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ABSTRACT 42 
 43 
Categorical perception (CP) is an inherent property of speech perception. The response 44 

time (RT) of listeners’ perceptual speech identification are highly sensitive to individual 45 
differences. While the neural correlates of CP have been well studied in terms of the regional 46 
contributions of the brain to behavior, functional connectivity patterns that signify individual 47 
differences in listeners’ speed (RT) for speech categorization is less clear. To address these 48 
questions, we applied several computational approaches to the EEG including graph mining, 49 
machine learning (i.e., support vector machine), and stability selection to investigate the unique 50 
brain states (functional neural connectivity) that predict the speed of listeners’ behavioral 51 
decisions. We infer that (i) the listeners’ perceptual speed is directly related to dynamic 52 
variations in their brain connectomics, (ii) global network assortativity and efficiency 53 
distinguished fast, medium, and slow RT, (iii) the functional network underlying speeded 54 
decisions increases in negative assortativity (i.e., became disassortative) for slower RTs, (iv) 55 
slower categorical speech decisions cause excessive use of neural resources and more aberrant 56 
information flow within the CP circuitry, (v) slower perceivers tended to utilize functional brain 57 
networks excessively (or inappropriately) whereas fast perceivers (with lower global efficiency) 58 
utilized the same neural pathways but with more restricted organization. Our results showed that 59 
neural classifiers (SVM) coupled with stability selection correctly classify behavioral RTs from 60 
functional connectivity alone with over 90% accuracy (AUC=0.9). Our results corroborate 61 
previous studies by confirming the engagement of similar temporal (STG), parietal, motor, and 62 
prefrontal regions in CP using an entirely data-driven approach. 63 
 64 

 65 

 66 

 67 

 68 

 69 

 70 

 71 

 72 

 73 

 74 

 75 

Keywords: Categorical speech perception; machine learning; speech processing; stability 76 
selection; functional connectivity 77 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 28, 2019. ; https://doi.org/10.1101/686048doi: bioRxiv preprint 

https://doi.org/10.1101/686048


3 
 

INTRODUCTION 78 
 79 

When identifying speech, listeners naturally group sounds into smaller sets of discrete 80 
(phonetic) categories through the process of categorical perception (CP) (Harnad and Bureau, 81 
1987; Liberman et al., 1967; Pisoni, 1973; Pisoni and Luce, 1987). Presumably, this type of 82 
behavioral “downsampling” promotes speech comprehension by generating perceptual constancy 83 
in the face of enormous physical variation in multiple acoustic dimensions, e.g., talker variability 84 
in tempo, pitch, or timbre (Prather et al., 2009). CP is often characterized by sharp (stair-stepped) 85 
identification and peaked (better) discrimination functions near the categorical boundary when 86 
classifying an otherwise equidistant acoustic continuum.  87 

Germane to the present study, response time (RT) data also reveal differences in the 88 
speed of listeners’ of categorical decisions (Bidelman et al., 2013; Pisoni and Tash, 1974). In 89 
perceptual labeling tasks, for example, listeners categorize prototypical speech sounds (e.g., 90 
exemplars from their native language) much faster than their ambiguous or less familiar 91 
counterparts (e.g., nonnative speech sounds) (Bidelman and Lee, 2015). RTs also slow near 92 
perceptual speech boundaries, where listeners shift from hearing one linguistic class to another 93 
(e.g., /u/ vs. /a/ vowel) and presumably require more time to access the “correct” speech template 94 
(Bidelman et al., 2013; Liebenthal et al., 2010; Pisoni and Tash, 1974; Reetzke et al., 2018). 95 
Relatedly, RTs vary with task manipulations and individual differences in speech perception in 96 
different populations. Studies demonstrate listeners’ speed in speech identification is highly 97 
sensitive to stimulus familiarity (Bidelman and Walker, 2017; Liebenthal et al., 2010; Lively et 98 
al., 1993), auditory plasticity of short- (Liberman et al., 1967) and long-term (Bidelman et al., 99 
2014b; Bidelman and Alain, 2015; Bidelman and Lee, 2015) experience, and neuropathologies 100 
and language-learning disorders (e.g., (Bidelman et al., 2017, 2014a; Calcus Axelle et al., 2016; 101 
Hakvoort Britt et al., 2016)). Given its fundamental role in the perceptual organization of speech, 102 
understanding individual differences in CP and its underlying neurobiology is among the broad 103 
interests to understand how sensory features are mapped to higher order perception (Bidelman et 104 
al., 2013; Phillips, 2001; Pisoni and Luce, 1987). 105 

The neuronal elements of the brain organize in complicated structural networks (Cajal, 106 
1995). Increasingly, it is appreciated that anatomical substrates constrain the dynamic emergence 107 
of coherent physiological activity that can span multiple spatially distinct brain regions (Bressler, 108 
1995; Bullmore and Sporns, 2009; Fries, 2005). Such densely intra-connected, sparsely inter-109 
connected, dynamic connected networks are thought to provide the functional basis for 110 
information processing, mental representations, and complex behaviors (Bassett and Bullmore, 111 
2006; Honey et al., 2007; Newman, 2003; Tononi et al., 1994). In this regard, neuroimaging 112 
studies have identified several functional brain regions that are important to CP including 113 
primary auditory cortex, left inferior frontal areas (i.e., Broca’s area), and middle temporal gyri 114 
(e.g., Guenther Frank H. et al. 2004; Binder et al. 2004; Myers et al. 2009; Chang et al. 2010; 115 
Liebenthal et al. 2010; Bidelman and Lee 2015; Alho et al. 2016; Toscano et al. 2018). Previous 116 
studies also suggest that more neurons are preferentially activated by the prototypes of the 117 
speech categories compared to those at category boundaries (Guenther and Gjaja, 1996). 118 
Similarly, improved discriminability at category boundaries could reflect an increased number of 119 
neurons encoding sensory cues at these perceptual transitions (Bauer and Der, 1996; Guenther et 120 
al., 1999). Such neuronal overrepresentations warp the sensory space and may account for the 121 
aforementioned RT effects in speech categorization. Still, while the neural correlates of CP have 122 
been well studied in terms of the regional contributions to behavior, we are aware of no studies 123 
that have investigated the mechanisms of speech CP from a full-brain (functional connectivity) 124 
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perspective. Here, we focus on the speed (RT) of listeners perceptual speech identification as 125 
RTs are highly sensitivity to individual differences in CP (Bidelman et al., 2014b, 2014a; 126 
Bidelman and Alain, 2015; Bidelman and Walker, 2017) and reflect an objective, continuous 127 
measure of perceptual categorization skill.  128 

