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Abstract32

Understanding when and why new species are recruited into microbial communities is a formidable prob-33

lem. Much theory in microbial temporal dynamics is focused on how phylogenetic relationships between34

microbes impact the order in which those microbes are recruited; for example species that are closely re-35

lated may exclude each other due to high niche overlap. However, several recent human microbiome studies36

have instead found that close phylogenetic relatives are often detected in microbial communities in short37

succession, suggesting factors such as shared adaptation to similar environments play a stronger role than38

competition. To address this, we developed a mathematical model that describes the probabilities of dif-39

ferent species being detected in time-series microbiome data, within a phylogenetic framework. We use our40

model to test three hypothetical assembly modes: underdispersion (species are more likely to be detected if a41

close relative was previously detected), overdispersion (likelihood of detection is higher if a close relative has42

not been previously detected), and the neutral model (likelihood of detection is not related to phylogenetic43

relationships among species). We applied our model to longitudinal high-throughput sequencing data from44

the human microbiome, and found that for the individuals we analyzed, the human microbiome generally45

follows an assembly pattern characterized by phylogenetic underdispersion (i.e. nepotism). Exceptions were46

oral communities, which were not significantly different from the neutral model in either of two individuals47

analyzed, and the fecal communities of two infants that had undergone heavy antibiotic treatment. None of48

the datasets we analyzed showed statistically significant phylogenetic overdispersion.49

50

Introduction51

Every non-sterile surface in the world is in some stage of community assembly, from a forest of tropical52

trees to the microbes in a mammalian gut. The communities of organisms inhabiting these environments are53

dynamic through time, and studying patterns of assembly may shine light on general rules that govern their54

change. Understanding these community assembly rules may aid habitat restoration [1; 2], the management55

of ecosystems that have undergone disturbances [3; 4], and ecological theory of community phylogenetics56

[5; 6]. Patterns and rules of community assembly are particularly important in human systems, including the57

primary succession of microbes on a human host following birth [7], secondary successions following disease58

[8; 9], disturbances caused by host lifestyle or antibiotic use [10; 11; 12], and the natural turnover of microbial59

communities over time [13]. Insights into these difficult-to-observe community assembly processes can be60

gained via the comparison of microbial communities using high-throughput DNA sequencing [13; 14; 15],61

especially in longitudinal (time-series) studies [13; 7; 11].62

A central question in microbial community assembly is when and why microbes are recruited into com-63

munities. The empirical detection of new species can be studied by evaluating the order in which species are64

detected in time-series experiments, given data such as which species have already been detected or what65

changes occur in an environment over time [14; 16]. Although a changing environment clearly selects for66

new species, it has also been shown that microbial community structure is often historically contingent on67

previous states of that community [14; 17; 16; 18; 19]. This reflects not only that microbial communities are68

temporally autocorrelated (gradual change over time), but also that the recruitment of a given species is a69

function of which species in the community are already present or have modified the local environment. Such70

historically contingent patterns have mainly been observed and tested within a phylogenetic context, because71

amplicon data naturally lend themselves to the creation of phylogenies, and because phylogenies have been72

shown to be predictive of genomic (and perhaps niche) overlap in human associated microbiota [20; 21].73

Within this phylogenetic framework, a predominant hypothesis has been that closely related microbes74

inhibit each other’s successful recruitment [14; 17; 18]. The proposed mechanism for this hypothesis is that75

closely related microbes likely have similar niches (phylogenetic niche conservatism [22]), and species already76

established within a community will occupy their niches to the exclusion of ecologically similar strains.77

This is also the basis of Darwin’s naturalization hypothesis [23], which proposed that new species are less78

likely to be recruited if a close relative is present [24]. Indeed, this assembly mode has been found to79

be the case in artificial nectar microcosms, where phylogenetically similar yeast species had similar nutrient80

requirements, and inhibited each others’ colonization [25]. In this paper, we refer to the assembly mode where81

distant relatives are more likely to be recruited into a community than close relatives as the overdispersion82

hypothesis, since it predicts the preferential addition of novel phylogenetic diversity to a community (i.e.83
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phylogenetic overdispersion).84

