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Abstract 

 

Cell-free RNA, including both long RNA and small RNA, has been considered 

important for its biological functions and potential clinical usage, but the major 

challenge is to effectively sequence them at the same time. Here we present 

PolyAdenylation Ligation Mediated-Seq (PALM-Seq), an integrated sequencing 

method for cell-free long and small RNA. Through terminal modification and addition 

of 3’ polyadenylation and 5’ adaptor, we could get mRNA, long non-coding RNA, 

microRNA, tRNA, piRNA and other RNAs in a single library. With target RNA 

depletion, all these RNAs could be sequenced with relatively low depth. Using 

PALM-Seq, we identified pregnant-related mRNAs, long non-coding RNAs and 

microRNAs in female plasma. We also applied PALM-Seq to sequence RNA from 

amniotic fluids, leukocytes and placentas, and could find RNA signatures associated 

with specific sample type. PALM-Seq provides an integrated, cost-effective and 

simple method to characterize the landscape of cell-free RNA, and can stimulate 

further progress in cell-free RNA study and usage. 
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Introduction 

 

 After cell-free RNA (cfRNA) was discovered, its importance has been proven. 

CfRNA plays important roles in cell communications1,2, and its biogenesis, uptake3 

and distribution4 are correlated with physical and pathological situations5. Besides this, 

cfRNA carries information from human tissues6,7 or tumor8,9. According to these 

reasons, cfRNA is considered as potential targets for disease interventions and useful 

biomarkers for disorder prediction. 

 CfRNA in plasma is usually made up of degradative small fragments with size 

smaller than 200nt, very low concentration (may lower than 10 ng/mL)10, and 

different terminal modification11,12, and these properties make it difficult to research. 

Since 2014, next-generation sequencing was used for cfRNA studies13,14, but some 

problems were not solved till now, including requirement of large volume for blood15, 

no uniform sequencing method for all cfRNA fractions12, high cost for large scale 

cfRNA library preparation, and as well as low mapping rate.  

 Here, we presented a new method, PolyAdenylation Ligation Mediated-Seq 

(PALM-Seq), to get all sorts of RNA in one library with lower cfRNA input. 

Additionally, PALM-Seq provided a new possible way for entire transcriptome 

sequencing with low input of RNA samples. This approach could enable us to get 

more comprehensive results for large population studies and clinical usages of 

cfRNA. 
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Results 

 

Principle of PALM-Seq. 

 For amount of cfRNA was low, in order to avoid RNA degradation or adsorption 

to the tube, 3’ polyadenylation was added by E. coli Poly(A) Polymerase (PAP)16 in 

the first step. The terminal modification of cfRNA was different, however T4 

Polynucleotide Kinase (T4 PNK) could make most part of them to 5’ end 

phosphorylated and 3’ end hydroxyl17,18 except those with 5’ cap. Because T4 PNK 

and PAP could work in the same buffer with ATP, separate step of pretreatment for 

cfRNA with T4 PNK was unnecessary. Then, 5’ adaptor was then ligated by T4 RNA 

Ligase 119. In contrast to 3’ DNA adaptor used in common small RNA seq, 3’ 

polyadenylation could not be degraded by DNase I which was necessary for RNase H 

method20. So, rRNA or other uninterested, abundant RNA could be easily removed by 

RNase H method. DNase I treatment could also prevent the possible contamination of 

cell-free DNA. Finally, RNA with 3’ polyadenylation and 5’ adaptor was reverse 

transcribed by oligo(dT) with 3’ adaptor and amplified by PCR (Fig. 1a). Most part of 

the library was short fragments as expected. The processing pipeline of sequencing 

data was shown in Fig. 1b. 

 In order to test the effect of T4 PNK treatment (PNKT) and target depletion (TD) 

which was performed through RNase H method, and identify the best work condition 

for cfRNA, we used four samples, each of which was treated in four work conditions, 

with or without PNKT and with or without TD. We also wanted to know whether TD 
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could remove other abundant RNA, so Y RNA and Vault RNA which were rich in 

plasma cfRNA21 and not interested in this study, were also depleted for plasma 

samples.  

