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ABSTRACT 
 
 
Cortical circuits are flexible and can change with experience and learning. However, the effects of 
experience on specific cell types, including distinct inhibitory types, are not well understood. Here we 
investigated how excitatory and VIP inhibitory cells in layer 2/3 of mouse visual cortex were impacted 
by visual experience in the context of a behavioral task. Mice learned to perform an image change 
detection task with a set of eight natural scene images, viewing these images thousands of times. 
Subsequently, during 2-photon imaging experiments, mice performed the task with these familiar 
images and three additional sets of novel images. Novel images evoked stronger overall activity in both 
excitatory and VIP populations, and familiar images were more sparsely coded by excitatory cells. The 
temporal dynamics of VIP activity differed markedly between novel and familiar images: VIP cells were 
stimulus-driven by novel images but displayed ramping activity during the inter-stimulus interval for 
familiar images. Moreover, when a familiar stimulus was omitted from an expected sequence, VIP cells 
showed extended ramping activity until the subsequent image presentation. This prominent shift in 
response dynamics suggests that VIP cells may adopt different modes of processing during familiar 
versus novel conditions.  
 
 
 
HIGHLIGHTS 
 

• Experience with natural images in a change detection task reduces overall activity of cortical 
excitatory and VIP inhibitory cells 

• Encoding of natural images is sharpened with experience in excitatory neurons  

• VIP cells are stimulus-driven by novel images but show pre-stimulus ramping for familiar images 

• VIP cells show strong ramping activity during the omission of an expected stimulus  
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INTRODUCTION 
 
Neural circuits are dynamically shaped by experience and expectation (De Lange et al., 2018; 
LeMessurier and Feldman, 2018; Ranganath and Rainer, 2003). Visual experience can produce 
modifications of cortical representations, including changes in response gain, selectivity, correlations, 
and population dynamics (Jurjut et al., 2017; Khan et al., 2018; Makino and Komiyama, 2015; Poort et 
al., 2015; Weskelblatt and Niell, 2019; Woloszyn and Sheinberg, 2012). Moreover, sensory and 
behavioral experience can lead to the emergence of predictive activity in the visual cortex including 
reward anticipation (Poort et al., 2015; Shuler and Bear, 2006), spatial expectation (Fiser et al., 2016; 
Saleem et al., 2018), pattern completion (Gavornik and Bear, 2014), and prediction error signals (Fiser 
et al., 2016; Hamm and Yuste, 2016; Homann et al., 2017). Visual cortical circuits are also influenced 
by behavioral context, internal states, and other factors beyond external stimulus features (Batista-Brito 
et al., 2018; Busse et al., 2017; Gilbert and Li, 2013; Khan and Hofer, 2018; Kuchibhotla and Bathellier, 
2018; McGinley et al., 2015; Pakan et al., 2018). These experience and state-dependent changes in 
sensory cortex can involve top-down feedback (Fiser et al., 2016; Makino and Komiyama, 2015; Petro 
et al., 2014; Zhang and Dan, 2014) and neuromodulatory inputs (Chubykin et al., 2013; Kuchibhotla et 
al., 2017; Pinto et al., 2013), and may be associated with a shift in the balance of bottom-up sensory 
and top-down contextual signals conveying internal states and learned expectations. Inhibitory 
interneurons are likely to play a key role in this process by dynamically regulating the flow of 
information (Chiu et al., 2019; Hangya et al., 2014; Kepecs and Fishell, 2014). Elucidating how different 
cell populations, particularly inhibitory cells, contribute to experience-dependent changes in sensory 
coding is critical to understand the dynamic nature of cortical circuits.  
 
Vasoactive intestinal peptide (VIP) expressing cells comprise a major class of inhibitory neurons and 
are well-positioned to mediate top-down influences on local circuits in sensory cortex. VIP cells receive 
long-range projections from frontal areas (Lee et al., 2013; Wall et al., 2016; Zhang and Dan, 2014) as 
well as cholinergic and noradrenergic inputs (Alitto and Dan, 2013; Fu et al., 2014). VIP cells are highly 
active during states of arousal (Fu et al., 2014; Reimer et al., 2014), are modulated by task 
engagement (Kuchibhotla et al., 2017), and are responsive to behavioral reinforcement (Pi et al., 2013). 
In the local cortical circuitry, VIP cells primarily inhibit another major class of inhibitory interneuron, 
somatostatin (SST) cells (Lee et al., 2013; Munoz et al., 2017; Pfeffer et al., 2013; Pi et al., 2013), 
which can result in disinhibition of excitatory neurons (Fu et al., 2017; Lee et al., 2013; Letzkus et al., 
2011). SST cells target the apical dendrites of pyramidal neurons (Kepecs and Fishell, 2014) and 
removal of this inhibition may facilitate the association of top-down and bottom-up input by pyramidal 
cells (Chen et al., 2015; Larkum, 2012; Makino and Komiyama, 2015). However, little is known about 
how VIP cell activity is modified by visual experience. As VIP cells exhibit strong surround suppression 
in response to high contrast oriented gratings (Dipoppa et al., 2018), the use of naturalistic stimuli may 
be critical to uncover the role of VIP cells in regulating the flow of information with experience.  
 