Overdispersion is far from universal, and multiple studies have shown that extremely close relatives can85

coexist within the human microbiome [26; 27; 28], and may even be preferentially recruited [29]. This is86

consistent with simulations showing that clusters of closely-related species can persist despite strong within-87

cluster competition, when immigration rate is high [30]. Indeed, Darwin’s pre-adaptation hypothesis predicts88

that species with a close relative present in a community will be preferentially recruited, because they are89

likely to already be adapted to the new environment [23]. This hypothesis predicts that new close relatives90

are more likely to be detected than new distant relatives, so the amount of new phylogenetic diversity added91

to a community is minimized (phylogenetic underdispersion). For this reason, we refer to this hypothesis92

as the underdispersion hypothesis. The over- and underdispersion hypotheses are alternatives to the93

null hypothesis that recruitment is independent of phylogenetic relatedness among species. Since the null94

hypothesis is species-neutral (and phylogenetically neutral), we refer to it as the neutral hypothesis.95

It should be noted that our use of the terms ”overdispersion” and ”underdispersion” are slightly different96

in this manuscript compared to use of the same terms elsewhere. In many cases, these words refer to the97

state of a community at a single timepoint or sample, with overdispersion indicating more diversity in that98

sample than expected by chance, and underdispersion indicating less [31]. Instead, our use of over- and99

underdispersion refers to the amount of newly added diversity over time. In our overdispersion hypothesis,100

phylogenetically novel species are preferentially added to communities, meaning more new diversity is added101

than expected by chance. Under our underdispersion hypothesis, the reverse is true. Following this, our102

question concerns the order in which new species are detected in a time-series, rather than community103

composition of any given sample.104

Here, we use the phylogenetic relationships among species within a time-series to test the extent to which105

our over- or underdispersion hypotheses hold true. Instead of analyzing broad patterns of community change106

via beta-diversity statistics (e.g. UniFrac [32]) or analyzing patterns of select clades within the community107

(e.g. PhyloFactor [33], Edge PCA [34]), we model the probability of detecting new species in a community108

for the first time as a monotonic function of their phylogenetic distances to members of the community that109

have already been detected.110

The model we present here can be used to estimate the degree to which the detection of new species is111

more or less likely when a close relative is already present, using empirical data. We fit our model to several112

time-series human microbiome datasets [13; 7; 35] to compare the strength of under- or overdispersion be-113

tween subjects, sample sites, or time periods. We found that for the data sets we analyzed (36 individuals114

across 3 studies), the human microbiome generally follows the underdispersion hypothesis. There were excep-115

tions where this pattern was not significantly different than the neutral model, but none of the longitudinal116

datasets we analyzed showed statistically significant overdispersion.117

118

Materials and Methods119

Overview120

With our model, our goal is to estimate the extent to which detection of new species over time is related to121

the new species’ phylogenetic similarity to (or distance from) species that were already detected at previous122

timepoints. Our Statistical Model describes the probabilities of detecting new species over time. We123

use our model with empirical data via Simulations, where we re-sample the empirically detected species124

using our model with known parameter values, to produce surrogate datasets. Specifically, we fix and record125

the model’s dispersion parameter (D), which determines the extent to which species with a close relative126

are preferentially added to the surrogate community (or, conversely, if species without a close relative are127

preferred). Our Parameter Estimation compares the empirical pattern of species detection to that of the128

surrogate datasets (which have known D values), in order to determine which value of D best describes the129

empirical data. Hypothesis Testing is done by comparing empirical data to repeated simulations under130

the neutral model, which is D = 0. We describe the bioinformatic and technical details of this process in our131

Analysis section, and make our code available to others in the Code and Data section.132
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Statistical Model133

