo- planar imaging (EPI) sequence
sensitive to BOLD contrast (TR = 2,000 ms, TE =
30 ms, FOV = 192 mm, flip angle = 90 degrees, ma-
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trix size = 64 × 64, voxel size 3 × 3 × 3 mm, 0.5 mm
gap). For each functional run, 42 axial oblique slices
were acquired in an interleaved acquisition scheme, and
5 dummy scans (10 s) were obtained to stabilize magne-
tization at the beginning of the EPI sequence. Resting
state (10 min 10 s, 305 volumes) data was acquired
at the beginning of each scanning session. During the
resting state, participants were asked to focus their eyes
on the fixation cross in the middle of the screen. Then,
during the dual n-back task (11 min 30 s; 340 volumes),
participants simultaneously performed two versions of
the task: spatial and auditory. During the spatial ver-
sion, blue squares were presented sequentially for 500
ms on the screen in one of the 8 different locations on
a 3 × 3 grid. A fixation cross was displayed at the cen-
ter of the plane during each block of the experiment.
During the auditory version, 8 polish consonants (b, k,
w, s, r, g, n, z) were played sequentially in headphones.
Each session of the task consisted of 20 blocks (30 s
per block; 12 trials with 25% of targets) of alternating
1- and 2-back conditions. The instruction screen was
displayed for 4,000 ms before each block, informing the
participant of the upcoming condition. Both visual and
auditory stimuli were presented in a pseudo-random or-
der.

Participants were asked to push the button with
their right thumb if the currently presented square was
in the same location as the previous square (1-back) or
two squares back in the sequence (2-back) and, at the
same time, push the button with their left thumb when
the currently played consonant was the same as the
previous consonant (1-back) or two consonants back (2-
back). The participants had 2,000 ms to respond, and
were instructed to respond as quickly and accurately as
possible. The experimental protocol execution and con-
trol (stimulus delivery and response registration) em-
ployed version 17.2. of Presentation software (Neurobe-
havioral Systems, Albany, NY), as well as MRI com-
patible goggles (visual stimulation), headphones (au-
ditory stimulation), and response grips (response reg-
istration) (NordicNeuroLab, Bergen, Norway). Before
each scanning session, participants performed a short
dual n-back training session outside the fMRI scanner
to (re-)familiarize them with the rules of the task.

Behavioral performance

To measure behavioral performance in the dual n-back
scanning sessions, we incorporated penalized reaction
time (pRT), which is a measure previously introduced
by Ginestet and Simmons (2011). This measure com-
bines both measures of accuracy and response time.
For every subject, session, task condition, and stimu-
lus modality (auditory, spatial), pRT was defined as:

pRT =
1

n

∑
i=1

xi, (1)

where the index i denotes all possible responses, and xi
is obtained from the following formula:

xi =

{
RTi, if subject answered correctly
2000, otherwise, (2)

where RTi is reaction time of the response during the
i-th trial and the scalar value of 2000 is a penalty for
an incorrect answer or for the lack of an answer, which
is the maximum possible time to respond during each
n-back trial measured in milliseconds. For each partici-
pant, we calculated average pRT for both modalities to
represent a cumulative measure of performance during
the dual n-back task.

Data processing

After converting from DICOM to NifTI format,
functional and anatomical data were structured ac-
cording to the BIDS (Brain Imaging Data Struc-
ture) standard (Gorgolewski et al., 2016) and vali-
dated with BIDS Validator (https://bids-standard.
github.io/bids-validator/).