Here we investigated how long-term behavioral experience with natural scene images alters activity of 
cortical excitatory and VIP inhibitory cells in layers 2/3 of mouse visual cortex. Mice were trained to 
perform a change detection task in which images are flashed in a periodic manner and mice were 
rewarded for detecting changes in image identity. Mice learned the task with one set of eight natural 
images, which were viewed thousands of times during training and were thus highly familiar. During 
subsequent 2-photon imaging, these familiar images as well as three novel image sets were tested. 
Familiar images were associated with lower overall population activity in both excitatory and VIP cells, 
and excitatory cells were more stimulus selective for familiar images. Notably, VIP inhibitory cells had 
distinct activity dynamics during sessions with familiar versus novel images. VIP cells were stimulus-
driven by novel images but displayed ramping activity between stimulus flashes when presented with 
familiar images. These cells showed even greater activity when an expected stimulus was omitted from 
the regular image sequence. Overall, these results demonstrate experience-dependent changes in 
across two cortical cell classes and suggest that VIP cells may adopt different modes of processing 
during familiar versus novel conditions.  
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RESULTS 
 
Visual change detection task with familiar and novel images 
 
We trained mice to perform a go/no-go visual change detection task with natural scene stimuli. In this 
task, mice are presented with a continuous stream of flashing images (Figure 1A-C). On ‘go’ trials, a 
change in image identity occurs at a time unknown to the animal (Figure 1B). To earn water rewards, 
mice must report the image change by licking a reward spout within a 750 ms response window. False 
alarms are quantified during ‘catch’ trials in which the repeated image does not change, but licking 
behavior is measured in a similar time window. To test whether expectation signals were present in the 
visual cortex during this task, we randomly omitted ~5% of all non-change flashes; this appears as an 
extended gray period to the mouse and corresponds to a gap in the regular timing of stimuli (Figure 
1C).  
 
Behavioral training proceeded through a series of stages: mice first learned task rules with full-field 
gratings of two different orientations and no intervening gray period, followed by introduction of a 
500ms gray screen period between flashes, then training with natural scene images, and finally 
simultaneous behavior and 2-photon imaging with multiple image sets, where omitted flashes were 
introduced (Figure 1D). During the natural image training stage (stage 3), mice were trained with one 
set of eight images (image set A) for an extended number of sessions (range = 6-46 sessions with 
image set A, median = 17 sessions; Figure 1G, Supplemental Figure 1A). On average, mice viewed 
each of the eight scenes from the familiar image set 10,350 times prior to the 2-photon imaging stage 
(range: 944-26,784 individual stimulus presentations per image).  
 
During the physiology portion of the experiment, mice were challenged with either the familiar image set 
or one of three additional novel image sets (Figure 1E,F). Mice performed the task with similar hit and 
false alarm rates across image sets (Figure 1H, Supplemental Figure 1B,C; statistics are described in 
the figure legends throughout). Reaction times were also similar for familiar and novel image sets 
(Figure 1I). During the task, mice are free to run on a circular disk and typically stop running when 
emitting a licking response. There was no difference in average running speed or pattern of running 
behavior during novel and familiar image sessions (Supplemental Figure 1D,E). Together, these results 
indicate that overall behavior was similar for novel and familiar image sets. 
 
Imaging excitatory and inhibitory cortical populations during task performance 
 
We measured activity in transgenic mice expressing the calcium indicator GCaMP6f in excitatory 
pyramidal neurons (Slc17a7-IRES2-Cre; CaMKII-tTA; Ai93-GCaMP6f) or VIP inhibitory neurons (VIP-
IRES-Cre; Ai148-GCaMP6f) (Figure 2A,B). We imaged on average 181+/-77 (mean+/-SD) Slc17a7+ 
cells or 15+/-10 VIP+ cells per session from a total of 12-13 sessions per transgenic line for each image 
set (Supplemental Figure 2A). We measured activity in the primary visual cortex, VISp, and one higher 
visual area, VISal. We did not observe major differences between these two areas for the metrics we 
evaluated, so data was combined across areas for the analyses reported here. In each imaging 
session, one of the 4 sets of natural scene images was shown.  
 