At any point in time, a community is composed of many species, and other species are not present but134

are available to be added (”species pool”). Our model parameterizes the probability of detecting species in135

a local community for the first time, based on their phylogenetic distances from species that have already136

been detected. In a species-neutral model of community assembly, each species i in the species pool has the137

same probability of detection at time t, irrespective of how different it is from species that have already been138

detected. Thus, the neutral model for first-time species detections is a random draw without replacement of139

species from the species pool. We extend the species-neutral model by modeling the probability pit of species140

i being detected for the first time at time t as,141

pit =
dDit∑̂
i

dD
ît

(1)

where dit is the phylogenetic distance from species i to its closest relative that has already been detected142

prior to timepoint t, and D is a dispersion parameter.143

When D = 0, our model functions as a neutral model; all species have the same probability of being144

detected for the first time, since pit is the same for every species. When D < 0, pit decreases with dit145

meaning that species from the species pool have higher probabilities of detection when they are more closely146

related to species that have already been detected in the local community (underdispersion; phylogenetically147

constrained). When D > 0, the opposite is true (overdispersion; phylogenetically divergent). Our hypothesis148

testing and parameter estimation focus on the dispersion parameter, D.149

Simulations150

Our analysis of a dataset relies on re-constructing that dataset via simulation of our statistical model151

using known values of D̂, allowing for hypothesis testing and parameter estimation (we refer to the empirical152

dispersion parameter as D, and use D̂ to refer to surrogate values used in simulations). Using the empirical153

data as a starting point, we simulate many surrogate datasets with D̂ values ranging from D̂ < 0 (underdis-154

persed) to D̂ = 0 (neutral) to D̂ > 0 (overdispersed). This is done so that the empirical data can later be155

compared to the surrogate datasets, to estimate the empirical value of D.156

We start each surrogate dataset with the same species present in the first sample in the time-series of157

its corresponding empirical dataset. Then, surrogate datasets are constructed forward in time by randomly158

drawing rt new species from the species pool, where the probabilities of detecting those species are given by159

Equation 1, and rt is the number of new species detected in the empirical dataset from times t− 1 to t. The160

number of new species detected from the empirical dataset is used so that species richness is kept constant161

between the empirical dataset and all surrogate datasets. The species pool is updated to exclude those162

species drawn at previous timepoints, and the newly sampled species are recorded. Surrogate datasets are163

produced for many different D̂ values, ranging from underdispersed to overdispersed models. We performed164

500 simulations (as described above) for each dataset analyzed.165

Parameter Estimation166

Our main goal is to estimate the empirical dispersion parameter D (Equation 1), which quantifies the167

degree to which first-time species detections are phylogenetically underdispersed (D < 0), neutral (D = 0),168

or overdispersed (D > 0), corresponding to our hypotheses. To this end, we use Faith’s phylodiversity [36]169

to compare each of the 500 surrogate datasets (described above) to the empirical dataset. Phylodiversity170

is the sum of branch-lengths on a phylogenetic tree for a set of species, so phylodiversity of a set of highly171

related species is low (phylogenetically constrained) because there are no long branch lengths in the tree, but172

phylodiversity is higher (phylogenetically divergent) for a set of more distantly related species [36]. If D ̸= 0,173

then species are preferentially added if they have relatively low (D < 0) or relatively high (D > 0) phylogenetic174

distance to the resident community (dit, Equation 1), yielding accumulations of total phylodiversity that are175

relatively slow (D < 0) or relatively fast (D > 0) compared to the neutral model (Fig. 1A). In other words,176

at any timepoint t, the phylogenetic diversity of species that have already been observed is PDt, and the177

extent to which PDt accelerates or decelerates over a sampling effort depends on D. Because of this, we can178
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estimate D by comparing the empirical phylodiversity curve to our surrogate phylodiversity curves, which179

have known D̂ values.180

For the comparison of an empirical phylodiversity accumulation curve to curves for corresponding sur-181

rogate datasets, we evaluate the amount of phylodiversity PDm accumulated at time index m, midpoint182

between the first and final samples. Time m is used because this leaves many species yet to be observed in183

the species pool, so that there can be variability in surrogate datasets. Multiple time indices are not used to184

compare surrogate and empirical datasets because each value PDt̂ is a function of all values PDt<t̂. PDm185

values are calculated for all surrogate datasets, and a PDm value is calculated for the empirical dataset.186