Functional connectivity matrices derived from neuroimaging data are highly sparse and 129 
reflect high dimensional data. Hence, finding RT-related network edges is challenging. State-of-130 
the-art studies usually use naive approaches to discover and analyze each edge individually and 131 
then compensate for possible errors arising from multiple comparisons (e.g., family-wise error or 132 
false discovery rate). These studies mostly yield an unstable set of network edges that are highly 133 
sensitive to changes in the hyperparameters within and between datasets (e.g., neural responses 134 
from different populations). In this regard, variable selection attempts to identify the most salient 135 
subset of variables from a larger set of features mixed with irrelevant variables. This problem is 136 
especially challenging when the number of available data samples is smaller compared to the 137 
number of possible predictors. Using generic subsampling and high-dimensional selection 138 
algorithms, stability selection can yield a stable set of features that distinguish subgroups of the 139 
data (e.g., here, listeners with slow vs. fast perceptual decisions). It has widely been used in 140 
diverse fields of science including gene selection and neuroimaging. One of the downsides of 141 
multivariate approaches is that outcomes often depend on model parameters (e.g., regularization 142 
factor). Compared to conventional multivariate approaches, stability selection produces more 143 
reliable estimations because of its internal randomization implemented as bootstrap-based 144 
subsampling (Meinshausen and Bühlmann, 2010; Shah and Samworth, 2013). Here, we propose 145 
a systematic approach to determine and rank RT-related functional connectivity among brain 146 
regions that are consistent across model parameters. In doing so, we identify, objectively, the 147 
most important properties (i.e., features) of the functional EEG connectome that describe 148 
perceptual processing with regard to categorization.  149 

The primary aim of this study was to test whether individual differences in speeded 150 
speech categorization could be explained in terms of network-level descriptions of brain activity. 151 
Our first goal was to focus on graph theoretical approaches to analyze the complex networks that 152 
could provide a powerful new way of quantifying individual differences in speech perception. A 153 
second goal was to discover which aspects of those functional connectivity networks best 154 
explained the variation and diversity in listeners’ perceptual responses during speech sound 155 
categorization. We recoded high-density electroencephalograms (EEGs) while listeners rapidly 156 
classified speech in a speeded vowel identification task (Bidelman et al., 2013; Bidelman and 157 
Walker, 2017). We then applied graph analyses to source-localized EEG responses to derive the 158 
underlying functional brain networks related to speech categorization. Using Bayesian non-159 
parametric modeling, we then show that speeded categorical decisions unfold in three RT 160 
clusters that distinguish subgroups of listeners based on their behavioral performance (i.e., slow, 161 
medium, and fast perceivers). Applying state-of-the-art machine learning and stability selection 162 
analyses to neural data we further show that local and global network properties of brain 163 
connectomics can decode group differences in behavioral CP performance with 92% accuracy 164 
(AUC=0.9). Our findings demonstrate that slow RT decisions related to categorical speech 165 
perception involve improper (or excessive) utilization of functional brain networks underlying 166 
speech whereas fast and medium perceivers show less utilization. 167 
 168 
 169 
 170 
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METHODS 171 
 172 
Participants 173 

Thirty-five adults (12 male, 23 females) were recruited from the University of Memphis 174 
student body and Greater Memphis Area to participate in the experiment. All but one participant 175 
was between the age of 18 and 35 years (M = 24.5, SD = 6.9 years). All exhibited normal 176 
hearing sensitivity confirmed via audiometric screening (i.e., < 20 dB HL, octave frequencies 177 
250 - 8000 Hz), were strongly right-handed (77.1± 36.4 laterality index (Oldfield, 1971)), and 178 
had obtained a collegiate level of education (17.2 ± 2.9 years). None had any history of 179 
neuropsychiatric illness. On average, participants had 5.1± 7.5 years of formal music training. 180 
All were paid for their time and gave informed consent in compliance with a protocol approved 181 
by the Institutional Review Board at the University of Memphis. Figure 1 (A, B) shows the 182 
distribution of demographic measures (gender and age) of participants.   183 

Figure 1: (A, B) Demographic gender and age distributions. (C) Acoustic spectrograms of the speech stimuli: The stimulus 184 
continuum was created by parametrically changing vowel first formant frequency over five equal steps from 430 to 730 Hz (►), 185 
resulting in a perceptual-phonetic continuum from /u/ to /a/. (D) Token wise response times for auditory classification. Listeners 186 
are slower to label sounds near the categorical boundary (i.e., Token 3).  Females (F) have significantly slower response times 187 
than males (M). 188 
 189 
Speech stimulus continuum and behavioral task 190 

We used a synthetic five-step vowel continuum previously used to investigate the neural 191 
correlates of CP (Oldfield, 1971) (Figure 1C). Each token of the continuum was separated by 192 
equidistant steps acoustically based on first formant frequency (F1) yet was perceived 193 
categorically from /u/ to /a/. Tokens were 100 ms, including 10 ms of rise/fall time to reduce 194 
spectral splatter in the stimuli. Each contained an identical voice fundamental (F0), second (F2), 195 
and third formant (F3) frequencies (F0: 150, F2: 1090, and F3: 2350 Hz). The F1 was 196 
parameterized over five equal steps between 430 and 730 Hz such that the resultant stimulus set 197 

B 
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spanned a perceptual phonetic continuum from /u/ to /a/ (Bidelman et al., 2013). Speech stimuli 198 
were delivered binaurally at 83 dB SPL through shielded insert earphones (ER-2; Etymotic 199 
Research) coupled to a TDT RP2 processor (Tucker Davis Technologies). 200 
 During EEG recording, listeners heard 150-200 trials of each individual speech token. On 201 
each trial, they were asked to label the sound with a binary response (“u” or “a”) as quickly and 202 
accurately as possible (speeded classification task). Reaction times (RTs) were logged, 203 
calculated as the timing difference between stimulus onset and listeners’ behavioral response. 204 
Following their keypress, the inter-stimulus interval (ISI) was jittered randomly between 800 and 205 
1000 ms (20 ms steps, uniform distribution) and the next trial was commenced.  206 

Behavioral data analysis 207 

We adopted classical Gaussian mixture modelling (GMM) with expectation-208 
maximization (EM) to identify an optimal number of clusters (i.e., subgroups of listeners) from 209 
the distribution of their RT speeds (see Figure 1D). GMMs are probabilistic models that assume 210 
the data are generated from a mixture of a finite number of Gaussian distributions (components) 211 
with unknown parameters. Mixture models generalize k-means clustering to incorporate 212 
information about the covariance structure of the data as well as the centers of the latent 213 
Gaussians. Unlike Bayesian procedures, such inferences are prior-free. However, finding an 214 
optimal number of components is challenging. The Bayesian Information Criterion (BIC) can be 215 
used to select the number of components in a GMM, if data is generated from an i.i.d. mixture of 216 
Gaussian distributions. In this study, we used brute-force and BIC based approaches as an 217 
alternative solution to the Variational Bayesian Gaussian mixture model. In this exhaustive 218 
parameter search, the hyper parameters were (1) Number of components (clusters), (ranges from 219 
1 to 14); (2) Type of covariance parameters (‘full’: each component has its own general 220 
covariance matrix; ‘tied’: all components share the same general covariance matrix; ‘diag’: each 221 
component has its own diagonal covariance matrix; or ‘spherical’: each component has its own 222 
single variance). 223 