Excitatory cells were typically responsive to only one or a few images in each set (Figure 2C,D). When 
presented with their preferred stimulus, most excitatory cells responded with an increase in 
fluorescence shortly after stimulus onset, although some cells responded after stimulus offset. VIP cells 
were generally less selective for image identity than excitatory cells, and VIP cells were more correlated 
with each other in their pattern of activity (Figure 2E,F). Moreover, VIP cells showed clear differences in 
their activity during novel versus familiar image sessions. Stimulus-driven activity was apparent during 
sessions with novel image sets (Figure 2F) but was reduced or absent with familiar images (Figure 2E). 
In sessions with familiar image sets, many VIP neurons showed ramp-like responses that preceded 
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stimulus presentation, and these ramping responses were even more pronounced when image flashes 
were omitted (Figure 2E, right panel). In contrast, during novel image sessions, VIP cells showed little 
activity when stimuli were omitted (Figure 2F, right panel). Additional examples of image responses 
from different sessions are shown in Supplemental Figure 2E-H.  
 
Qualitatively, we observed that both layer 2/3 excitatory and VIP inhibitory populations had differences 
in stimulus responsiveness, image tuning, and neural dynamics during behavioral sessions with novel 
versus familiar images. These results are further explored and quantified in the sections below. 
 
Image responses and omission activity during familiar and novel sessions 
 
To quantify image responsiveness for each cell, we compared the mean dF/F value in a 500ms window 
after each stimulus flash with a shuffled distribution of dF/F values taken from the omitted flash periods 
when no stimulus was shown. Cells were considered image responsive if they had a significantly larger 
response for >25% of preferred image flashes. Most excitatory cells were image responsive for novel 
stimulus sets (Figure 2G; range = 67-77% for image sets B, C, and D), whereas a lower fraction of cells 
responded to familiar images (35%, image set A). About a third of VIP cells were stimulus responsive 
for novel images (range = 31-40%), but very few had reliable stimulus-specific activity for familiar 
images (1%). Note that according to this metric, cells with stronger activity during stimulus omission 
compared to stimulus presentation will not be considered as image responsive.  
 
We also evaluated change responsiveness for each cell using the same metric, restricting the analysis 
to the first flashes after a change to each cell’s preferred image (Figure 2H). Cells were considered 
change responsive if they had a significant response for >25% of change flashes. Most excitatory cells 
were change responsive during novel image sessions (range = 88-92%, image sets B, C & D), with a 
smaller fraction for familiar image sessions (61%, image set A). About quarter of VIP cells were 
responsive for changes to novel images (range = 24-28%), as opposed to only 7% of VIP cells for 
familiar images. 
 
To quantify activity during omitted flashes we compared dF/F values during the stimulus omission 
window to the preceding stimulus window. Cells were considered omission responsive if >25% of 
omission trials had a significantly larger activity compared to the previous image flash (Figure 2I). A 
large fraction of VIP cells increased their activity following stimulus omission during sessions with the 
familiar image set (72%, image set A), with a smaller fraction of cells for novel image sets (range = 17-
30%, image sets B, C, D). Less than 1.5% of excitatory cells were omission responsive across all 
image sets.  
 
Thus, we found that novel image sets were associated with increased stimulus responsiveness for both 
excitatory and VIP cells, while familiar images were associated with greater stimulus omission-related 
activity in VIP inhibitory cells.  
  
Mean activity is lower but stimulus selectivity is higher for familiar image sets  
 
Reduced image responsiveness during sessions with familiar versus novel image sets could represent 
a sparsening of neural representations for the familiar images. Several broad categories of neural 
sparseness have been described including overall activity, population sparseness, and lifetime 
sparseness (Willmore et al., 2011). These metrics of sparseness reflect distinct coding properties and 
do not necessarily co-vary (Willmore and Tolhurst, 2001; Willmore et al., 2011). In the analysis below, 
we assessed whether each of these metrics varied with image familiarity.  
 