The difference between the empirical PDm and PDm simulated with D = D̂ is ∆PDD̂, which is the error187

between surrogate and empirical data. We then estimate the empirical value of D by minimizing ∆PDD̂188

(Fig. 1B). This minimization is performed using a logistic error model,189

∆PDD̂ =
a− b

1 + e−r(D̂−i)
+ b (2)

where a and b are the upper and lower horizontal asymptotes, and r and i are rate and inflection parameters190

for the logistic model. ∆PDD̂ is modeled with a logistic function because there is a maximum and minimum191

observable ∆PDD̂ value as a function of the phylogeny; this is because there are strict minimum and maximum192

limits to the amount of phylodiversity obtainable by observing n species where n is the total species richness193

accumulated up to time m. The two horizontal asymptotes of the logistic model are easily fit to these194

extremes (Fig. 1B). Once fit, the error model is solved for ∆PD = 0, giving an estimate for the empirical195

D. Confidence intervals for this estimate are obtained via bootstrapping our error model.196

Hypothesis Testing197

For this test, our null hypothesis is the neutral model, where D = 0, since this model represents the198

absence of the effect we are testing. We test this null hypothesis competitively by simulating 1000 surrogate199

datasets at D = 0 (Fig. S1A) to generate a null PDm distribution. The empirical PDm is compared to this200

distribution (Fig. S1B), and if the empirical PDm is below the 2.5% quantile or above the 97.5% quantile,201

we reject the null (i.e. neutral) hypothesis. Evidence of either overdispersion (D > 0) or underdispersion202

(D < 0) allows us to reject.203

Analysis204

This section is a summary of our data analysis. Detailed methods for this section are available as supple-205

mental information.206

We ran our model on data from 36 individuals from three data sources. Two individuals were from207

Caporaso et al. [13], 33 were from Yassour et al. [35], and one was from Koenig et al. [7]. In all cases,208

data were downloaded and processed using the unoise3 pipeline [37], which clusters sequence data into exact209

sequence variants called zOTUs. The Koenig et al. infant gut data set was split into two data sets, one for210

samples collected before the subject began consuming baby formula, and one after. Our model was run on211

these data as described above, resulting in D estimates for the before and after formula data sets.212

The “moving pictures” [13] data were split into eight datasets, one for each combination of subject (n=2)213

and body site (feces, right and left palms, tongue), and our model was run on each of these datasets. Analyses214

of these data was also done using two approaches that allowed us to test the importance of the set of species215

that are included in the species pool. One alternate approach analyzed communities in a “meta” context,216

where the species pool for a given palm was composed of all four palms in the whole dataset. If we were217

to estimate similar D values for both the “meta” and “self” analyses, the inclusion of extra species in the218

species pool would be of little importance to the model. The other alternate approach analyzed data using219

a sliding-window approach, wherein our model was run separately on multiple overlapping windows of 5220

consecutive days within the same dataset, in order to see how D varied over time.221

Finnish infant sequence data from Yassour et al. [35] were split into data sets for each of 33 individuals,222

and our model was run for each. Estimated D values were compared between subjects that had been treated223

with oral antibiotics (n=18) and subjects that had not (n=15) using a Mann-Whitney test. Because this data224

source had so many subjects, we used these data to test whether the number of zOTUs, total phylodiversity,225

or number of timepoints had an effect on D estimates via correlation analysis.226
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Code and Data227

R code and data to replicate our analysis, or to perform a similar analysis on other data, are available on228

GitHub, at https://github.com/darcyj/pd_model.229

Results230

By varying D̂, we successfully changed the rate at which phylodiversity is added to surrogate (i.e. re-231

sampled) microbial communities over time (Fig. 1A). Compared to the neutral model where D̂ = 0, higher232

D̂ values result in phylodiversity accumulating quickly, since in the overdispersed model, species that con-233

tribute more phylodiversity are preferentially sampled. Conversely, lower D̂ values result in phylodiversity234

accumulating slowly, since in the underdispersed model, species that contribute less phylodiversity (since235

they are very similar to species that are already present) are preferentially sampled. These results show that236

the D parameter in our model successfully corresponds to over- and underdispersion relative to the neutral237

model. Our error model also fit well to the differences between empirical and surrogate datasets (∆PDD̂,238