This identified an optimal combination four components with unique covariance matrix. 224 
Figure 2A shows the BIC scores while tuning parameters. The ‘*’ indicates the optimal 225 
combination of components. The probability of each component (see Figure 2B) shows that most 226 
trials fall into components 1- 3 ranging from 17% - 47% of the total trials in the speech 227 
identification task. Component 4 has the fewest number of trials (1.6%). Based on the 228 
interpretation of RTs, we categorized these components as Fast RT (Cluster 2, 120 - 476 ms), 229 
Medium RT (Cluster 3, 478 - 722 ms), Slow RT (Cluster 1, 724 -1430 ms), and Outliers (Cluster 230 
4, 1432 - 2500 ms). The outliers (Cluster 4) were discarded for further analysis given the low 231 
trial counts loading into this cluster. The boxplot in Figure 2C shows token wise response times. 232 
Each speech token can be broken down into a combination of the three RT clusters, meaning that 233 
speech categorization speeds could be objectively clustered into fast, medium, slow (and 234 
outliers) responses via the GMM. These cluster divisions were then used in subsequent EEG 235 
analyses to determine if functional brain connectomics differentiated these subgroups of CP 236 
performers.  237 
 238 
EEG recording and preprocessing 239 
Recording and preprocessing. EEG recording procedures were identical to our previous 240 
neuroimaging studies on CP (e.g., (Bidelman et al., 2013; Bidelman and Alain, 2015; Bidelman 241 
and Walker, 2017)). Briefly, neuroelectric activity was recorded from 64 sintered Ag/AgCl 242 
electrodes at standard 10-10 locations around the scalp (Oostenveld and Praamstra, 2001). 243 
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Continuous data were digitized using a sampling rate of 500 Hz (SynAmps RT amplifiers; 244 
Compumedics Neuroscan) and an online passband of DC-200 Hz. Electrodes placed on the outer 245 
canthi of the eyes and the superior and inferior orbit monitored ocular movements. Contact 246 
impedances were maintained < 10 kΩ during data collection. During acquisition, electrodes were 247 
referenced to an additional sensor placed ~ 1 cm posterior to the Cz channel.  248 

Subsequent pre-processing was performed in BESA® Research (v7) (BESA, GmbH). 249 
Ocular artifacts (saccades and blinks) were first corrected in the continuous EEG using a 250 
principal component analysis (PCA) (Picton et al., 2000). Cleaned EEGs were then filtered 251 
(bandpass: 1-100 Hz; notch filter: 60 Hz), epoched (-200-800 ms) into single trials, baseline 252 
corrected to the pre-stimulus interval, and re-referenced to the common average of the scalp. 253 
This resulted in between 750 and 1000 single trials of EEG data per subject (i.e., 150-200 trials 254 
per speech token).  255 

Source analysis. Following our previous neuroimaging studies on speech processing(Bidelman 256 
and Dexter, 2015; Bidelman and Howell, 2016), we performed a distributed source analysis to 257 
more directly assess the neural generators underlying behavioral decisions related to CP. Source 258 
reconstruction was implemented in the MATLAB package Brainstorm (Tadel et al., 2011). We 259 
used a realistic, boundary element model (BEM) volume conductor (Fuchs et al., 2002, 1998) 260 
standardized to the MNI brain (Mazziotta et al., 1995). The BEM head model was created using 261 
the OpenMEEG (Gramfort et al., 2010) as implemented in Brainstorm (Tadel et al., 2011). A 262 
BEM is less prone to spatial errors than other head models (e.g., concentric spherical conductor) 263 
(Fuchs et al., 2002). sLORETA allowed us to estimate the distributed neuronal current density 264 
underlying the measured sensor data. The resulting activation maps (akin to fMRI) represent the 265 
transcranial current source density underlying the scalp-recorded potentials as seen from the 266 
cortical surface. We used the default settings in Brainstorm’s implementation of sLORETA 267 
(Tadel et al., 2011). From each single-trial sLORETA map, we extracted the time-course of 268 
source activity within 68 regions of interest (ROI) defined by the Desikan-Killany Atlas 269 
parcellation (Desikan et al., 2006) as implemented in Brainstorm. Single-trial source waveforms 270 
(derived per subject and speech token) were then submitted to functional connectivity analyses. 271 
We have recently used a similar approach to successfully decode single-trial EEG and predict 272 
individual differences in other cognitive domains (e.g., working memory capacity (Bashivan et 273 
al., 2017)), motivating its use here.  274 

EEG functional connectivity and graph analyses  275 
Bootstrapping. Functional connectivity measures are more accurate when calculated using 276 
source localized compared to scalp-recorded (sensor-level) EEG (Brunner et al., 2016). Still, to 277 
ensure robustness of our connectivity measures, we used bootstrapping to reduce the uncertainty 278 
of our connectivity estimates (James et al., 2013). This method involved repeatedly taking small 279 
samples with replacement, calculating the statistics, and averaging over the calculated statistics. 280 
We applied a mean based bootstrap approach on 35106 trials. For each RT class, 100 random 281 
trials from each individual participant were chosen as a bootstrap sample (with replacement). We 282 
calculated the mean source amplitude in each of the 68 ROIs for each bootstrap sample. This 283 
process was then iterated 30 times to derive the final estimate of the mean source signal in each 284 
ROI. Overall, 3150 trials were generated (1050 trials of each RT class) in this process for further 285 
analysis.  286 
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Figure 2: Clustering RT data using GMM and BIC criteria. Model selection concerns both the covariance type and number of 287 
components in the model. Brute-force based empirical analysis shows that n=4 components with unique covariance matrix is 288 
optimal. The ‘*’ marked position of (A) shows the optimal combination. (B):  Probability of trials loading into each component. 289 
(C): Token wise RT broken down by component.  Based on behavioral RTs, four clusters are evident that distinguish subgroups 290 
of listeners based on their speech identification speeds: Fast (Cluster 1): 120~476 ms, Medium (Cluster 2): 478~722 ms, Slow 291 
(Cluster 0): 724~1430 ms, and Outliers (Cluster 3): 1432~2500 ms. 292 
 293 
Functional connectivity. A graph network is defined by a collection of nodes (vertices) and links 294 
(edges) between pairs of nodes. Nodes in large-scale brain networks usually represent brain 295 
regions (ROIs), while links represent anatomical, functional, or effective connections (Friston et 296 
al., 1994). Anatomical connections typically correspond to white matter tracts between pairs of 297 
brain regions. However, functional connections correspond to the strength of temporal 298 
correlations between pairs of anatomically connected/unconnected regions. Depending on the 299 
measure, functional connectivity may reflect linear or nonlinear interactions, as well as 300 
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interactions at different time scales (Zhou et al., 2009). To quantify functional connectivity, we 301 
measured pair-wise Pearson product-moment correlation coefficients among the 68 brain regions 302 
(ROIs). This resulted in connectivity matrix describing the weighted strength (undirected 303 
network) between all pairwise nodes (68C2 = 2278 edges) for each trial. Diagonal and upper 304 
diagonal elements of the connectivity matrices were discarded to avoid spurious self and 305 
repeated connectivity. Matrices were then concatenated to a vector to describe the connectivity 306 
across all brain nodes and trials (e.g., 3150*2278) for each participant.   307 

Seven global network connectivity features were estimated from each network graph 308 
using the BCT toolbox (Rubinov and Sporns, 2010): (i) Characteristics path, (ii) Global 309 
efficiency, (iii) Average clustering coefficient, (iv) Transitivity,  (vi) Small-worldness, (vi) 310 
Assortativity coefficient, and (vii) Maximized modularity (see Appendix for mathematical 311 
definitions and interpretation of these network features). 312 

