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Abstract

Understanding when and why species join microbial communities is a formidable problem. Much theory
in microbial temporal dynamics is focused on how phylogenetic relationships between microbes impact the
order in which those microbes join communities; for example species that are closely related may exclude
each other due to high niche overlap. However, several recent human microbiome studies have instead found
that close phylogenetic relatives often join microbial communities in short succession, suggesting factors such
as shared adaptation to similar environments plays a stronger role than competition. To address this, we
developed a mathematical model that describes the probabilities of different species joining a community
over time, within a phylogenetic framework. We use our model to test three hypothetical assembly modes:
underdispersion (species are more likely to join a community if a close relative has been previously observed),
overdispersion (likelihood of joining is higher if a close relative has not been previously observed), and the
neutral model (likelihood of joining is not related to phylogenetic relationships among species). We applied
our model to longitudinal high-throughput sequencing data from the human microbiome, and found that
the human microbiome generally follows an assembly pattern characterized by phylogenetic underdispersion.
Exceptions were oral communities, which were not significantly different from the neutral model in either
of two individuals analyzed, and the fecal communities of two infants that had undergone heavy antibiotic
treatment. None of the datasets we analyzed showed statistically significant phylogenetic overdispersion.

Introduction

Every non-sterile surface in the world is in some stage of community assembly, from a forest of tropical
trees to the microbes in a mammalian gut. The communities of organisms inhabiting these environments are
dynamic through time, and studying patterns of assembly may shine light on general rules that govern their
change. Understanding these community assembly rules may aid habitat restoration [1; 2], the management
of ecosystems that have undergone disturbances [3; 4], and ecological theory of phylogenetic signatures in
community assembly [5; 6].Patterns and rules of community assembly are particularly important in human
systems, including the primary succession of microbes on a human host following birth [7], secondary suc-
cessions following disease [8; 9], disturbances caused by host lifestyle or antibiotic use [10; 11; 12], and the
natural turnover of microbial communities over time [13]. Insights into these difficult-to-observe community
assembly processes can be gained via the comparison of microbial communities using high-throughput DNA
sequencing [13; 14; 15], especially in longitudinal (time-series) studies [13; 7; 11].

A central question in microbial community assembly is when and why microbes join communities, which
can be studied in part by evaluating the order in which particular microbes join communities given data such
as which microbes are already present or what changes occur in an environment over time [14; 16]. Although
the local environment clearly selects for microbial species, it has also been shown that microbial community
structure is often historically contingent on previous states of that community [14; 17; 16; 18; 19]. This
reflects not only that microbial communities are temporally autocorrelated (gradual change over time), but
also that the recruitment of a given species is a function of which species in the community are already present
or have modified the local environment. Such historically contingent patterns have mainly been observed
and tested within a phylogenetic context, because amplicon data naturally lend themselves to the creation
of phylogenies, and because phylogenies have been shown to be predictive of genomic (and perhaps niche)
overlap in human associated microbiota [20; 21].

Within this phylogenetic framework, a predominant hypothesis has been that closely related microbes
inhibit each other’s successful recruitment [14; 17; 18]. The proposed mechanism for this hypothesis is
that closely related microbes likely have similar niches (phylogenetic niche conservatism [22]), and the first
microbe to establish into a community will occupy its niche to the exclusion of ecologically similar strains.
This is also the basis of Darwin’s naturalization hypothesis [23], which proposed that species are less likely
to join a community if a close relative is present [24]. Indeed, this assembly mode has been found to be
the case in artificial nectar microcosms, where phylogenetically similar yeast species had similar nutrient
requirements, and inhibited each others’ colonization [25]. In this paper, we refer to the assembly mode
where distant relatives are more likely to join a community than close relatives as the overdispersion
hypothesis, since it predicts the preferential addition of novel phylogenetic diversity to a community (i.e.
phylogenetic overdispersion).
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However, overdispersion is far from universal, and multiple studies have shown that extremely close rel-
atives can coexist within the human microbiome [26; 27; 28], and may even be preferentially recruited [29].
Indeed, Darwin’s pre-adaptation hypothesis predicts that species with a close relative present in a community
will be preferentially recruited, because they are likely to already be adapted to the new environment [23].
This hypothesis predicts that close relatives are more likely to join a community than distant relatives, so
the amount of new phylogenetic diversity added to a community is minimized (phylogenetic underdisper-
sion). For this reason, we refer to this hypothesis as the underdispersion hypothesis. Both this and
the overdispersion hypotheses are alternatives to the null hypothesis that species arrival into communities
is independent of phylogenetic relatedness among species. Since the null hypothesis is species-neutral (and
phylogenetically neutral), we refer to it as the neutral hypothesis.