 

PALM-Seq could capture plasma mRNA, lncRNA and small RNA with high 

complexity. 

 Complexity is especially important for low-quantity and low-quality RNA 

sequencing20,22, and it is better to get more kinds of RNA in one library. To assess the 

performance of different treatments and methods, we analyzed the data to account for 

differences in number of different genes detected and contribution of different kinds 

of RNA. PALM-Seq with PNKT (TD or no TD) could detect larger number of mRNA 

(Fig. 2a) or lncRNA (Fig. 2b), and it could also detect miRNA (Fig. 2c), tRNA (Fig. 

2d) and piRNA (Fig. 2e), while the fewer miRNAs were covered. PALM-Seq with no 

PNKT and no TD were more efficient to detect miRNA (Fig. 2c), tRNA (Fig. 2d) and 

piRNA (Fig. 2e), but it covered less mRNA (Fig. 2a) and LncRNA (Fig. 2b).  

 To further qualify our method, we referred to public data produced by SMARTer 

Seq (by using Clontech SMARTer Stranded Total RNA-Seq Kit - Pico)15, ScriptSeq 

(by using Illumina ScriptSeq v2 Kit)23 and Small RNA Seq (by using NEBNext Small 

RNA Library Preparation Kit)24 to quantify if PALM-seq was comparable or even 

better. While SMARTer Seq and ScriptSeq were designed for large fragment RNA, 

they were effective to detect mRNA or lncRNA (Fig. 2a-b), but they could not cover 

small RNA (Fig. 2c-e). In contrast, Small RNA Seq performed well in detecting 
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miRNA (Fig. 2c), but was not suitable for lncRNA or mRNA (Fig. 2a-b). RNA ratio 

also showed that mRNA and lncRNA were rich in PALM-Seq with PNKT (TD or no 

TD), SMARTer Seq or ScriptSeq, however miRNA was rich in PALM-Seq with no 

PNKT (TD or no TD) or Small RNA Seq (Fig. 2f). In addition, tRNA and piRNA 

ratio was higher in PALM-Seq (Fig. 2f). 

 Length contribution of different sort of RNA were also checked to further 

estimate the effect of PNKT. Large fragments of mRNA or lncRNA could be captured 

without PNKT, however, more small fragments of mRNA or lncRNA would be 

captured with PNKT, for small fragments might be produced by RNase (e.g. RNase A) 

with 3’ phosphorylated and 5’ hydroxyl. Length contribution of small RNA were less 

influenced by PNKT. The information provided by small fragments of mRNA or 

lncRNA would be important especially for small amount or long-stored samples 

without enough long fragments, so PNKT was acquired for mRNA or lncRNA 

analysis. 

 These results illustrated that PALM-Seq could be used for miRNA, tRNA and 

piRNA whether with or without PNKT, but PNKT was necessary for mRNA and 

lncRNA analysis. 

 

TD could remove uninterested RNA efficiently and improve mapping rate. 

 Mapping rate is important for data analysis to detect more genes, splicing or other 

variations with lower sequencing depth20. Depletion of uninformative abundant RNA 

(e.g. rRNA) can increase mapping rate and maximize the coverage of other transcripts 
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present in a sample. To test the efficiency and necessity of TD, we calculated rRNA 

ratio (Fig. 3a). We found that rRNA could be removed efficiently by TD, especially in 

PNKT condition, otherwise, the rRNA ratio would be extremely high. In no PNKT 

condition, TD was dispensable. In addition, Y RNA and Vault RNA could also be 

removed by TD. SMARTer Seq removed rRNA through CRISPR, so the rRNA ratio 

was low, but ScriptSeq or Small RNA Seq data contained high ratio of rRNA. 