Figure 3: The t-SNE embedded higher dimensional functional connectivity data are represented by a 2-dimensional scatter and 313 
kernel density estimation (KDE) plot. The green lines with ‘.’, blue lines with ‘*’, and red lines with ‘+’sign represents data 314 
points for slow, medium, and fast RT participants, respectively. 315 
 316 
Machine learning: identifying behaviorally-relevant aspects of functional connectivity 317 

The t-distributed stochastic neighbor embedding (t-SNE) (Maaten and Hinton, 2008) is a 318 
widely used unsupervised learning algorithm to visualize high-dimensional data. t-SNE converts 319 
similarities between higher dimensional data points to joint probabilities, providing a faithful 320 
representation of those data points in a lower-dimensional human interpretable 2D or 3D plane. 321 
Such a projection brings insight on whether the data is separable, the data lies in multiple 322 
different clusters, or inspecting the nature of those clusters. We adopted LDA on our three-class 323 
connectivity dataset (i.e., fast, medium, slow perceivers identified from the behavioral data) and 324 
considered 50 dimensions for t-SNE. The hyper parameters of t-SNE were tuned with a grid 325 
search approach. Figure 3 shows the t-SNE embedded scatter and kernel density estimation 326 
(KDE) plot of our data distribution. KDE plot is a non-parametric way to represent the 327 
probability density function and is used here to visualize the trend of the data distribution for 328 
each different class (data points for fast, medium, and slow RTs). The t-SNE visualization shows 329 
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three nearly distinct clusters of functional connectivity for the different RT groups in speech 330 
categorization. Unrelated or noisy edges may exist in the higher dimensional functional 331 
connectivity matrices. This necessitates the use of feature selection methods to choose functional 332 
connectivity metrics that are relevant and can be modeled robustly over a range of model 333 
parameters. 334 
 335 
Feature selection (stabilty selection) 336 

Feature selection attempts to identify the most salient subset of variables from a larger set 337 
of features mixed with irrelevant variables. This problem is especially challenging when the 338 
number of available data samples are smaller compared to the number of possible features. 339 
Conventional filter methods identify a consistent set of variables outside of the predictive model 340 
based on some filtering criteria, e.g., the variables are individually evaluated to check the 341 
probable relationship between classes. The sets of variables in this technique are selected based 342 
on a threshold of importance. Commonly filter-based methods include correlation, F-test, chi-343 
square test, ANOVA analysis. The highly-correlated or redundant features may be selected, and 344 
significant interactions and relationships between variables may not be able to be quantified. 345 
However, one of the downsides of the multivariate approaches (e.g. , PCA, LDA, Lasso, 346 
Elasticnet SVM ranking, Wrapper based methods, GA Wrapper, Forward Backward based 347 
methods) is that outcomes often depend on model parameters (e.g., regularization factor). 348 
Compared to conventional filter and multivariate approaches, stability selection produces more 349 
reliable estimations and yields a stable set of features because of its internal randomization 350 
implemented as bootstrap based subsampling. It was reported that even if the necessary 351 
conditions needed for consistency of the original Lasso (L1 norm penalized linear models) 352 
method are violated, stability selection will be consistent in variable selection (Meinshausen and 353 
Bühlmann, 2010). The main advantages of this algorithm are (1) it works efficiently with the 354 
high-dimensional data, (2) stability selection provides finite sample control with error rates of 355 
false discoveries and is a transparent method to choose a amount of regularization for structure 356 
estimation; and (3) it is extremely general and has a very wide range of applicability.  357 

An attractive feature of Lasso (L1 regularization on least squares) is its computational 358 
feasibility for the high-dimensional data with many more variables than samples since the 359 
optimization problem of lasso estimator is convex. Furthermore, the Lasso can select variables 360 
by shrinking certain estimated coefficients exactly to 0. Hence Lasso was used for stability 361 
selection. Applying Randomized Lasso many times and looking for variables that are chosen is a 362 
very powerful procedure tool to select consistent or stable features (Al-Fahad et al., 2017; 363 
Meinshausen and Bühlmann, 2006; Shah and Samworth, 2013; Tibshirani, 1996). Despite its 364 
simplicity, it is consistent for variable selection even though the ‘neighborhood stability’ 365 
condition is violated. More about stability section, interpretation and mathematical definition are 366 
explained in the appendix. 367 

We used Randomized Logistic Regression for stability selection with randomized lasso. It 368 
works by subsampling the training data and fitting an L1-penalized Logistic Regression model 369 
where the penalty of a random subset of coefficients has been scaled. We considered sample 370 
fraction = 0.75, number of resampling =1000 with tolerance=0.001. This algorithm assigns 371 
feature scores between 0 and 1 based on frequency of selection over 1000 iterations. We need to 372 
specify the score to find out the best representative set of stable features. Hence, threshold 373 
selection is a design parameter. We varied different selection thresholds (i.e., the number of 374 
selected features) and observed the effect on model performance. Modeling involved four steps: 375 

 376 
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1. Randomly shuffle and split the dataset in to training and test set (80% and 20%). 377 
2. Consider Support Vector Machine with “RBF” kernel as a base estimator. 378 
3. Tune hyper parameter (i.e. C and Gamma) on training data using grid search approach 379 

and10-fold cross validation.  380 
4. Selected best models are evaluated on unseen test data. Accuracy (ACC) and Area Under 381 

Curve (AUC) were considered for performance measure. 382 
 383 

Figure 4: Effect of selection threshold on model performance prediction. The three x-labels represent (top) the range of each bin 384 
of features score (range: 0~1), (middle) the number of features falling in each bin, and (bottom) the corresponding percentage. 385 
 386 

Figure 4 shows the effect of different selection thresholds on modeling. The histogram 387 
illustrates the distribution of the feature score. The first line of the x axis shows the bin ranges of 388 
scores (0 to 1. The second and third lines show the amount and percent of features that had 389 
nearly the same score for a specific bin. We found 73% of the features had scores of 0-0.1, 390 
meaning the majority of connectivity measures were not selected even once (i.e., coefficient was 391 
zero) among 1000 model iterations. That is, 73% of functional connectivity metrics explored in 392 
our search space were not related to speeded speech categorization (i.e., behavioral RTs).  393 