Fig. 1B). Each error model fit was visually inspected for goodness of fit, to be sure that D estimates were239

not spurious. All data sets passed this inspection.240

Results from “moving pictures” data241

All time-series from adult feces and palm microbiomes [13] showed significant phylogenetic underdispersion242

of first-time zOTU detections (Fig. 2). This means that when a zOTU was detected for the first time in one243

of these communities, it was more likely to be phylogenetically similar to a zOTU that had previously been244

detected in community. For both the male and female subject, D estimates were lower (more underdispersed)245

in the feces than in the palms, left and right palm D estimates were similar to each other, and tongue D246

estimates were higher. All sites except the tongue showed statistically significant underdispersion in both247

subjects, while tongue data were not significantly different than the neutral model. In the comparison between248

“meta” and “self” models, “meta” models needed to be much more underdispersed than “self” in order to249

approximate empirical phylogenetic diversity accumulation (Fig. S2). We also observed a general upward250

trend in D in our sliding window analysis of the male right palm dataset (Fig. S3), although this trend was251

only observed over 19 days.252

Results from infant gut data253

Empirical phylodiversity accumulation in the infant gut microbiome [7] showed a sharp increase in phy-254

lodiversity after day 161 (Fig. 3), the same date that the subject began consuming baby formula. This255

suggests that baby formula changed the phylogenetic colonization patterns of the developing infant gut. We256

analyzed this dataset as two separate time-series, one before formula use and one during, and both had257

negative D estimates, with the pre-formula D estimate being lower (Fig. 4). While the pre-formula dataset258

was significantly underdispersed (P = 0.007), the formula dataset was not significantly different from the259

neutral model, although this result is marginal (P = 0.107). Infant gut data from Finnish infants [35] were260

sampled at a much lower temporal resolution, and as such were not split between formula use. 31 out of 33261

individuals analyzed exhibited significant underdispersion, and the other two were not significantly different262

from the neutral model. Both nonsignificant individuals were from the group treated with heavy antibiotics,263

but even so, no significant difference in D values was detected between antibiotics and control groups (Fig.264

S4). Estimates of D did not significantly correlate with the number of zOTUs in a dataset, the total phylo-265

diversity of the dataset, the initial phylodiversity of the dataset, or the number of samples in a dataset (Fig.266

S5).267

Discussion268

Any organism of interest in a human microbiome dataset, from the pathogenic to the probiotic, will at269

some point be detected for the first time, and the order in which these organisms are detected in the com-270

munity is determined by community assembly processes [14]. Predicting which lineages of organisms can be271
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recruited into a given environment has far-reaching implications for ecosystem remediation and management,272

especially in microbial communities where the medical and ecological importances of many microbes are still273

largely unknown [38; 39]. Identifying conditions under which assembly mechanisms change, or under which274

non-neutral assembly is particular strong, may facilitate microbial community rehabilitation by understand-275

ing when and how microbial communities can be colonized by close/distant relatives. If there are patterns or276

general rules for which taxa have higher probabilities of recruitment, these rules can guide habitat restora-277

tion projects, help us better design probiotics for colonization, and better exploit disturbance as a tool for278

managing microbial systems related to human health and disease. We found that assembly during primary279

succession of the infant gut (Fig. 4, Fig. S4) and during turnover of the microbial communities on the adult280

palms and gut (Fig. 2) follows a predictable pattern: new species are more likely to be detected if a close281

relative has been detected previously.282

We describe new species appearing as ”detections” because of the difference between empirical data283

and actual phenomena. Species recruitment into communities is a phenomenon under investigation in our284

model, but evidence for recruitment is a lack of detection, and then subsequent detection of a species using285

high-throughput DNA sequencing data. With such data, it is possible for a species to have been recruited286

into a community but not be detected, although this source of experimental error diminishes as sequencing287

depth increases. Furthermore, the extent to which a species has actually been recruited into a community288

is questionable, if it is sufficiently rare that it is not detected in an Illumina sequencing run with tens of289

thousands of reads per sample (e.g. [35]). Future work may use techniques such as qPCR to quantify290

abundances of individual species or strains [40], and exclude those that do not meet an a priori abundance291

threshold for detection. Nevertheless, in order to be conservative in our language and our approach, we292

have described our model and our hypotheses in terms of modeling the detection of new species, rather than293

modeling their recruitment.294

The generally “nepotistic” pattern we observed in new species detection supports our underdispersion295

hypothesis, which follows Darwin’s pre-adaptation hypothesis [23] and more recent ecological theory as well296