 To further estimate informative data ratio, we calculated mRNA, lncRNA and 

miRNA mapping rate to total reads (Fig. 3b-d). We found that TD increased mRNA 

and lncRNA mapping ratio (Fig. 3b-c) and decreased the acquired sequencing depth25 

when PNKT was used (Fig. 3e-f). However, TD did not significantly influence 

miRNA mapping ratio. 

 Then we compared mapping rate among different methods. For mRNA and 

lncRNA mapping rate, PALM-Seq with PNKT and TD performed similarly with 

SMARTer Seq, and much better than Small RNA Seq. ScriptSeq performed best for 

mRNA but not well for lncRNA. For miRNA mapping rate, PALM-Seq with PNKT 

and TD performed similarly with Small RNA Seq, although lower than PALM-Seq 

with no PNKT and no TD. 

 These results suggested that TD was helpful, and it was necessary when 

PALM-Seq was used to detect both mRNA and miRNA, for rRNA ratio might be 

unacceptable if only PNKT was used. 

 We recommended PALM-Seq with PNKT and TD for the studies which needed 

both mRNA/lncRNA and miRNA, and PALM-seq with no PNKT and no TD for the 
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researches focused on miRNA.  

 Because both mRNA/lncRNA and miRNA were needed in our further work, 

PALM-Seq with PNKT and TD were used for other samples mentioned in this study. 

 

PALM-Seq was a robust method for plasma RNA-Seq. 

 An ideal cfRNA sequencing method should not only display high yield, 

complexity and mapping rate, but also have high reproducibility22. We tested the 

reproducibility of PALM-Seq and found that PALM-Seq with PNKT and TD showed 

the similar consistency for mRNA as SMARTer Seq or ScriptSeq (Fig. 4a), but the 

consistency of lncRNA was higher for PALM-Seq (Fig. 4b). PALM-Seq with PNKT 

and TD or PALM-Seq with no PNKT and no TD gave more stable results compared 

with Small RNA Seq (Fig. 4c).  

 Coverage metrics might be critical for certain measurements. We calculated the 

variation in coverage of mRNA and lncRNA from 5’ to 3’ 20, and PALM-Seq did not 

show significant bias from 5’ to 3’ by considering all detected genes. We then aligned 

the small RNAs to their respective precursors26. As expected, the mature miRNAs 

were aligned to the two arms of the pre-miRNA hairpins (Fig. 4f). The tRNA-derived 

small RNAs (tsRNAs) were mainly derived from the two regions of the mature tRNA, 

but it showed slight difference with cell tsRNAs26 (Fig. 4g). 

 To estimate the failure rate of this method, we totally built 120 libraries for 

plasma cfRNA, and 2 of them failed for low yield (<300ng). 

 For further usage of PALM-Seq, we assessed the influence of sequencing depth25 
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and read length. First, we evaluated saturation plots for different transcript biotypes. It 

was shown that 20M clean reads (about 40M total reads) were enough for mRNA, 

lncRNA, miRNA and tRNA quantification. Due to the low piRNA ratio, more reads 

might be acquired for piRNA analysis. We then compared expression results with 

single read 35 cycles or 100 cycles, and there was no significant difference, because 

most of cfRNA fragments were short. 

 

Placental-specific genes could be detected in plasma cfRNA from pregnant 

women. 

 One of the basic usages for RNA-Seq is differentially expressed gene (DEG) 

analysis27, so PALM-Seq was tested for DEGs. During pregnancy, placenta releases 

nucleic acids into blood. To test whether PALM-Seq could capture placental specific 

RNA, we collected blood samples from 4 nonpregnant females and 4 pregnant 

females (three time points: 12, 24 and 36 gestational week).  

 Principal components analysis28 (PCA) showed that there were no significant 

outliers. Then, we checked the expression of placenta-specific mRNA/lncRNA (Fig. 