Here, we use the phylogenetic relationships among species within a time-series to understand the com-
munity’s change over time in a new way. Instead of analyzing broad patterns of community change via
beta-diversity statistics (e.g. UniFrac [30]) or analyzing patterns of select clades within the community (e.g.
PhyloFactor [31], Edge PCA [32]), we model the probability of each new species’ first arrival into the com-
munity as a monotonic function of its phylogenetic distance to members of the community that have already
arrived1.

The model we present here can be used to estimate the degree to which newly arriving species are phylo-
genetically over- or underdispersed within a time-series microbiome dataset. Said another way, we estimate
the extent to which these arrival events are “nepotistic”, meaning species are more likely to arrive when a
close relative is already present (phylogenetic underdispersion). We fit our model (described in our methods
section, below) to several time-series human microbiome datasets [13; 7; 33], to compare patterns of microbial
community assembly between subjects, sample sites, or time periods. We found that in general, the human
microbiome follows the underdispersion hypothesis – microbes with low phylogenetic distance to the existing
community had a higher probability of recruitment than microbes with a high phylogenetic distance to the
existing community. There were exceptions where this pattern was not significantly different than the neutral
model, but none of the longitudinal datasets we analyzed showed statistically significant overdispersion. Fur-
thermore, the predominance of non-neutral assembly in the microbial communities analyzed here suggests
that phylogeny carries relevant and potentially predictive information for microbial community assembly,
with implications for microbiome perturbation and rehabilitation.

Materials and Methods

Overview

Here, we describe a statistical model of phylogenetic microbial community assembly, and how we apply
that model to time-series microbiome data. Our goal is to estimate the extent to which recruitment of
species into the community is related to arriving species’ phylogenetic similarity to (or distance from) species
that already arrived. Our Statistical Model describes the probabilities of those species arriving into a
community over time. We use our model with empirical data via Simulations, where we re-sample the
empirically observed species using our model with known parameter values, to produce surrogate datasets.
Specifically, we fix and record the model’s dispersion parameter (D), which determines the extent to which
species with a close relative are preferentially added to the surrogate community (or, conversely, if species
without a close relative are preferred). Our Parameter Estimation compares the empirical pattern of
species arrival to that of the surrogate datasets (which have known D values), in order to determine which
value of D best describes the empirical data. Hypothesis Testing is done by comparing empirical data to
repeated simulations under the neutral model, which is D = 0. We describe the bioinformatic and technical
details of this process in our Analysis section, and make our code available to others in the Code and
Data section.

1We use the term ”arrival” throughout this manuscript to describe the phenomenon of a species becoming ”present” in a
community. The observational (empirical) consequence of arrival is that the species was not detected pre-arrival, and then is
subsequently detected. Although it is possible for a species to have arrived into a community and not be detected, this technicality
is an issue of experimental design rather than an issue with our model per se. Considering aforementioned experimental
limitations, our model could be interpreted as a model of the first time species are detected in a dataset instead.
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Statistical Model

At any point in time, a community is composed of many species, and other species are not present but
are available to be added. Species not yet added (“species pool”) represent organisms present within the
metacommunity (the broader community from which the community draws its biodiversity [14]) but not the
local community. Our model parameterizes the probability of species arriving in a local community for the
first time, based on their phylogenetic distances from species that have already arrived. In a species-neutral
model of community assembly, each species i in the species pool has the same probability of arrival at time
t, irrespective of how different it is from species that are already present at time t. Thus, the neutral model
for first-time arrivals is a random draw without replacement of species from the species pool. We extend the
species-neutral model by modeling the probability pi,t of species i being observed for the first time at time t
as,

pi,t =
dDi,t∑̂
i

dD
î,t

(1)

where di,t is the phylogenetic distance from species i to its closest relative that has already been observed
prior to timepoint t, and D is a dispersion parameter.