[30; 41]. Much work in phylogenetic community ecology posits that competition tends to be strongest among297

closely-related species due to phylogenetic niche conservatism [42], so many closely-related species are able298

to coexist in a community, competition must not be an important factor structuring that community [31].299

However, strong competition between distantly related species may actually cause groups of phylogenetically300

similar species to coexist, especially when immigration is high [30; 41; 43]. This type of competition is perhaps301

better conceptualized as environmental filtering instead [41], especially since studies showing evidence for302

competitive exclusion in microbial communities focus on competition between closely-related species [25; 16].303

our model investigates the extent to which newly detected species are likely to be similar to previously304

detected close relatives, but ”previously detected” may in clude a significant time span. Thus, the observation305

of underdispersion may not reflect a lack of importance of competition per se. However, testing whether new306

species detections are likely after a close relative has already been detected has relevance; for instance in307

human microbiome systems it may be beneficial to understand if a pathogen’s probability of detection may308

be higher if a conspecific strain was previously observed [26; 28]. Approaches that consider only recent309

community membership may more directly inform hypotheses regarding direct competition, or regarding310

more recent detection of close relatives. For this reason, we included a sliding-window analysis of 5-day311

intervals for a subset of intensively-sampled data, and showed significant underdispersion in a majority of312

windows analyzed (Fig. S3). This type of analysis can satisfy the issue of recency when using our model,313

but only when data collection is sufficiently frequent.314

Regardless, non-neutral patterns of phylogenetic community structure have been interpreted to mean that315

traits are under ecological selection [44; 31; 45; 46]. If traits are not driving community assembly [47] or if316

the traits driving community assembly are largely horizontally transferred between taxa independent of their317

relatedness (as estimated by a 16S rDNA phylogeny), we would expect no phylogenetic signature, and a D318

estimate that is not significantly different from 0 (the neutral model). Instead, we observed a very strong319

and significant phylogenetic signal in species detection order for almost all datasets we analyzed. However,320

if selection on traits is driving this pattern, selection itself may not occur within the host environment. An321

alternative explanation for the underdispersion we observed is that selection is external to the host envi-322

ronment (i.e. selection occurs within the neighboring species pool from which emigration occurs), causing323

change in the community entering the host to already be underdispersed. Similarly, phylogenetic dispersion324

of community structure has been unable to distinguish between selection and differences in migration rates325
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[48], so a pre-underdispersed community entering the host is a plausible mechanism for phylogenetic under-326

dispersion of species detection. But selection of microbial communities within the host has been shown by327

multiple studies [10; 9; 11], so it is our opinion that selection within the host is a more likely scenario.328

As to why no datasets analyzed showed significant phylogenetic overdispersion (D > 0), we are not329

certain. At the beginning of development of this model, we expected microbial communities in the human330

microbiome to follow the overdispersion hypothesis, partly from microbiome studies suggesting competition331

among closely-related bacteria is an important factor in human gut microbial community assembly [49; 50],332

and also because of work in experimental microcosms [25]. However, the human microbiome environments333

analyzed here are environments that undergo constant physical disturbance, unlike aqueous microcosms.334

Palm communities are physically disturbed with every use of the hands, and by the sampling procedure itself.335

Gut (fecal) communities are also disturbed constantly by the movement of feces through the gut. It may336

be possible that continuous disturbance allows for underdispersion via constant re-assembly of communities.337