For a specific selection threshold of 0.26, the algorithm selected 227 edge features that 394 
collectively achieved 92% accuracy (best model performance) with AUC=0.9. The bell shaped 395 
solid black and red dotted lines of Figure 4 shows the Accuracy and AUC curves for different 396 
selection thresholds. Note that selection thresholds higher than the optimal value (0.26) allowed 397 
the model to consider more noise variables, degrading model performance significantly. On the 398 
other hand, selection thresholds higher than the optimal value discard behaviorally relevant 399 
features and reduce model performance. Table 3 details the effect of selection threshold on 400 
model performance. Here, the number of unique edges represents correlation-based connectivity 401 
between two brain nodes (features) and the number of unique nodes represents brain regions 402 
associated with those selected edges. A schematic diagram of the method pipeline is shown in 403 
Figure 5. 404 
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 405 
Figure 5: Schematic diagram of the processing pipeline. The 64-ch EEG data is first preprocessed, and then source localization 406 
is adapted to convert skull surface data to cortical surface time series data (68 ROIs defined by the Desikan-Killany Atlas 407 
parcellation). Pairwise correlations were calculated to derive the connectivity matrix for each trial of the speech CP task. 408 
Behavioral response times (RTs) were clustered with Bayesian non-parametric (GMM) clustering. These clusters were labeled as 409 
Fast, Medium and Slow RT.  ANOVA analysis of Graph measures w adopted to test significance among RT groups. Stability 410 
selection and machine learning approaches were then used to find significant properties of the brain’s functional connectivity 411 
related to behavioral speeds (RTs) in speech CP.  412 

RESULTS 413 
 414 

Figure 1D shows behavioral results in the speech categorization task. Generally speaking, 415 
listeners were slower to label sounds near the categorical boundary (token 3), consistent with the 416 
higher ambiguity of the mid-continuum stimuli (Bidelman et al., 2013; Liebenthal et al., 2010; 417 
Pisoni and Tash, 1974; Reetzke et al., 2018). On average, females also showed slower RTs than 418 
males across the continuum (Welch’s t-test; p<0.0001). Bayesian nonparametric clustering 419 
revealed four distinguishable clusters in the speed (RTs) of listeners’ CP (Fast: 120~476 ms, 420 
Medium: 478~722 ms, Slow: 724~1430 ms, and Outliers: 1432~2500 ms) (Figure 2C). These 421 
clusters were even present at the individual token level.  422 

Having established that listeners could be distinguished based on their speed in speech 423 
categorization, our next goal was to determine whether network properties of the brain accounted 424 
for these behavioral differences. We applied graph theory techniques to construct and analyze the 425 
functional brain connectome underlying CP. We considered both individual trial- as well as 426 
group-based analyses. For group-based analysis, data were averaged across subjects within each 427 
RT cluster. Group means were computed by concatenating group-wise trials and calculating their 428 
mean. We then calculated seven global network connectivity features using the BCT toolbox 429 
(Rubinov and Sporns, 2010) (see Methods). 430 

We used non-parametric ANOVAs (Kruskal-Wallis H-test) to determine if individual 431 
trial-based global graph measures varied across RTs (Table 1) This non-parametric test was used 432 
given the unequal sample size per group (Lowry, 2014). These analyses revealed that 433 
Assortativity and Global Efficiency were modulated depending on behavior speed. Table 2 434 
shows a comparison of the graph measures across three RT groups. Global efficiency measures 435 
were relatively small, and assortativity had a negative tendency. All other network features were 436 
not discriminatory among the RT groups. Therefore, modeling with those features (using SVM 437 
with ‘RBF’ kernel described in method section) showed expectedly poor accuracy (38%).  438 
 439 
 440 
 441 
 442 
 443 
 444 
 445 
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Table 1: Significant (bold) global network measures (Kruskal-Wallis H-test tests) (trial-level) 446 
 447 

Measures p-value 
Characteristics Path 0.1359 
Average Clustering Coefficient 0.8286 
Small Worldness 0.0815 
Assortativity 0.0052 
Global Efficiency 0.0290 
Transitivity 0.8424 
Maximized Modularity 0.6617 

 448 
Table 2: Group comparison of graph measures of functional connectivity between RT groups. 449 
 450 

Measures Fast RT Medium RT Slow RT 
Characteristics Path 0.1473 0.1507 0.1504 
Average Clustering Coefficient 0.1327 0.1358 0.1352 
Small Worldness 1.1516 1.1522 1.1497 
Assortativity -0.0086 -0.0128 -0.0118 
Global Efficiency 0.1909 0.1934 0.1944 
Transitivity 0.1329 0.1362 0.1354 
Maximized Modularity 0.1872 0.1845 0.1875 

 451 
Besides analyzing global network properties, we next aimed to identity the most 452 

significant properties of functional brain connectivity that were related to behavioral RTs. 453 
Functional connectivity for each trial is a high dimensional sparse matrix. Some studies have 454 
suggested that properties of functional brain networks are most consistent with the actual brain 455 
anatomy when network density is 8–16% (Li et al., 2016; Salvador et al., 2005; Wang et al., 456 
2010).  To determine the most behaviorally-relevant arrangement of sparse connectivity, we used 457 
stability selection with Randomized Lasso to detect and rank the most important, consistent, and 458 
relevant functional connectivity measures that were invariant (stable) over a range of model 459 
parameters. Stability selection discarded 88% (total 273) of network edges that were not related 460 
to behavioral RTs, but still achieved 92% classification accuracy with AUC=0.9. From Table 3, 461 
It was observed that only 7% error tolerance from the optimal value (accuracy from 92% to 85%) 462 
allow 80% less edge and 22% less associated nodes. Hence, the selection threshold 0.51 with 463 
reasonable performance (ACC=85%, AUC=0.9) were chosen for network visualization as 464 
performance declined precipitously above this threshold (Figure 4). 465 

Figure 6 shows a visualization of the 54 nodes among 53 ROIs identified via stability 466 
selection using BrainNet (Xia et al., 2013). The resulting network revealed a highly dense 467 
connectome reflective of listeners’ behavioral RTs in speech categorization. Connectivity was 468 
particularly strong between the occipital, parietal, and bilateral frontal lobes. As an additional 469 
means of data reduction, we further threshold (=0.68) the stability-selected connectome. This 470 
resulted in eight highly ranked connectivity edges among 13 nodes across the brain (Figure 7). 471 
Even with this sparse network of only 8 edges, model classification was still 57%, meaning this 472 
small set of features accuracy predicted RTs. We then ranked the contribution of these stable 473 
nodes that described behavior Table 4. We found that three edges (rank: 3, 4, and 6) were in left 474 
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hemisphere, two edges were in right hemisphere (rank: 2, and 5) and three edges were inter-475 
hemispheric (rank: 1, 7 and 8). Notably, these edges included connections between motor 476 
(paracentral), visual (lateral occipital/ lingual), linguistic (pars triangularis), auditory (superior 477 
temporal gyrus), and parietal areas both within and between hemispheres.   478 
 479 

Figure 6: BrainNet visualization (top to bottom: lateral, medial, and dorsal view) of the brain network (54 edges) identified via 480 
stability selection. Color map 1-6 indicates, 1:  Frontal (22 ROI), 2: Parietal (10 ROI), 3: Temporal (18 ROI), 4: Occipital (8 481 
ROI), 5: Cingulate (8 ROI), 6: Insula (2 ROI) regions. Node size varies with its degree of connectivity. Connectivity among the 482 
same lobe are colored with similar node color. Edge widths represent the weight of absolute correlation (connectivity strength).  483 
  484 
Table 3: Effect of selection threshold of stability selection (Threshold) on model performance. Pairwise correlation between two 485 
brain regions (functional connectivity edge) were consider as features. Number of unique nodes are brain regions associated 486 
with selected features.  ACC, accuracy; AUC, area under curve. 487 
 488 

Threshold ACC AUC Number of  Number of 
Unique Edge 
 (features) 