When D = 0, our model functions as a neutral model; all species have the same probability of arriving in
the community for the first time, since pi,t is the same for every species. When D < 0, pi,t decreases with di,t
meaning that species from the species pool have higher probabilities of arriving when they are more closely
related to species that have already been observed in the local community (underdispersion; phylogenetically
constrained). When D > 0, the opposite is true (overdispersion; phylogenetically divergent). Our hypothesis
testing and parameter estimation focus on the dispersion parameter, D.

Simulations

Our analysis of a dataset relies on re-constructing that dataset via simulation of our statistical model
using known values of D̂, allowing for hypothesis testing and parameter estimation (we refer to the empirical
dispersion parameter as D, and use D̂ to refer to surrogate values used in simulations). Using the empirical
data as a starting point, we simulate many surrogate datasets with D̂ values ranging from D̂ < 0 (underdis-
persed) to D̂ = 0 (neutral) to D > 0 (overdispersed). This is done so that the empirical data can later be
compared to the surrogate datasets, to estimate the empirical value of D.

We start each surrogate dataset with the same species present in the first sample in the time-series of
its corresponding empirical dataset. Then, surrogate datasets are constructed forward in time by randomly
drawing rt new arrivals from the species pool (all species observed in the empirical dataset that have not
yet been sampled by this process), where the probabilities of species arriving at any given time are given
by Equation 1, and rt is the number of new arrivals in the empirical dataset from times t − 1 to t. The
number of arrivals from the empirical dataset is used so that species richness is kept constant between the
empirical dataset and all surrogate datasets. The species pool is updated to exclude those species drawn at
previous timepoints, and the newly sampled species are recorded. Surrogate datasets are produced for many
different D̂ values, ranging from underdispersed to overdispersed models. In the analyses we present here,
we performed 500 simulations (as described above) for each dataset analyzed.

Parameter Estimation

Our main goal is to estimate the empirical dispersion parameter D (Equation 1), which quantifies the
degree to which first-time arrivals are phylogenetically underdispersed (D < 0), neutral (D = 0), or overdis-
persed (D > 0). As previously stated, these assembly modes correspond to our hypotheses (see Introduction
section). To this end, we use Faith’s phylodiversity [34] to compare each of the 500 surrogate datasets (de-
scribed above) to the empirical dataset. Phylodiversity is the sum of branch-lengths on a phylogenetic tree
for a set of species, so phylodiversity of a set of highly related species is low (phylogenetically constrained)
because there are no long branch lengths in the tree, but phylodiversity is higher (phylogenetically divergent)
for a set of more distantly related species [34]. If D 6= 0, then species are preferentially added if they have
relatively low (D < 0) or relatively high (D > 0) phylogenetic distance to the resident community (di,t,
Equation 1), yielding accumulations of total phylodiversity that are relatively slow (D < 0) or relatively fast
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(D > 0) compared to the neutral model (Fig. 1A). In other words, at any timepoint t, the phylogenetic
diversity of species that have already been observed is PDt, and the extent to which PDt accelerates or
decelerates over a sampling effort depends on D. Because of this, we can estimate D by comparing the
empirical phylodiversity curve to our surrogate phylodiversity curves, which have known D̂ values.

For the comparison of an empirical phylodiversity accumulation curve to curves for corresponding sur-
rogate datasets, we evaluate the amount of phylodiversity PDm accumulated at time index m, midpoint
between the first and final samples. Time m is used because this leaves many species yet to be observed in
the species pool, so that there can be variability in surrogate datasets. Multiple time indices are not used to
compare surrogate and empirical datasets because each value PDt̂ is a function of all values PDt<t̂. PDm

values are calculated for all surrogate datasets, and a PDm value is calculated for the empirical dataset.
The differences between the empirical PDm and each PDm simulated with D = D̂ are given by the vector
∆PDD̂, which is the error between surrogate and empirical data. We then estimate the empirical value of
D by minimizing ∆PDD̂ (Fig. 1B). This minimization is performed using a logistic error model,

∆PDD̂ =
a− b

1 + e−r(D̂−i)
+ b (2)

where a and b are the upper and lower horizontal asymptotes, and r and i are rate and inflection parameters
for the logistic model. ∆PDD̂ is modeled with a logistic function because there is a maximum and minimum
observable ∆PDD̂ value as a function of the phylogeny; this is because there are strict minimum and maximum
limits to the amount of phylodiversity obtainable by observing n species where n is the total species richness
accumulated up to time m. The two horizontal asymptotes of the logistic model are easily fit to these
extremes (Fig. 1B). Once fit, the error model is solved for ∆PD = 0, giving an estimate for the empirical
D. Confidence intervals for this estimate are obtained via bootstrapping our error model.