5a) or miRNA (Fig. 5b). As expected, these genes were only expressed in plasma 

from pregnant women. We verified 5 mRNA/lncRNA genes and 5 miRNAs. Protein 

coding gene such as CGA, CSH1 and CSH2, and long non-coding gene such as 

PLAC415, were very low or undetected in nonpregnant females, and increased during 

pregnancy. S100A8 which are related to pregnant immunomodulation15, also 

increased (Fig. 5c). Placental-specific C17MC miRNA29 such as mir-526b-5p, 
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mir-519d-3p, mir-515-5p and mir-512-3p, also existed in plasma of pregnant females; 

and we found mir-454-3p decreased (Fig. 5d). These results were validated by 

RT-qPCR (Fig. 5c-d). Together with the results above, it was suggested that 

PALM-Seq could provide reliable results for DEG analysis. 

 

Discussion 

 Although the kits designed for total RNA such as Ribo-Zero Gold Kit NuGen’s13 

or RNA-Seq Ovation System Kit14, were used before, they are not proper for cell-free 

RNA. Now, Small RNA Seq, SMARTer Seq and ScriptSeq are considered as 

optimized choices15,22-24. However, Small RNA Seq method requires 5’ 

phosphorylated and 3’ hydroxyl36, and pretreatment for low input of samples with 

Tobacco Acid Pyrophosphatase (TAP) or RNA 5' Pyrophosphohydrolase (RppH) and 

T4 PNK may cause significant loss. SMARTer Seq and ScriptSeq could only capture 

large fragments, but small fragments are the main fraction of cfRNA, and they also 

may not be used for long-stored samples. There is no suitable method to capture small 

RNA and long RNA at the same time. Additionally, these kits are also expensive for 

large scale usage. 

 In contrast, PALM-Seq is a flexible, low cost method which could cover most of 

RNA in plasma except mRNA fragment with 5’ Cap. Compared to commercial 

RNA-Seq kit, many details can be easily modified to capture certain fractions without 

additional purification. Different terminal modifications might be distinguished by the 

usage of T4 PNK, TAP or RppH; however, if TAP or RppH is used, buffer should be 
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optimized. Different target depletion could also be achieved just by change DNA 

oligo set. If certain length of fragments was required, size selection could be used 

after PCR amplification.  

 RNase H based target depletion20 is recruited here because it does not need 

certain kit, and there is no sequence restriction as in CRISPR-based method (PAM 

sequence NGG is necessary for Cas9) used by SMARTer Seq. RNase H based target 

depletion method was not limited by fragment length as well (DSN-lite might have 

problems when the fragments were too short). Removing rRNA by magnetic bead 

capture was also not practical for cfRNA due to severely lost. CATS-Seq11 (which 

shared the same principle of Clontech SMARTer smRNA-Seq Kit) which is similar to 

PALM-Seq, is not compatible for RNase H method, because the digestion production 

could not be removed and would be conjunct with 5’ adaptor through 

template-switch.  

 PALM-Seq is also time-saving and easy to handle. One could finish library 

preparation for 24 samples in 10 hours or for 32 samples in 12 hours without 

multichannel pipettors or purification workstations, and it might also be used in 

automatic production line. In a word PALM-Seq is a powerful sequencing method 

suitable for large scale cfRNA study or clinical application. 
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Figure 1 | Scheme of PALM-Seq. a, Principle of PALM-Seq. Cell-free RNAs 
(cfRNA) are terminal modified and added with 3’ poly(rA) tail and 5’ adaptor. 
Targeted RNAs are depleted. Finally, RNAs are converted to cDNA by reverse 
transcription and PCR amplification. b, Data Analysis. Low quality data are removed 
at first, and then adapter trimming is made. Reads shorter than 17bp, rRNA and/or 
other targeted RNA (e.g. Y RNA and Vault RNA in plasma) reads are filtered. The 
mapping is performed in the order of miRNA, tRNA/piRNA, mRNA/lncRNA and 
other RNA. The unmapped reads will be mapped to genome if necessary. Small 
RNAs are quantified by counts and Reads Per Million (RPM), and mRNA or lncRNA 
are quantified by counts and Transcripts Per Million (TPM). 
 