Neuroimaging data was preprocessed using fM-
RIPrep 1.1.1 (Esteban et al., 2018) a Nipype (Gor-
golewski et al., 2011, 2017) based tool. Each T1w (T1-
weighted) volume was corrected for INU (intensity non-
uniformity) using N4BiasFieldCorrection v2.1.0 (Tusti-
son et al., 2010) and skull-stripped using antsBrainEx-
traction.sh v2.1.0 (employing the OASIS template).
Brain surfaces were reconstructed using recon-all from
FreeSurfer v6.0.1 (Dale et al., 1999), and the brain
mask estimated previously was refined with a cus-
tom variation of the method to reconcile ANTs-derived
and FreeSurfer-derived segmentations of the cortical
gray-matter of Mindboggle (Klein et al., 2017). Spa-
tial normalization to the ICBM 152 Nonlinear Asym-
metrical template version 2009c (Fonov et al., 2009)
was performed through nonlinear registration with the
antsRegistration tool of ANTs v2.1.0 (Avants et al.,
2008), using brain-extracted versions of both the T1w
volume and template. Brain tissue segmentation of
cerebrospinal fluid (CSF), white matter (WM), and
gray matter was performed on the brain-extracted T1w
using FAST (Zhang et al., 2001)(FSL v5.0.9).

Functional data was slice time corrected using 3dT-
shift from AFNI v16.2.07 (Cox, 1996) and motion cor-
rected using MCFLIRT (FSL v5.0.9, Jenkinson et al.
(2002). This process was followed by co-registration to
the corresponding T1w using boundary-based registra-
tion (Greve and Fischl, 2009) with 9 degrees of free-
dom, using bbregister (FreeSurfer v6.0.1). Motion cor-
recting transformations, BOLD-to-T1w transformation
and T1w-to-template (MNI) warp were concatenated
and applied in a single step using antsApplyTransforms
(ANTs v2.1.0) employing Lanczos interpolation.

Physiological noise regressors were extracted by ap-
plying CompCor (Behzadi et al., 2007). Principal com-
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ponents were estimated for the two CompCor vari-
ants: temporal (tCompCor) and anatomical (aCom-
pCor). A mask to exclude signal with cortical ori-
gin was obtained by eroding the brain mask, ensur-
ing that it only contained subcortical structures. Six
tCompCor components were then calculated including
only the top 5% variable voxels within that subcortical
mask. For aCompCor, six components were calculated
within the intersection of the subcortical mask and the
union of the CSF and WM masks calculated in T1w
space, after their projection to the native space of each
functional run. Frame-wise displacement (FD, Power
et al. (2014) was calculated for each functional run us-
ing the implementation of Nipype. The internal opera-
tions of fMRIPrep use Nilearn (Abraham et al., 2014),
principally within the BOLD-processing workflow. For
more details of the pipeline see https://fmriprep.
readthedocs.io/en/latest/workflows.html.

Non-smoothed functional images were denoised us-
ing Nilearn (Abraham et al., 2014) and Nistats. We
implemented voxel-wise confound regression by regress-
ing out (1) signals from six aCompCor components, (2)
24 motion parameters representing 3 translation and
3 rotation timecourses, their temporal derivatives, and
quadratic terms of both, (3) outlier frames with FD >
0.5mm and DVARS (Derivative of rms VARiance over
voxelS) (Power et al., 2012) with a threshold of ± 3 SD,
together with their temporal derivatives, (4) task ef-
fects and their temporal derivatives (Whitfield-Gabrieli
and Nieto-Castanon, 2012), and (5) any general linear
trend.

Functional connectivity estimation

Functional connectivity is a measure of the statistical
relation between time-series of spatially distinct brain
regions. Time-series can be defined as signals from sin-
gle voxels or as the mean of the signals from anatom-
ically or functionally defined groups of voxels, also
known as brain parcels (Eickhoff et al., 2018). Here,
we used a functional brain parcellation comprised of
264 regions of interests (ROIs) provided by Power et al.
(2011). This parcellation was based on meta-analysis
and has previously been used in many studies focused
on task-based network reorganization (Cole et al., 2013;
Vatansever et al., 2015; Finc et al., 2017). To validate
our results, we also used a 300-ROI parcellation pro-
vided by Schaefer et al. (2017), which is based on tran-
sitions of functional connectivity patterns.