Hypothesis Testing

For this test, our null hypothesis is the neutral model, where D = 0, since this model represents the
absence of the effect we are testing (over- or underdispersion, a 2-tailed test). We test this null hypothesis
competitively by simulating 1000 surrogate datasets at D = 0 (Fig. S1A) to generate a null PDm distribution.
The empirical PDm is compared to this distribution (Fig. S1B), and if the empirical PDm is below the
2.5% quantile or above the 97.5% quantile, we reject the null (i.e. neutral) hypothesis. Evidence of either
overdispersion (D > 0) or underdispersion (D < 0) allows us to reject.

Analysis

Infant gut 16S rDNA sequencing data from Koenig et al. [7] were downloaded from the NCBI Short Read
Archive (SRA) website (http://www.ncbi.nlm.nih.gov/sra) along with their metadata. These data are
a time-series of fecal bacterial communities from an infant subject, over the first 500 days of life. QIIME
[35] was used to trim primer regions from these data. Clustering was performed using the unoise3 pipeline
[36]; sequences were de-replicated at 100% identity using vsearch [37], zOTU centroid sequences were picked
and chimeric sequences were removed using unoise3 [36], then all sequences were mapped onto zOTU seeds
to create a zOTU table using vsearch. zOTU stands for “zero-radius operational taxonomic unit” [36].
Unlike traditional de novo clustered OTUs, zOTUs are exact sequence variants (ESVs) which are consistent
and easily comparable across data. The SINA aligner [38] was used to align zOTU centroid sequences to
the SILVA SSU Ref 128 database (available from https://www.arb-silva.de/download/arb-files/). We
then used IQ-TREE [39] to build a phylogenetic tree from the aligned sequences.

The resulting zOTU table was rarefied to 1000 sequences per sample, and samples with fewer sequences
were excluded. The last five timepoints were excluded as well because they were sampled at a much lower
temporal resolution. This left 52 timepoints spread over the first 469 days of the infant subject’s life. The
zOTU table was then split into two zOTU tables, one for timepoints before the infant started consuming
baby formula, and one for those after. The “pre-formula” zOTU table contained ages 4 days through 146,
and the “post-formula” zOTU table contained ages 161 days through 469 days. Each zOTU table was used to
run our model as described above using 500 D values (Equation 1), ranging from underdispersed (D = −5) to
overdispersed (D = 5), using zOTUs in lieu of species. zOTUs with zero phylogenetic distance between them
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were combined, because these zOTUs were uninformative for our statistical model (Equation 1; zero raised
to a negative exponent is undefined). The 500 resulting surrogate datasets were compared to the empirical
dataset as described above, using difference between phylodiversity values at the middle timepoint. The
logistic error model (Equation 2) was fit and bootstrapped, yielding an estimate for D and 95% confidence
intervals for that estimate.

“Moving pictures” sequence data from Caporaso et al. [13] were downloaded from the MG-RAST database
(http://metagenomics.anl.gov/). These are longitudinal data from one adult male subject and one adult
female subject, over a period of several hundred days, across multiple sample sites (feces, both palms, tongue).
timepoints were excluded which did not have sequence data for each of the 8 environments (left palm, right
palm, mouth, and feces of the male and female subjects), and rarefied to 5000 sequences per sample. This
left 107 timepoints, ranging from day 1 to day 185. Analysis for each dataset (e.g. female right palm) was
carried out as described above, except raw sequences were trimmed to a length of 91 bp after the end of the
forward PCR primer site in order to ensure that all raw sequences spanned the same region of the 16S rRNA
gene. 91 bp was chosen as a length cutoff in order to keep 95% of the sequence data (5% of sequences were
discarded because they were shorter).