Unique Node 

0 46% 0.6 2278 68 
0.08 88% 0.9 613 68 
0.17 91% 0.9 408 68 
0.26 92% 0.9 273 68 
0.34 90% 0.9 183 68 
0.42 89% 0.9 109 64 
0.51 85% 0.9 54 53 
0.59 71% 0.8 16 24 
0.68 57% 0.7 8 13 
0.76 47% 0.6 4 8 
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DISCUSSION 489 
 490 

The present study evaluated whether individual differences in a core operation of speech 491 
and language function (i.e., categorization) could be explained in terms of network-level 492 
descriptions of brain activity. By applying machine learning classification techniques to 493 
functional connectivity data derived from EEG, our data show that the speed of listeners’ ability 494 
to categorize and properly label speech sounds is directly related to dynamic variations in their 495 
brain connectomics. 496 

It has been suggested that important cognitive functions are supported by distributed 497 
neural networks with highly segregated and integrated “small-world” organizations or clusters 498 
(Bassett and Bullmore, 2006; Honey et al., 2007; Newman, 2003; Tononi et al., 1994). However, 499 
in relation to distinguishing listeners’ perceptual speed for categorized speech, we did not find 500 
differences in network properties of Characteristics Path, Average Clustering Coefficient, Small 501 
Worldness, Transitivity and Maximized Modularity clearly indicates (Table 1 and Table 2). 502 
Instead, global network assortativity and efficiency distinguished fast, medium, and slow RT 503 
individuals. In network science, assortativity refers to the tendency of “like to connect with like.” 504 
That is, at the macroscopic level, high degree nodes attach to other high degree nodes and 505 
similarly, low to low (Stam et al., 2014). In our study, functional brain networks were defined 506 
via task-based co-activations. Hence, they were expected to exhibit some assortativity as co-507 
activation means that regions of the network were engaged by the same task. Previous studies  508 
have shown that the property of assortative tendency changes with task demands (Betzel et al., 509 
2018). The resting state brain functional network is largely assortative. Higher order association 510 
areas exhibit non-assortative organization tendency and form periphery-core topologies. 511 
However, assortative structures break down during tasks and is supplanted by periphery, core, 512 
and disassortative communities. 513 

Figure 7: A sparse brain network (8 edges) predicts listeners’ speed (RTs) of speech categorization (57% model accuracy). Red 514 
numbers are the ranked importance of the edges describing behavior. Otherwise as in Figure 6.   515 
 516 
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In addition, we found that the functional CP network underlying speeded decisions 517 
increased in negative assortativity (i.e., became disassortative) for slower RTs (Table 2). This 518 
indicates that brain nodes were more likely to connect with nodes having different degree during 519 
slower RTs, implying that important hubs of the CP network communicated with insignificant 520 
hubs during states of slower decisions. Based on the interpretation of these graph metrics (see 521 
Appendix), we infer that slower, more taxing categorical speech decisions cause excessive use of 522 
neural resources and more aberrant information flow within the CP circuitry. Supporting this 523 
interpterion, we found that Network utilization (Global efficiency) also differentiated RT groups. 524 
Higher Global efficiency indicates that the routing of information among nodes with different 525 
degree was significantly higher for slow RT trials. In short, we find that slower perceivers tended 526 
to utilize functional brain networks excessively (or inappropriately) whereas fast perceivers (with 527 
lower global efficiency) utilized the same neural pathways but with more restricted organization. 528 
Presumably, these dynamic changes in brain connectivity account for the variations in RTs we 529 
find during speech categorization at the behavioral level (Figure 1D).  530 

Our data show that global graph measures fail to fully explain the behavioral relevance of 531 
important connectivity edges. We observed the functional connectivity matrix underlying speech 532 
CP is highly sparse and dynamic. Indeed, only ~12% of all possible edges in the Desikan-Killany 533 
Atlas were needed to explain variation in behavioral RTs. In this vein, we adopted stability 534 
selection to find edges that were most consistent in distinguishing different network states related 535 
to perception. By performing this two stage of randomization iteratively (e.g., 1000 bootstraps), 536 
stability selection with randomized lasso assigned high scores to features that were repeatedly 537 
selected across randomizations, yielding the most meaningful connections within the CP 538 
connectome that describe behavior.  539 

Collectively, our results showed that neural classifiers (SVM) coupled with stability 540 
selection can correctly classify behavioral RTs related to CP from functional connectivity alone 541 
with over 90% accuracy (AUC=0.9). The resulting edges composing the RT-related networks 542 
were distributed in both hemispheres and both intra- and inter-hemispheric edges were evident. 543 
More interestingly, we found that only 8 edges among 13 ROIs were needed to distinguish RTs 544 
well above chance (Figure 7). ROIs composing this sparse but behaviorally-relevant network 545 
included (1) Caudalmiddlefrontal R, (2) Inferiorparietal L, (3) Lateraloccipital L, (4) Lingual L, 546 
(5) Lingual R, (6) Middletemporal L, (7) Paracentral R, (8) Parahippocampal R, (9) 547 
Parstriangularis L, (10) Precuneus R, (11) Rostralmiddlefrontal L, (12) Superiorparietal L, (13) 548 
and Superiortemporal R. Previous neuroimaging studies have demonstrated a distributed fronto-549 
temporo-parietal neural network supporting auditory categorization (e.g., (Alho et al., 2016; 550 
Bidelman and Lee, 2015; Binder et al., 2004; Chang et al., 2010; Feng et al., 2018; Golestani et 551 
al., 2002; Golestani and Zatorre, 2004; Lee et al., 2012; Liebenthal et al., 2010; Luthra et al., 552 
2019; Myers et al., 2009)). Our data corroborate these previous studies by confirming 553 
engagement of similar temporal (STG), parietal, motor, and prefrontal regions in CP using an 554 
entirely data driven approach (machine learning with stability selection).  555 

 556 
 557 
 558 
 559 
 560 
 561 

 562 
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Table 4: Eight most important edges that govern speeded speech classification. Collectively, these edges achieve a model 563 
accuracy of 57% in segregating listeners’ speeded decisions (RTs) in the perceptual task. Here, a score of 0.85 means that out of 564 
1000 iterations, the edge was selected by stability selection 850 times. 565 

 566 
Edge Score Rank 
Paracentral R-Middletemporal L 0.85 1 
Lingual R-Caudalmiddlefrontal R 0.845 2 
Parstriangularis L-Inferiorparietal L 0.785 3 
Superiorparietal L-Rostralmiddlefrontal L 0.785 4 
Precuneus R-Parahippocampal R 0.725 5 
Parstriangularis L-Lateraloccipital L 0.705 6 
Precuneus R-Lingual L 0.705 7 
Superiortemporal R-Inferiorparietal L 0.695 8 