We created N × N correlation matrices by calcu-
lating the Pearson’s correlation coefficient between the
mean signal time-course of region i and the mean sig-
nal time-course of region j, for all pairs of ROIs (i,j).
We retained only positive correlations for further anal-
ysis. In the case of the dual n-back task, we em-
ployed a weighted correlation measure, to control for de-
lays due to the hemodynamic response function (HRF)

(Whitfield-Gabrieli and Nieto-Castanon, 2012). In this
procedure, we first convolved task block regressors with
the HRF and applied a filter to retain only positive val-
ues of the resultant time-series. Then, original time-
series were filtered according to the task condition and
positive values of the HRF-convolved time-series. Next,
the weighted correlation coefficient was calculated be-
tween the concatenated block time series, with weights
taken from the corresponding HRF-convolved signals.
Finally, Fisher’s transformation was employed to con-
vert Pearson’s correlation coefficients to normally dis-
tributed z-scores. This procedure resulted in 264× 264
(Power parcellation) and 300 × 300 (Schaefer parcella-
tion) correlation matrices for each subject, session, and
task condition (resting-state, 1-back, 2-back). For the
dynamic network analyses, we calculated the weighted
correlations for each block of the n-back task, resulting
in 264×264×20 and 300×300×20 matrices, where the
third dimension represents the number of task blocks
(20 interleaved blocks of 1-back and 2-back).

Static modularity

To calculate the extent of whole-brain network segre-
gation, we employed a Louvain-like community detec-
tion algorithm (Blondel et al., 2008) to optimize a com-
mon modularity quality function (Newman and Girvan,
2004). This algorithm partitions the network into com-
munities, where nodes in a given community are highly
interconnected among themselves, and sparsely inter-
connected to the rest of the network. The modularity
quality index, Q, to be optimized was defined as follows:

QS =
1

2µ

∑
ij

(Aij − γVij)δ(gi, gj), (3)

where µ = 1
2

∑
ij Aij is the total edge weight of the

network, Aij is the strength of the edge between node
i and node j, and γ is the structural resolution param-
eter. The Kronecker delta function δ(gi, gj) equals one
if nodes i and j belong to the same module, and equals
zero otherwise. The term Vij represents the connec-
tivity strength expected by chance in the configuration
null model:

Vij =
kikj
2m

, (4)

where ki and kj are the weighted degrees of nodes i
and j, respectively, and m = 1

2

∑
ij Aij is the sum of all

nodal weighted degrees.
Since the Louvain algorithm is non-deterministic,

we run it 100 times, and then consider the network
partition with the highest modularity score across these
runs. It is important to note that the values of graph
theoretical metrics can vary markedly depending on the
sum of connection strengths in the network (Rubinov
and Sporns, 2011; Fornito et al., 2016). To take this
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effect into account, we normalized each individual mod-
ularity value against a set of modularity values calcu-
lated for randomly rewired networks Maslov and Snep-
pen (2002). For this purpose, we created 100 null net-
works using random rewiring of each original functional
network. Then, modularity scores were calculated for
each null network, thereby creating a null distribution.
Finally, we normalized modularity values by dividing
them by the mean of the corresponding null distribu-
tion.

Multilayer modularity

To calculate measures of recruitment and integration,
we performed multilayer modularity maximization used
a generalized Louvain-like community detection algo-
rithm introduced by Mucha et al. (2010). This algo-
rithm allows the optimization of a modularity quality
function on a network with multiple layers. In our
study, networks calculated for each separate block were
considered as consecutive layers of the multilayer net-
work. For each subject, session, and multilayer net-
work, we ran 100 optimizations of the modularity qual-
ity function, defined as:

QML =
1

2µ

∑
ijsr

[(Aijs − γsVijs)δsr + δijωsr]δ(gis, gir),

(5)
where Aijs represents the element of the adjacency ma-
trix at slice s, Vijs represents the element of the null
model matrix at slice s, gir provides the community as-
signment of node i in slice r, µ = 1

2

∑
ij κjr is the total

edge weight of the network, where κjs = kjs + cjs is
the strength of node j in slice s, the kjs is the interslice
strength of node j in slice s, and cjs =

∑
r ωjsr. For

all slices we used the Newman-Girvan null model, also
known as the configuration model, defined as:

Vijs =
kiskjs
2ms

, (6)

where ms = 1
2

∑
ij Aijs is the total edge weight of slice

s. In this optimization, there are two free-parameters:
γs and ωjsr. The parameter γs is the structural resolu-
tion parameter for slice s, and the parameter ωisr rep-
resents the connection strength between node j in slice
s and node j in slice r. These two parameters can be
used to tune the size of communities within each layer
and the number of communities detected across all lay-
ers, respectively. Here, in line with previous studies we
set γ = 1 (Mattar et al., 2015). Due to the interleaved
nature of our experimental design, ω = 1 for slices from
the same task condition, and ω = 0.5 for slices from
different task conditions.