Analysis of the “moving pictures” data was also done using two approaches that allowed us to test the
importance of the set of species that are included in the species pool. In principal, the model may perform
differently if a broader representation of what is in the environment is in the species pool compared to
what eventually colonizes the individual over time, as the latter may result in a species pool that is overall
constrained by factors such as competition for niche space. Thus in an alternate approach we included
sequences in the species pool from the other individual living in the same household, as these would be in
the environment but not competing for the same niche. We analyzed palm communities in a “meta” context,
where surrogate datasets were generated assuming the species pool for a given palm was composed of all
four palms in the dataset. In this case, the difference between the “self” D estimate (generated above) and
the “meta” D estimate (estimated with a metapopulation of zOTUs) is related to the exclusivity of arrivals
into the community. In other words, if we were to estimate similar D values for both the “meta” and “self”
analyses, the inclusion of extra species in the species pool would be of little importance to the model, and
we would learn that it would make little difference to community assembly patterns if the species pool really
was composed of the “meta” set. We also analyzed a section of samples from the male right palm data that
were collected every day over a period of 19 days, using a sliding window approach. We ran our model as
described above on each window of 5 continuous days (15 windows), in order to see how D varied over time.
We only conducted this analysis for the section of samples that were sampled every day, so that comparisons
between windows would not be confounded by window size.

Finnish infant sequence data from Yassour et al. [33] and associated metadata were downloaded from the
DIABIMMUNE Microbiome Project website (https://pubs.broadinstitute.org/diabimmune). These are
longitudinal gut microbiome data from Finnish infants, collected over the first 36 months of life [33]. Roughly
half of these infants were repeatedly treated with oral antibiotics, almost universally for ear infections.
Metadata for this dataset were compiled in a different re-analysis of these data [12] and were downloaded
from the authors’ GitHub page (https://github.com/ShadeLab/microbiome_trait_succession). Subject
datasets belonging to the groups “Antibiotic” (n=18) or “Control” (n=15) were each analyzed using our
model, similar to above. These subjects had between 19 and 36 samples collected over 36 months, with a
mean of 28 samples. Sequence data were rarefied to 5000 sequences, and our model was run per above. We
compared the estimated D values between antibiotic and control groups using a Mann-Whitney test. Because
this dataset had so many subjects, we used this analysis as an opportunity to analyze whether the number
of zOTUs, total phylodiversity, or number of timepoints had an effect on estimated D values. This was done
via correlation analysis of D estimates with the aforementioned potential covariates.

Code and Data

R code and data to replicate our analysis, or to perform a similar analysis on other data, are available on
GitHub, at https://github.com/darcyj/pd_model.
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Results

By varying D̂, we successfully changed the rate at which phylodiversity is added to surrogate (i.e. resam-
pled) microbial communities over time (Fig. 1A). Compared to the neutral model where D̂ = 0, higher D̂
values result in phylodiversity accumulating quickly, since in the overdispersed model, species that contribute
more phylodiversity are preferentially sampled. Conversely, lower D̂ values result in phylodiversity accumu-
lating slowly, since in the underdispersed model, species that contribute less phylodiversity (since they are
very similar to species that are already present) are preferentially sampled. These results show that the D
parameter in our model successfully corresponds to over- and underdispersion relative to the neutral model.
Our error model also fit nicely to the differences between empirical and surrogate datasets (∆PDD̂, Fig. 1B).
Each error model fit was manually inspected to be sure that D estimates were not spurious, and all data
analyzed produced nice looking fits, including datasets where D was not significantly different from 0.

Results from “moving pictures” data

All time-series from adult feces and palm microbiomes [13] showed significant phylogenetic underdispersion
of first-time arrivals (Fig. 2). This means that when a zOTU was observed for the first time in one of these
communities, it was more likely to be phylogenetically similar to a zOTU that had previously arrived in that
community. For both the male and female subject, D estimates were lower (more underdispersed) in the feces
than in the palms, left and right palm D estimates were similar to each other, and tongue D estimates were
higher. All sites except the tongue showed statistically significant underdispersion in both subjects, while
tongue data were not significantly different than the neutral model. In the comparison between “meta” and
“self” models, “meta” models needed to be much more underdispersed than “self” in order to approximate
empirical phylogenetic diversity accumulation (Fig. S2). We also observed a general upward trend in D in
our sliding window analysis of the male right palm dataset (Fig. S3), although this trend was only observed
over 19 days.