In this case, niches may be filled by random “winners” after each disturbance, as in a competitive lottery338

scenario [18]. These “winners” would still need to be pre-adapted to their environment, so they would be339

more likely to be closely related to previous “winners”, as in our findings. Similarly, environments with340

fluctuating resource profiles may result in clusters of organisms occupying the same niche [51]. The datasets341

we used are also somewhat limited in terms of phylogenetic resolution, as short reads of the 16S marker gene342

are insufficient to detect strain-level variation [52; 50; 27]. Thus, competitive exclusion could occur at the343

extreme tips of the bacterial phylogenetic tree, and this would not be detectable using 16S rDNA data. Even344

so, broader patterns of underdispersion at phylogenetic depths accessible with 16S data could still result in345

significantly underdispersed model fits.346

A strength of our model is that it estimates values of D that can be compared among datasets (Fig. 2) or347

potentially across time (Fig. 4, Fig. S3) in order to learn how differences between datasets impact community348

assembly. We found that gut and palm communities were almost universally underdispersed (Fig. 2, Fig. 4,349

Fig. S4), and that the D value for a community appears to be a function of body site (Fig. 2). Although350

this result is only shown across two subjects, the parallel patterns between the male and female subject are351

striking, in that fecal communities are the most strongly underdispersed (lowest D), palm communities are352

similar to each other, and tongue communities had the highest D estimates. Similarly, comparing D before353

and after an event can be used within an experimental framework to see how that event may affect community354

assembly. Our analysis of infant gut microbiome data [7] before and during the use of baby formula (Fig. 4)355

showed that while the pre-formula community was significantly underdispersed, community assembly during356

formula consumption was more neutral. While the post-formula trend was not significantly different from357

the neutral model, this finding was marginal (P = 0.107).358

In addition to showing that our model can be a useful tool for future studies, our findings also hint that359

phylogenetic underdispersion may be a common trend for the human gut microbiome, although demonstrating360

a general trend would require analysis of more than the 36 individuals we analyzed. Indeed, recent research361

has shown that for fecal transplants, donor strains are able to integrate into the recipient’s gut community362

when a conspecific strain is already present, but novel donor strains are unlikely to successfully integrate into363

the recipient [26]. Congeneric bacteria have also been shown to be predictors of each others’ recruitment in364

the mouse gut microbiome, both for pathogens and commensals [28]. Different body sites - as we saw with the365

skin – may have qualitatively similar patterns of underdispersion, yet quantitatively different magnitudes of366

this effect. Thus the efficacy of an engineered probiotic based on similarity to organisms already present in the367

community for which it was engineered may largely depend on the body site for which it’s intended, although368

again more exhaustive study is needed. To facilitate further discovery both in the human microbiome and in369

other environments, we have made our R code and a tutorial available on GitHub: https://github.com/370

darcyj/pd_model.371
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Phylodiversity accumulation and model fitting in the female feces dataset [13]. Plot A shows empirical381

(dashed) and surrogate phylodiversity accumulation curves. Surrogate curves are colored according to D̂382

value (Equation 1). New species that have a previously-detected close relative contribute little phylodiversity383

and cause slow phylodiversity accumulation (blue). New species that do not have a close relative contribute384

more phylodiversity and cause faster accumulation (green). The empirical model (dashed) is below the neutral385

model (teal), signifying underdispersion in the order of first-time species detections. The times of sampling386

points are shown as vertical blue lines below the X-axis. Curves are rescaled from 0 to 1 in this figure.387

Plot B shows how empirical and surrogate data are compared to generate an estimate for D. Differences388

between empirical and surrogate data at time m are shown on the Y-axis, and the D̂ values used to generate389

surrogate datasets are shown on the X-axis. Color-coded points correspond to surrogate datasets shown in390

plot A. Values shown in gray result from using extreme values of D̂, which help the logistic error model (black391

line) fit to the data, and are not shown in plot A. The red arrows show the process of error minimization,392

yielding a D estimate. A figure showing significance testing for these data is available as Fig. S1.393
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Fig. 2394
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Dispersion parameter (D) estimates for “moving pictures” [13] datasets. The subject’s sex is shown as the395

outline color of each violin, and the body site is shown as fill color. The four body sites for the female subject396

are shown at left, and the four body sites for the male subject are shown at right. Each viollin shows the397

distribution of D estimates given by logistic error model bootstraps, and the dots within violins are means.398