Network diagnostics

Multilayer community detection results in a single mod-
ule assignment N × T matrix, where each matrix ele-

ment represents the module assignment of a given node
for a given slice. To summarize the dynamics of module
assignments for each subject and session, we calculated
an N × N module allegiance matrix, P , where the el-
ement Pij represents the fraction of network layers for
which node i and node j belong to the same community
(Mattar et al., 2015; Bassett et al., 2015):

Pij =
1

OT

O∑
o=1

T∑
t=1

ak,oi,j , (7)

where O is the number of repetitions of the multilayer
community detection algorithm (here, O = 100), and T
is the number of slices (here 20 task blocks). For each
optimization o and slice t,

ak,oi,j =

{
0, if nodes i and j are in the same module
1, otherwise.

(8)
To characterize the dynamics of default mode and
frontoparietal system recruitment and integration, we
employed methods of functional cartography (Mattar
et al., 2015; Bassett et al., 2015). These measures al-
low us to summarize how often regions from the system
of interest are assigned to the same module. We can
define the recruitment of system S as:

RS =
1

n2S

∑
i∈S

∑
j∈S

Pi,j . (9)

The recruitment of system S is high when regions
within the system tend to be assigned to the same mod-
ule throughout all task blocks. Similarly, we can define
the integration coefficient between system Sk and sys-
tem Sl as:

ISkSl
=

1

nSk
nSl

∑
i∈Sk

∑
j∈Sl

Pij . (10)

Systems of interest are highly integrated when regions
belonging to two different systems are frequently as-
signed to the same community.

Statistical modeling

Due to the nested nature of the study data, we used
two-level (trials nested within participants) and three-
level (trials nested within sessions nested within partic-
ipants) multilevel models (MLM; Snijders and Bosker
(2012)) at four points during our analysis of the data.
In all cases, random intercepts were estimated. The
significance of models was estimated with chi-square
tests, where models with increasing complexity were
compared and the resulting value of Likelihood Ra-
tio Test (χ2) and corresponding p-value were reported
(Field et al., 2012).

Behavioral changes during training. To investigate
behavioral changes in penalized reaction time (pRT)
depending on the session, task condition, and group,
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we used a three-level multilevel model with pRT as the
dependent variable and with group (2 factors: experi-
mental and control), condition (2 factors: 1-back and
2-back, reference category: 1-back), and session (4 fac-
tors: Naive, Early Middle, Late; reference category:
Naive) as independent variables. In addition to the
main effects (group, condition, session), we included the
following interaction terms: group × session, condition
× session, group × condition, and group × condition ×
session.

Modularity at baseline. To investigate the depen-
dence of static modularity at baseline on task condition,
we used a two-level multilevel model with static mod-
ularity as the dependent variable and with task con-
dition (3 factors: rest, 1-back, 2-back, two orthogonal
contrasts: rest vs. 1-back and 2-back, 1-back vs. 2-
back) as the independent variable. The main effect of
condition was tested.

Training-dependent changes in static modularity.
To investigate the dependence of static modularity on
the session, task condition, and group, we used a three-
level multilevel model with static modularity as the
dependent variable and with group (2 factors: exper-
imental and control), condition (2 factors: 1-back and
2-back), and session (4 factors: Naive, Early Middle,
Late, reference category: Naive) as independent vari-
ables. In addition to the main effects (group, condition,
session), we included the following interaction terms:
group × session, condition × session, group × condi-
tion, and group × condition × session.