Results from infant gut data

Empirical phylodiversity accumulation in the infant gut microbiome [7] showed a sharp increase in phy-
lodiversity after day 161 (Fig. 3), the same date that the subject began consuming baby formula. This
suggests that baby formula changed the phylogenetic colonization patterns of the developing infant gut. We
analyzed this dataset as two separate time-series, one before formula use and one during, and both had neg-
ative D estimates, with the pre-formula D estimate being lower (Fig. 4). While the pre-formula dataset was
significantly underdispersed (P = 0.007), the formula dataset was not significantly different from the neutral
model, although this result is marginal (P = 0.107). Infant gut data from Finnish infants [33] were sampled
at a much lower temporal resolution, and as such were not split between formula use. 31 out of 33 indi-
viduals analyzed exhibited significantly significant underdispersion, and the other two were not significantly
different from the neutral model. Both nonsignificant individuals were from the group treated with heavy
antibiotics, but even so, no significant difference in D values was detected between antibiotics and control
groups (Fig. S4). Estimates of D did not significantly correlate with the number of zOTUs in a dataset, the
total phylodiversity of the dataset, the initial phylodiversity of the dataset, or the number of samples in a
dataset (Fig. S5).

Discussion

Any organism of interest in a human microbiome dataset, from the pathogenic to the probiotic, will at some
point arrive for the first time, and the order in which these organisms arrive in the community is determined
by community assembly processes [14]. Predicting which lineages of organisms can be recruited into a given
environment has far-reaching implications for ecosystem remediation and management, especially in microbial
communities where the medical and ecological importances of many microbes are still largely unknown [40;
41]. Identifying conditions under which assembly mechanisms change, or under which non-neutral assembly
is particular strong, may facilitate microbial community rehabilitation by understanding when and how
microbial communities can be colonized by close/distant relatives. If there are patterns or general rules for
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which taxa have higher probabilities of arriving, these rules can guide habitat restoration projects, help us
better design probiotics for colonization, and better exploit disturbance as a tool for managing microbial
systems related to human health and disease. We found that assembly during primary succession of the
infant gut (Fig. 4, Fig. S4) and during turnover of the microbial communities on the adult palms and gut
(Fig. 2) follows a predictable pattern: species are more likely to arrive if a close relative has already arrived.

This generally “nepotistic” pattern in arrivals strongly supports our underdispersion hypothesis, which is
similar to Darwin’s pre-adaptation hypothesis [23]. Under that hypothesis, species are better able to join a
community where a close relative is present because they likely already have the metabolic machinery and
other traits required to live there. This is because closely related species are likely to be ecologically similar
due to phylogenetic niche conservatism [42]. Although the phylogenetic trees we use here are constructed
with 16S rDNA sequences, such phylogenies have been shown to track genomic differences in bacteria [20; 21].
Indeed, non-neutral patterns of phylogenetic community structure have been interpreted to mean that traits
are under ecological selection [43; 44; 45; 46]. If traits are not driving community assembly [47] or if the
traits driving community assembly are largely horizontally transferred between taxa independent of their
relatedness (as estimated by a 16S rDNA phylogeny), we would expect no phylogenetic signature, and a D
estimate that is not significantly different from 0 (the neutral model). Instead, we observed a very strong
and significant phylogenetic signal in arrival order for almost all datasets we analyzed.

However, even if microbial community assembly follows the pre-adaptation hypothesis, selection itself may
not occur within the host environment. An alternative explanation for the underdispersion we observed is that
selection is external to the host environment (i.e. selection occurs within the neighboring species pool from
which emigration occurs), causing change in the community entering the host to already be underdispersed.
Similarly, phylogenetic dispersion of community structure has been unable to distinguish between selection
and differences in migration rates [48], so a pre-underdispersed community entering the host is a plausible
mechanism for phylogenetic underdispersion of arrivals. But selection of microbial communities within the
host has been shown by multiple studies [10; 9; 11], so it is our opinion that selection within the host is a
more likely scenario.