Colored portions of violins represent 95% of bootstraps. The two subjects analyzed show parallel D estimates,399

with feces being the lowest, followed by palms which are all similar, followed by tongue communities. For400

both subjects, tongue patterns were not significantly different than the neutral model.401
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Empirical phylodiversity accumulation in the infant gut microbiome [7]. Phylodiversity increases sharply after403

day 161 of the infant’s life, then plateaus. This timing coincides with the day the subject began consuming404

baby formula. The times of sampling points are shown as vertical blue lines below the X-axis.405
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Dispersion parameter (D) estimates in the infant gut, pre-formula and during formula use. Formula use began407

on day 161, thus the first 160 days of the subject’s life were analyzed separately. Community assembly was408

significantly underdispersed in the pre-formula dataset, but was not significantly different from the neutral409

model during formula use (P = 0.107).410
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Fig. S1537
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Significance testing for the female feces dataset. Plot A shows the empirical phylodiversity accumulation538

(dashed; same as Fig. 1A) but with neutral model surrogate datasets shown in different shades of red.539

These are produced by running the neutral model 500 times, to generate a distribution of phylodiversity540

values under D = 0 (Plot B). As with all surrogate datasets, these are run until time m (see Parameter541

Estimation section of Materials and Methods). Empirical phylodiversity at time m (blue line) is compared542

to the distribution of neutral model phylodiversities at time m (red histogram), and a P -value is calculated543

as the proportion of neutral phylodiversities more extreme than the empirical value.544

17

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 15, 2019. ; https://doi.org/10.1101/685644doi: bioRxiv preprint 

https://doi.org/10.1101/685644
http://creativecommons.org/licenses/by-nc-nd/4.0/
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Comparison of “self” vs “meta” model results from palm communities. “Self” (black) models were run546

identically to Fig. 2), but “meta” (gray) models were run where the species pool for each palm community547

surrogate dataset was composed of all zOTUs observed across all four palm datasets. The difference between548

the “self” D estimate (generated above) and the “meta” D estimate (estimated with a metapopulation of549

zOTUs) is related to the exclusivity of recruitment into the community. In other words, if we were to estimate550

similar D values for both the “meta” and “self” analyses, the inclusion of extra species in the species pool551

would be of little importance to the model, and we would learn that it would make little difference to552

community assembly patterns if the species pool really was composed of the “meta” set.553
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Sliding window analysis of male right palm data over 19 consecutive samples. We ran our model on each555

window of 5 continuous days (15 windows), in order to see how D varied over time. We only conducted this556

analysis for the section of samples that were sampled every day, so that comparisons between windows would557

not be confounded by window size. This analysis was done to demonstrate a potential use case for our model,558

and not to test any specific hypothesis. Filled shapes represent windows that were significantly different than559

the neutral model. Vertical bars represent 95% confidence intervals for D estimate, and horizontal bars560

represent window size.561

19

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 15, 2019. ; https://doi.org/10.1101/685644doi: bioRxiv preprint 

https://doi.org/10.1101/685644
http://creativecommons.org/licenses/by-nc-nd/4.0/


Fig. S4562

●
●

●
●

●●●
●●●●

●●

●●

●

●●

●

●●

●●
●

●

●

●●

●●●●

●

−0.4

−0.3

−0.2

−0.1

0.0

Antibiotics Control

D
 e

st
im

at
e

D estimates of Finnish infant datasets. All but two subjects exhibited significant phylogenetic underdis-563

persion. The two subjects that were not significantly different from the neutral model were both in the564

antibiotics cohort, which is comprised of infants that were treated with frequent antibiotics, almost all for565

ear infections. There was no significant difference between D values for the two groups.566
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Fig. S5567
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Relationship of D estimate to total zOTU richness, total phylodiversity, number of timepoints sampled, and568

initial phylodiversity (of first sample) for Finnish infant data. No statistically significant correlation was569

detected in any of these four analyses.570
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