Changes in dynamic network metrics. To investi-
gate default mode recruitment, fronto-parietal recruit-
ment, and the integration between the default mode
and fronto-parietal systems, we used a two-level mul-
tilevel model with the diagnostic measure (recruit-
ment/integration) as the dependent variable and with
group (2 factors: experimental and control) and session
(4 factors: Naive, Early Middle, Late, reference cate-
gory: Naive) as independent variables. In addition to
the main effects (group, session), we included the fol-
lowing interaction term: group × session.

Relationship between the change in default mode and
fronto-parietal recruitment and the improvement in be-
havior. We also used multilevel modeling to investi-
gate differences in the slope of the relationship between
the change in recruitment and the change in behavior.
Here we examined the relationship between two vari-
ables: ∆ of system recruitment (change from Naive to
Late) and ∆ of behavioral performance (change from
Naive to Late). We compared the slope of this relation-
ship between the two groups (2 factors: experimental
and control).

Code and data availability

All code used for neuroimaging and behavioral data
processing, statistical data analyses, as well as pro-

cessed data are publicly available at https://osf.
io/wf85u/ (DOI 10.17605/OSF.IO/WF85U). The raw
data analyzed in the current study are available from
the corresponding author on request.
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Figure S1: Behavioral performance during dual n-back training. The performance was measured as a mean n-back level
achieved during each trial of 18 training sessions. This measure was estimated only for the experimental group. (a) Boxplots represent
values of mean n-level achieved during 18 sessions of training. Error bars represent 95% confidence intervals. On average, participants
improved their initial performance by 60.3%. Maximum n-back levels achieved by participants varied from 3-back to 7-back. (b)
Growth model fitted to mean n-values. We fitted both linear and quadratic models to predict the behavioral score (mean n-back level)
monitored across the 18 training sessions. Training session significantly predicted mean n-back level achieved by participants, χ2(2) =
111.21, p < 0.0001. Including a quadratic term in the model based on session significantly improved the model fit, χ2(1) = 24.12, p <
0.0001. Orange lines represent models of behavioral improvement fitted to each participant’s performance. The black line represents
the prototype model fitted to the experimental group. See Figure S2 for individual values of behavioral performance measures.
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Figure S2: Individual values of mean n-back level achieved in each session of the dual n-back training. The black line
represents a quadratic model fitted to individual data.
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Figure S3: Behavioral performance modulated by training. (a, b) Line plots represent mean behavioral performance measured
as d-prime, calculated for all training phases (Naive, Early, Middle, Late), dual n-back conditions (1-back and 2-back), and groups
(experimental, (a); control, (b)). Participants exhibited significantly different d-prime, depending on the training stage (Naive, Early,
Middle, Late), condition (1-back versus 2-back), and group (experimental versus control), as indicated by a χ2-test (χ2(3) = 9.97, p
= 0.019). Error bars represent 95% confidence intervals. (c) The experimental group exhibited an increase in d-prime of 11.8% when
comparing the ‘Naive’ and ‘Late’ training phases, as measured during the 1-back condition (Bonferroni-corrected, t(22) = -2.78, p =
0.011); no improvement was found in the control group (t(22) = -2.29, p = 0.032, not significant after Bonferroni correction). The
change in d-prime during the 1-back condition was also not different between the two groups (t(43.56) = -0.52, p = 0.60). (d) The
largest increase in d-prime (68.8%) was observed in the experimental group when comparing ‘Naive’ and ‘Late’ training phases, as
measured during the 2-back condition (Bonferroni-corrected, t(22) = -9.08, p < 0.0001). For comparison, the control group exhibited
a 29.8% increase in d-prime during the 2-back condition (Bonferroni-corrected, t(22) = -7.25, p < 0.0001). The change in d-prime
was significantly larger for the experimental group than for the control group (Bonferroni-corrected, t(35.63) = -4.14, p = 0.0002).
After training, the experimental group exhibited no difference in behavioral performance between the 1-back and 2-back conditions
(Bonferroni-corrected, t(22) = 0.37, p = 0.71). *** p < 0.001 Bonferroni corrected; ** p < 0.01 Bonferroni corrected, * p < 0.05
uncorrected.
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Figure S4: Head motion during the dual n-back task. In addition to including 24 motion parameters in the denoising procedure,