Figure 2 | Complexity and RNA biotype contribution of different RNA-seq 
methods for plasma cfRNA. a-e, Number of mRNAs (a), lncRNA (b), miRNA (c), 
tRNA (d) and piRNA (e) expressed in each treatment or method. Four samples are 
used for each subgroup, the results are shown as mean ± S.E.M. (Standard Error of 
Mean). f, Average ratio (n=4) of mapped reads for each type of RNA in different 
cfRNA sequencing methods. PNKT: T4 polynucleotide kinase treatment. TD: Target 
depletion. 
 
 
Figure 3 | Mapping rate of different cfRNA sequencing methods. a-d, 
Performance of each library with respect to rRNA ratio (a, normalized to read number 
after low-quality reads and <17bp reads have been filtered), mRNA mapping rate (b, 
normalized to total read number), lncRNA mapping rate (c, normalized to total read 
number) and miRNA mapping rate (d, normalized to total read number). Unpaired 
two-sided Student’s t-test is used to assess significance. The original p values are 
shown here. e-f, Saturation plots for mRNA (e) and lncRNA (f) shows the influence 
of TD to the acquired sequencing depth when PNKT is used. 
 
Figure 4 | Reproducibility and transcript coverage of PALM-Seq. a-c, 
Reproducibility is measured by coefficient of determination (R2). PALM-Seq with 
PNKT and TD is compared with SMARTer-Seq or ScriptSeq for mRNA (a) and 
lncRNA (b). PALM-Seq with PNKT and TD or with no PNKT and no TD are 
compared with Small RNA Seq for miRNA (c). R2 is calculated through simple linear 
regression of log2(TPM+1) for mRNA and lncRNA or log2(RPM+1) for miRNA. d-e, 
Normalized coverage by position for mRNA (d) and lncRNA (e). For each library, the 
average relative coverage is shown at each relative position along the transcripts’ 
length. f-g, Coverage of miRNA (f) and tRNA-derived small RNAs (tsRNA, g) across 
the length of the precursor RNAs (divided into 40 bins). Different curves stand for 
different samples using PALM-Seq with PNKT and TD. 
 
Figure 5 | PALM-Seq could detect pregnancy-related plasma cfRNA. a, The 
expression of placenta-specific mRNA or lncRNA in plasma during pregnancy. b, 
The expression of placenta-specific miRNA (C17MC cluster) in plasma during 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 5, 2019. ; https://doi.org/10.1101/686055doi: bioRxiv preprint 

https://doi.org/10.1101/686055
http://creativecommons.org/licenses/by-nc-nd/4.0/


18 
 

pregnancy. c, TPM of PALM-Seq and ΔCT of RT-qPCR normalized to B2M of CGA, 
CSH1, CSH2, PLAC4 and S100A8. d, RPM of PALM-Seq and ΔCT of RT-qPCR 
normalized to RN7SL of mir-526b-5p, mir-519d-3p, mir-515-5p, mir-512-3p and 
mir-454-3p. N: nonpregnant females; T1: females at 12 gestational week; T2: females 
at 24 gestational week; T3: females at 36 gestational week. N=4. 
 
Figure 6 | Usage of PALM-Seq in amniotic fluid cfRNA and RNA from leukocyte 
or placenta. a, Average ratio (n=4) for each type of RNA in different samples. b-d, 
Principal components analysis for mRNA (b), lncRNA (c) and miRNA (d). e, 100 
differently expressed miRNAs between leukocyte and placenta by PALM-Seq. f, 200 
differently expressed mRNAs or lncRNAs between leukocyte and placenta by 
PALM-Seq. 
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