 567 
Notably, we found functional connectivity between right paracentral and left 568 

middletemporal gyrus (MTG) was the most important connection describing the speed of 569 
behavioral CP (Table 4). MTG has been associated with accessing word meaning while reading 570 
(Acheson and Hagoort, 2013) and has been described as an early lexical interface that is heavily 571 
involved in sound-to-meaning inference (Hickok and Poeppel, 2007, 2004). Some studies 572 
indicate that lesions of the posterior region of the middle temporal gyrus, in the left cerebral 573 
hemisphere, may result in certain forms of alexia and agraphia (Sakurai et al., 2008), indicating 574 
its role in the language production network (Blank et al., 2002). The strong link between MTG 575 
and paracentral gyrus implies a direct pathway between the neural substrates that map sounds to 576 
meaning and sensorimotor regions that execute the motor command and therefore govern 577 
response speeds (indexed by RTs). The leftward laterality of the MTG node is consistent with the 578 
left lateralized nature of language processing in the brain. Still, why left MTG so strongly 579 
interfaces with right motor areas in our data is unclear, especially given the right-handedness of 580 
our participants and expected left (contralateral) motor involvement. Differences in brain 581 
connectivity have been observed between sexes (Ingalhalikar et al., 2014) and females may have 582 
a more diffuse, bilateral neural system for language processing than males (Shaywitz et al., 583 
1995). Speculatively, the strong communication between left linguistic (MTG) and right motor 584 
brain areas we find may reflect the higher preponderance of females in our sample.  585 
 Relatedly, stability selection identified the second ranked edge between lingual and 586 
caudal-middlefrontal gyrus. While the functional role of lingual (occipital) gyrus in speech 587 
processing is not apparent prima facie, this region is involved in visual word processing, 588 
especially letters (Mechelli et al., 2000). It has also implicated in stimulus naming (Bookheimer 589 
et al., 1995; Howard et al., 1992), an operation at the core of our speech categorization (i.e., 590 
sound labelling) task. We also found a third ranked edge predictive of behavioral CP between 591 
parstriangularis and inferior parietal cortex. Previous functional neuroimaging and connectivity 592 
studies have shown strong engagement of frontal-parietal networks during CP (Feng et al., 2018; 593 
Liebenthal et al., 2010; Luthra et al., 2019). Our results corroborate these findings by similarly 594 
implicating a strong interface between linguistic (IFG) and parietal (IPL) brain regions in 595 
modulating the speed of listeners’ categorical decisions. Indeed, decision loads IFG during 596 
effortful speech listening (Binder et al., 2004; Bouton et al., 2018; Du et al., 2014) and the IFG-597 
IPL pathway is upregulated when speech material is perceptually confusable (Feng et al., 2018). 598 
Therefore, the network organization of brain connectivity observed for slow RTs and importance 599 
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of IFG-IPL in describing behavior may reflect a similar state of perceptual confusion during 600 
rapid categorical speech labeling.  601 

One limitation of our study was that our sample contained more females than males (2:1 602 
ratio). This is relevant since RTs were significantly different among genders (Figure 1D). Thus, a 603 
natural question that emerges from our data is the degree to which our machine learning 604 
techniques segregated data based on gender rather than different RTs (i.e., fast vs. slow 605 
perceivers), per se. Still, this is probably not the case. Conventional filter-based group analysis 606 
can bias classification and feature selection results whereas with our Lasso-based bootstrapped 607 
analysis, this becomes less likely (Bach, 2008). Moreover, stability selection with randomized 608 
lasso is a similar but more robust approach that produces consistent variable selection with 609 
minimal bias. Hence, the impact of our unbalanced sample size on feature selection is probably 610 
negligible.  611 

Taken together, our novel approach to neuroimaging data demonstrates the derivation of 612 
small, yet highly meaningful patterns of brain connectivity that dictate speech behaviors using 613 
solely EEG. More broadly, the functional connectivity and machine learning techniques used 614 
here could be deployed in future studies to identify the most meaningful changes in 615 
spatiotemporal brain activity that are modulated by development, normal learning, or those 616 
which decline in neuropathological states. 617 

CONCLUSION 618 
 619 

We developed an efficient computational framework to investigate whether individual 620 
differences in speeded speech categorization could be explained in terms of network-level 621 
descriptions of functional brain connectivity. Our EEG data-driven approach reveals that the 622 
speed of listeners’ ability to categorize and properly label speech sounds is directly related to 623 
dynamic variations in their brain connectomics. These findings contribute in several ways to our 624 
understanding of how the brain works in categorical perception and provide a basis for further 625 
research. In future iterations of the work, we plan to improve our approach by including 626 
directional and dynamic connectivity analysis to better delineate the temporal emergence of the 627 
phenomena observed here.  628 
 629 
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 893 

APPENDIX 894 

GRAPH MINING 895 
 896 
Mathematical definitions and interpretation of network features are given below:  897 
 898 
Characteristics path 899 

A fundamental property of brain networks is functional integration, which indicates how 900 
integrated a network is and, thus, how easily information flows (Rubinov and Sporns, 2010) 901 
among nodes. A widely-used approach to estimate properties of functional integration between 902 
nodes is based on the concept of characteristic path length. The characteristic path length is 903 
defined as the average shortest path length in the network (Watts and Strogatz, 1998). Hence, 904 
small characteristic path values imply dense connectivity and stronger potential for integration 905 
among nodes. Let, 𝐿𝑖 is the average distance between node 𝑖 and all other nodes of a network, 906 
Average Characteristic path is defined as: 907 

L = %
&
∑ 𝐿((∈* = %

&
 ∑

∑ +,--∈.,-0,

&1%(∈*  908 
Where, 𝑑(3 is the shortest distance between node 𝑖, 𝑗 (shortest path can be calculated using any 909 
popular shortest path algorithm), 𝑁 is the set of all nodes, and 𝑛 is the total number of nodes.  910 
 911 
Global efficiency 912 

Global efficiency (E) is used to find, how cost-efficient a particular network construction 913 
and how fault tolerant the network is. Hence, high global efficiency, implying the excellent use 914 
of resources. In brain connectivity analysis, structural and effective networks are similarly 915 
organized and share high global efficiency. On the other hand, functional networks have weaker 916 
connections and consequently share lower global efficiency (Honey et al., 2007). Global 917 
efficiency is the average of inverse shortest path length hence inversely related to the average 918 
characteristic path length. E is defined as: 919 
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E = %
&
∑ 𝐸((∈* = %

&
∑

∑ +,,-
9:

-∈.,-0,

&1%(∈*  . 920 
 921 
Average clustering coefficient 922 

The average clustering coefficient for the network reflects,  how close its neighbors are to 923 
being a clique or complete graph. The average clustering coefficient of a node is defined as the 924 
fraction of triangles around a node (Watts and Strogatz, 1998) and defined as: 925 

C = %
&
∑ 𝐶((∈*  . 926 

Here, Ci is the clustering coefficient of ith node. Let ki is the number of neighborhood node, and ti 927 
is the number of triangles created around ith node. If a node has k neighbors, there are 928 
𝑘(𝑘 − 1) 2⁄  edges could exist among the nodes within the neighborhood. Hence, C can be 929 
defined as: 930 

C = %
D
∑ EFG

HG(HG1%)I∈J  . 931 
Transitivity  932 

Transitivity is a classical variant of average clustering coefficient and defied as:  933 
T = ∑ EL,,∈.