we also excluded high motion subjects from subsequent analyses. We defined a high motion subject as one with mean frame displacement
(FD) larger than 0.2 mm and more than 10% of outlier volumes detected during scrubbing in any scanning session. This criterion
was applied when considering the total time courses, as well as when considering time courses of the 1-back and 2-back conditions,
separately. As a result we excluded four participants (2 from the control group, and 2 from the experimental group). One subject
displayed excessive motion during three scanning sessions, while another displayed excessive motion during two scanning sessions, and
two subjects displayed excessive motion in only one scanning session. After excluding high motion subjects, we compared the mean
FD and mean percent of outlier scans between sessions, groups, and conditions (see S1 for further details). We did not find significant
differences between any of these variables between sessions (all p < 0.05), groups (all < 0.05), and most of the condition comparisons.
The only difference that passed an uncorrected threshold of significance (p < 0.05) was found between the 1-back and 2-back conditions
of the control group during the third scanning session.
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Figure S5: Whole-brain modularity obtained for the Schaefer parcellation. (a) Modularity differences between the resting
state and the dual n-back task, as well as between the 1-back task condition and the 2-back task condition. (b) Pearson’s correlation
coefficient between the change (2-back minus 1-back) of normalized modularity and the change (2-back minus 1-back) of behavioral
performance measured as penalized reaction time (pRT) (not significant, p < 0.13). (c, d) Line plots representing mean values of
modularity for each scanning session (Naive, Late, Middle, Late) and condition, separately for the experimental group (c) and for the
control group (d).
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Figure S6: Training-related changes in module allegiance for the subgraph of the network composed of the default mode
and fronto-parietal control (CON) systems calculated using the Schaefer parcellation. Module allegiance matrices of the
default mode system and the fronto-parietal control system (CON). Each ij-th element of the module allegiance matrix represents the
probability that node i and node j are assigned to the same community within a single layer of the multilayer network representing task
conditions pooled across all scanning sessions. (b) Mean default mode system recruitment across sessions. (c) Mean CON recruitment
across sessions. (d) Mean integration between the default mode and CON systems across sessions. Only CON recruitment exhibited a
significant main effect of session (p < 0.002).
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Figure S7: The training-induced change in integration from the ‘Naive’ to ‘Late’ stages between 13 large-scale systems
defined in the Power parcellation. Left panel (a) shows integration change of the experimental group. Right panel (b) shows
integration change of the control group. Red boxes represent a significant change in integration after Bonferroni correction.
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Figure S8: Whole-brain changes in module allegiance between the ‘Naive’ and ‘Late’ stages for the Schaefer parcellation
(7 systems). (a) Changes in node allegiance as reflected in t-statistic values from a two-tailed t-test. (b) The largest mean recruitment
changes were observed for the default mode (DM) and fronto-parietal (FP) systems.
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Figure S9: The training-induced change in integration from the ‘Naive’ to ‘Late’ between 7 large-scale systems of the
Schaefer parcellation. Left panel (a) shows the change in integration change for the experimental group. Right panel (b) shows
the change in integration for the control group. Red boxes represent a significant change in integration after Bonferroni correction for
multiple comparisons.
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Figure S10: Differences in module allegiance between the 2-back condition and the 1-back condition for the baseline
(’Naive’) scanning session. Top panel: Differences in module allegiance between the 2-back condition and the 1-back condition,
calculated for the Power parcellation (264 ROIs). (a) Nodes’ change in module allegiance as measured with a paired t-test. (b) Changes
in recruitment and integration calculated as the mean allegiance change within and between 13 main large-scale systems. Bottom
panel: Differences in the module allegiance between the 2-back condition and the 1-back condition calculated for the Schaeffer (300
ROIs) parcellation. (c) Nodes’ change in module allegiance measured with a paired t-test. (d) Change in recruitment and integration
calculated as the mean allegiance change within and between 7 large-scale systems.
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