As to why no datasets analyzed showed significant phylogenetic overdispersion (D > 0), we are not certain.
At the beginning of development of this model, we expected microbial communities in the human microbiome
to follow the overdispersion hypothesis, partly from our own intuition, partly from microbiome studies sug-
gesting competition among closely-related bacteria is an important factor in human gut microbial community
assembly [49; 50], and also because of work in experimental microcosms supporting Darwin’s naturalization
hypothesis [25]. However, the human microbiome environments analyzed here are environments that undergo
constant physical disturbance, unlike aqueous microcosms. Palm communities are physically disturbed with
every use of the hands, and by the sampling procedure itself. Gut (fecal) communities are also disturbed
constantly by the movement of feces through the gut. It may be possible that continuous disturbance allows
for underdispersion or Darwin’s pre-adaptation hypothesis via constant re-assembly of communities. In this
case, niches may be filled by random “winners” after each disturbance, as in a competitive lottery scenario
[18]. These “winners” would still need to be adapted to their environment, so they would be more likely to
be closely related to previous “winners”, as in our findings. Regarding competition between closely related
bacteria, perhaps the frequency of this interaction is lower than we had assumed, or perhaps the strength of
competition is low enough that strains do not actually exclude each other. For example, although McDonalds
competes with Burger King, one often finds them across the street from each other because a location that is
suitable for one franchise is suitable for the other. The datasets we used are also somewhat limited in terms of
phylogenetic resolution, as short reads of the 16S marker gene are insufficient to detect strain-level variation
[51; 50; 27]. Thus, competitive exclusion could occur at the extreme tips of the bacterial phylogenetic tree,
and this would not be detectable using 16S rDNA data. Even so, broader patterns of underdispersion at
phylogenetic depths accessible with 16S data could still result in significantly underdispersed model fits.

Nonetheless, a strength of our model is that it estimates values of D that can be compared among datasets
(Fig. 2) or potentially across time (Fig. 4, Fig. S3) in order to learn how differences between datasets impact
community assembly. We found that gut and palm communities were almost universally underdispersed
(Fig. 2, Fig. 4, Fig. S4), and that the D value for a community appears to be a function of body site
(Fig. 2). Although this result is only shown across two subjects, the parallel patterns between the male
and female subject are striking, in that fecal communities are the most strongly underdispersed (lowest D),
palm communities are similar to each other, and tongue communities had the highest D estimates. Similarly,
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comparing D before and after an event can be used within an experimental framework to see how that event
may affect community assembly. Our analysis of infant gut microbiome data [7] before and during the use
of baby formula (Fig. 4) showed that while the pre-formula community was significantly underdispersed,
community assembly during formula consumption was more neutral. While the post-formula trend was not
significantly different from the neutral model, this finding was marginal (P = 0.107).

In addition to showing that our model can be a useful tool for future studies, our findings also hint that
phylogenetic underdispersion may be a general trend for the human gut microbiome, and potentially for skin
microbiomes as well. If true, our findings have implications for the management and restoration of human-
associated microbial systems [52], in particular for probiotic development and remediation of pathological
microbial communities. Without any other information, our finding of consistent phylogenetic underdisper-
sion in arrivals suggests that probiotics for sustained colonization of the human gut should be close relatives
to the microbes already present. Indeed, recent research has shown that for fecal transplants, donor strains
are able to integrate into the recipient’s gut community when a conspecific strain is already present, but
novel donor strains are unlikely to successfully integrate into the recipient [26]. Congeneric bacteria have also
been shown to be predictors of each others’ recruitment in the mouse gut microbiome, both for pathogens
and commensals [28]. Different body sites - as we saw with the skin – may have qualitatively similar patterns
of underdispersion, yet quantitatively different magnitudes of this effect. Thus the efficacy of an engineered
probiotic based on similarity to organisms already present in the community for which it was engineered may
largely depend on the body site for which it’s intended.