∑ M,(M,1%),∈.
 . 934 

The value of average clustering coefficient can be influenced by nodes with a low degree. But 935 
transitivity is normalized collectively and consequently hence, does not have such problem 936 
(Newman, 2003).  937 
 938 
Small-worldness  939 

Small-world network (S) is formally defined as networks that are significantly densely 940 
clustered and have larger characteristic path length than random networks (Watts and Strogatz, 941 
1998).  Mathematically S can be expressed as:  942 

𝑆 =
O
OPQRSTUV

W
WPQRSTUV

 . 943 

Where 𝐶 and 𝐶rand are the clustering coefficients, and 𝐿 and 𝐿rand are the characteristic path 944 
lengths of the test network and an equivalent random network with the same degree on average 945 
respectively. For a small world network S > 1, C >> Crandom and L >> Lrandom. Such network tends 946 
to contain more densely connected cliques/near-cliques/sub-networks than random network. 947 
Those sub-networks are interconnected by one or more edge.  948 
 949 
Assortativity coefficient 950 

Despite the importance local and community structure, it is essential to study global 951 
diversity in networks. Hence the tendency to connect nodes with similar numbers of edges. This 952 
tendency, called assortativity, described crucial dynamic and structural properties of real-world 953 
networks, such as epidemic spreading or error tolerance (Foster et al., 2010). A positive 954 
assortativity coefficient indicates that nodes tend to link to other nodes with the same or similar 955 
degree, on the other hand negative values indicate relationships between nodes of different 956 
degree. Biological networks typically show negative assortativity coefficient as high degree 957 
nodes tend to attach to low degree nodes (Piraveenan et al., 2012). Mathematically, the 958 
assortativity coefficient is the Pearson correlation coefficient of degree between pairs of linked 959 
nodes (Newman, 2002). Consider an undirected graph of N vertices and M edges with degree 960 
distribution 	𝑝3. That is 	𝑝3 is the probability that a randomly chosen node on the graph will have 961 
degree k and 𝑞M is the distribution of the remaining degree. This 𝑞M captures the number of edges 962 
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leaving the node, other than the one that connects the pair. The assortativity coefficient (r) is 963 
defined as: 964 

r =
∑ 3M(\-]1^-_])-]

`ab
 . 965 

Where, 𝜎𝑞2 is the variance of distribution 	𝑝M and 𝑒𝑗𝑘 refers to the joint probability distribution of 966 
the remaining degrees of the two nodes. 967 
 968 
Modularity Index 969 

Modularity refers to the ability of subdivision the network into non-overlapping groups of 970 
nodes (known as modules or community) in a way that maximizes the number of within-group 971 
edges. Networks with high modularity have dense connections between the nodes within the 972 
modules but sparse connections between nodes in different modules. Hence, modularity 973 
quantifies the community strength of a test network by comparing the fraction of edges within 974 
the community with respect to random network (Chen et al., 2014). It is widely used to discover 975 
anatomical modules correspond to groups of specialized functional area which is previously 976 
determined by physiological recordings. Usually, anatomical, effective and functional modules 977 
in brain connectivity show extensive overlap (Rubinov and Sporns, 2010). Modularity index of a 978 
given network is the fraction of the edges that fall within the given groups minus the expected 979 
fraction if edges were distributed at random. Finding optimal modular structure is an 980 
optimization problem. Any optimization approach generally sacrifices some degree of accuracy 981 
for computational speed. Widely used algorithm to find optimal modular structure are proposed 982 
by Newman et al. (Newman, 2004), and Blondel et al. (Blondel et al., 2008).  983 
 984 
Stability selection with Randomized Lasso 985 

Randomized Lasso (RL) (Meinshausen and Bühlmann, 2010) is a straightforward two 986 
step approach. Instead of applying specific algorithm to the whole data set to determine the 987 
selected set of variables based on the weight of coefficient, RL applied randomized lasso several 988 
times to random subsamples of the data of size n/2 (n = number of samples) and chose those 989 
variables that are selected consistently across subsamples. By performing this double 990 
randomization several times, the method assigns high scores to features that are repeatedly 991 
selected across randomizations. In short, features selected more often are considered good 992 
features even though the “irrepresentable condition” (Zhao and Yu, 2006) is violated. This 993 
approach is similar to the concept of bagging (Breiman, 1999) and sub-bagging (Büchlmann and 994 
Yu, 2002) algorithm. 995 

We know, Lasso has sparse solutions. For higher dimensional data, many estimated 996 
coefficients of variables become zero. Removing the variables can be used to reduce the 997 
dimensionality of the data. There are some limitations of Lasso-based feature selection are:  998 

1. Lasso has a tendency to select an individual variable out of a group of highly correlated 999 
features.  1000 

2. When the correlation between features is not too high, the performance of Lasso is 1001 
restrictive. 1002 

Lasso penalizes the absolute value of coefficients |𝛽|M of every component with a penalty term 1003 
proportional to the regularization parameter	𝜆 ∈ ℝ. On the other hand, Randomized Lasso 1004 
penalizes using randomly chosen values in a range [𝜆, 𝜆/𝛼] where, 𝛼 ∈ (0,1)	is the weakness 1005 
parameter. The concept of weakness parameter is closely related to weak greedy algorithms 1006 
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(Temlyakov, 2000). Let Wk be an i.i.d. random variable in a range from (𝛼, 1) for k = 1, …., p. 1007 
The estimator of Randomized Lasso can be written as (Meinshausen and Bühlmann, 2010): 1008 
 1009 
 1010 

𝛽no,p = argminv∈ℝw	 ∥ 𝑌 − 𝑋𝛽 ∥EE+ 𝜆|
|𝛽M|
𝑊M

^

M~%

 … 1 

 1011 
Here, Y and X is the class label and feature matrix respectively. Implementation of equation: 1012 

1 is a straightforward two-stage process:  1013 

1. Re-scaling of the feature variables (with scale factor Wk for the k-th variable),  1014 
2. LARS algorithm is applied on re-scaled variables (Efron et al., 2004). 1015 

 1016 
In this approach, the reweighting is simply chosen at random. It is not sensible to expect 1017 
improvement from randomization with one random perturbation. However, applying 1018 
Randomized Lasso with many iterations (e.g. 1000 times) and looking for variables that are 1019 
chosen frequently is a useful tool to find out stable feature (Meinshausen and Bühlmann, 2010).  1020 
 1021 

By performing this double randomization several times, RL assigns high scores to 1022 
features that are repeatedly selected across randomizations. if we run the Lasso for several 1023 
bootstrapped replications of a given sample, then intersecting the supports of the Lasso bootstrap 1024 
estimates leads to consistent model selection (Bach, 2008; Meinshausen and Bühlmann, 2010) 1025 

 1026 
FIGURE 1027 
 1028 

   
Figure 8: Brain network underlying Slow RT listeners (left), Medium RT listeners (middle), and Fast RT listeners. Shown here 
are the most highly correlated (absolute correlation ≥0.5) network edges. Otherwise as in Figs. 6-7. INS, insula; IST, isthmus 
of cingulate; TRANS, transverse temporal gyrus (auditory cortex); POB, pars orbitalis; PRC, precentral gyrus (motor 
cortex); PHIP, parahippocampal gyrus; PREC, precunus; l/r, left/right hemisphere. 
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