Microbial communities provide a unique opportunity to study community assembly in primary and sec-
ondary succession. In addition to standard cross-sectional studies of communities of different ages or succes-
sional stages, the short timescales of microbial community dynamics allows longitudinal studies of community
assembly over manageable time frames [9; 11]. Microbial communities allow large sample sizes, longitudinal
studies, and experimental manipulations that enable us to identify general rules and statistical patterns of
community assembly. The model we present here makes use of such data, and to facilitate further discovery
both in the human microbiome and in other environments, we have made our R code and a tutorial available
on GitHub: https://github.com/darcyj/pd_model.
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Phylodiversity accumulation and model fitting in the female feces dataset [13]. Plot A shows empirical
(dashed) and surrogate phylodiversity accumulation curves. Each timepoint’s phylodiversity value is the
cumulative sum of all branch lengths observed up to that timepoint [34]. Curves are rescaled from 0 to 1 in
this figure. The colored lines are 500 surrogate (i.e. resampled) phylodiversity curves with different D̂ values
(Equation 1), and are only calculated up to timepoint m, which is used to compare empirical and surrogate
values. These lines are color-coded by their D̂ value (see key at right). The empirical model (dashed) is
below the neutral model (teal), signifying underdispersion in the order of first-time arrivals. The times of
sampling points are shown as vertical blue lines below the X-axis. Plot B shows how empirical and surrogate
data are compared to generate an estimate for D. Differences between empirical and surrogate data at time
m are shown on the Y-axis, and the D̂ values used to generate surrogate datasets are shown on the X-axis.
Color-coded points correspond to surrogate datasets shown in plot A. Values shown in gray result from using
extreme values of D̂, which help the logistic error model (black line) fit to the data, and are not shown in
plot A. The red arrows show the process of solving the model for 0 error, yielding a D estimate. A figure
showing significance testing for these data is available as Fig. S1.
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Fig. 2
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Dispersion parameter (D) estimates for “moving pictures” [13] datasets. The subject’s sex is shown as the
outline color of each violin, and the body site is shown as fill color. The four body sites for the female subject
are shown at left, and the four body sites for the male subject are shown at right. Each viollin shows the
distribution of D estimates given by logistic error model bootstraps, and the dots within violins are means.
Colored portions of violins represent 95% of bootstraps. The two subjects analyzed show parallel D estimates,
with feces being the lowest, followed by palms which are all similar, followed by tongue communities. For
both subjects, tongue patterns were not significantly different than the neutral model.
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Fig. 3
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Empirical phylodiversity accumulation in the infant gut microbiome [7]. Phylodiversity increases sharply after
day 161 of the infant’s life, then plateaus. This timing coincides with the day the subject began consuming
baby formula. The times of sampling points are shown as vertical blue lines below the X-axis.
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Fig. 4
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Dispersion parameter (D) estimates in the infant gut, pre-formula and during formula use. Formula use began
on day 161, thus the first 160 days of the subject’s life were analyzed separately. Community assembly was
significantly underdispersed in the pre-formula dataset, but was not significantly different from the neutral
model during formula use (P = 0.107).
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Fig. S1
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Significance testing for the female feces dataset. Plot A shows the empirical phylodiversity accumulation
(dashed; same as Fig. 1A) but with neutral model surrogate datasets shown in different shades of red.
These are produced by running the neutral model 500 times, to generate a distribution of phylodiversity
values under D = 0 (Plot B). As with all surrogate datasets, these are run until time m (see Parameter
Estimation section of Materials and Methods). Empirical phylodiversity at time m (blue line) is compared
to the distribution of neutral model phylodiversities at time m (red histogram), and a P -value is calculated
as the proportion of neutral phylodiversities more extreme than the empirical value.
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Fig. S2

−0.5

−0.4

−0.3

−0.2

−0.1

0.0

sex
Female

Male

type
meta

self

D
 e

st
im

at
e

F Left Palm F Right Palm M Left Palm M Right Palm

Comparison of “self” vs “meta” model results from palm communities. “Self” (black) models were run
identically to Fig. 2), but “meta” (gray) models were run where the species pool for each palm community
surrogate dataset was composed of all zOTUs observed across all four palm datasets. The difference between
the “self” D estimate (generated above) and the “meta” D estimate (estimated with a metapopulation of
zOTUs) is related to the exclusivity of arrivals into the community. In other words, if we were to estimate
similar D values for both the “meta” and “self” analyses, the inclusion of extra species in the species pool
would be of little importance to the model, and we would learn that it would make little difference to
community assembly patterns if the species pool really was composed of the “meta” set.
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Fig. S3
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Sliding window analysis of male right palm data over 19 consecutive samples. We ran our model on each
window of 5 continuous days (15 windows), in order to see how D varied over time. We only conducted this
analysis for the section of samples that were sampled every day, so that comparisons between windows would
not be confounded by window size. This analysis was done to demonstrate a potential use case for our model,
and not to test any specific hypothesis. Filled shapes represent windows that were significantly different than
the neutral model. Vertical bars represent 95% confidence intervals for D estimate, and horizontal bars
represent window size.
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Fig. S4
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D estimates of Finnish infant datasets. All but two subjects exhibited significant phylogenetic underdis-
persion. The two subjects that were not significantly different from the neutral model were both in the
antibiotics cohort, which is comprised of infants that were treated with frequent antibiotics, almost all for
ear infections. There was no significant difference between D values for the two groups.
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Fig. S5
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Relationship of D estimate to total zOTU richness, total phylodiversity, number of timepoints sampled, and
initial phylodiversity (of first sample) for Finnish infant data. No statistically significant correlation was
detected in any of these four analyses.
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