For each cell, we computed the mean response across all presentations of each image and visualized 
this activity as a heatmap for each image set and cell class (Figure 3A). On average, the strength of 
evoked activity across the VIP population was ~4-5 times higher compared to the excitatory population, 
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and excitatory cells were driven by fewer images than VIP cells. We compared the magnitude of 
responses to familiar and novel image sets within each cell class and found that both excitatory and 
inhibitory populations had reduced overall activity levels for familiar images (Figure 3B; Supplemental 
Figure 3A, B).  
 
Next, we computed the average population sparseness value for novel and familiar image sets (Figure 
3C). Population sparseness provides a measure of how selectively a population of simultaneously 
recorded neurons responds to any one stimulus, independently of the overall level of activity (Willmore 
et al., 2011). Population sparseness of 0 indicates that all neurons respond equally to a given stimulus, 
whereas a population sparseness value of 1 indicates that only a single cell responds to the stimulus 
(example sessions and associated population sparseness value are shown in Figure 3D). VIP inhibitory 
populations had lower population sparseness compared to excitatory populations, as previously 
reported (de Vries et al., 2018). However, no significant differences were observed across image sets, 
indicating that experience did not affect population sparseness in these experiments. 
 
To quantify response sparseness of individual cells, we evaluated lifetime sparseness (only active cells 
with an average dF/F > 0.05 were included in this analysis; Supplemental Figure 3C, D). Lifetime 
sparseness (Vinje and Gallant, 2000) provides a measure of selectivity on a single neuron basis; at the 
extremes, this metric takes a value of 0 for cells responding equally to all images and a value of 1 for 
cells responding to only one image (example cells and associated lifetime sparseness values are 
shown in Figure 3F). We found that excitatory populations had higher lifetime sparseness values for the 
familiar image set compared to the novel image sets, and that excitatory cells were typically more 
sparse than VIP cells (Figure 3E). Plotting the population tuning curve for each image set revealed 
sharper tuning in excitatory cells for familiar images due to a selective increase in the preferred image 
response (Supplemental Figure 3E), consistent with previous literature (Woloszyn and Sheinberg, 
2012).  
 
To evaluate whether response sparseness differed for image changes, we computed the same metrics 
but limited analysis to the first image presentation after a change in image identity (Figure 3G). The 
results paralleled the trends observed for the average of all flashes. The mean activity for image 
changes was stronger for novel versus familiar image sets (Figure 3H), there was no significant 
difference in population sparseness across image sets (Figure 3I), and excitatory cells again showed 
higher lifetime sparseness for familiar images (Figure 3J; Supplemental Figure 3F). However, there 
were some key differences between image responses averaged across all flashes compared to 
changes only. Direct comparison of population tuning curves computed from the average of all flashes 
and population tuning curves for the change flash demonstrate that selectivity for image identity is 
broader following changes, for both excitatory and VIP cells (Figure 3K,L). This difference was found for 
both familiar and novel images.  
 
Together, these results demonstrate that while overall population activity levels were reduced for 
familiar images, single cell selectivity was sharpened. The higher overall level of activity for novel 
images, combined with lower selectivity, indicates that more cells were recruited to respond to novel 
images, but the peak response to the preferred image was typically not as high as for images that were 
experienced during training. Interestingly, population sparseness, which is a measure of the shape as 
opposed to magnitude of the population activity distribution, was less impacted by experience, 
indicating that familiar and novel images can be represented by a similar pattern of activity but with a 
different overall gain. Finally, image tuning was broader for the first flash after a stimulus change 
compared to the average of all image presentations.   
 
Enhanced activity following stimulus changes 
 
To explore response dynamics following an image change and subsequent stimulus repetitions, we 
examined trial averaged activity aligned to the change time for each cell’s preferred image (Figure 
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4A,B). Many cells showed elevated activity following image changes (see vertical band of activity after 
time = 0 sec in Figure 4A,B). The response magnitude of excitatory neurons typically decreased on 
subsequent image flashes, consistent with stimulus specific adaptation, and this was reflected in the 
population average (Figure 4C). In VIP cells, activity during repetition of the preferred image sometimes 
increased in magnitude with repeated flashes, and this was reflected in the population average (Figure 
4C). However, when averaging over all images, the response to changes was much stronger than 
subsequent repetitions (Supplemental Figure 4A). The increase in activity with stimulus repetition for 
preferred images in VIP cells could reflect true facilitation of spiking, or a buildup of calcium activity 
associated with repetitive stimulation of a strongly driving stimulus. Together, this suggests VIP cells 
generally have enhanced change responses across many images, but that any change enhancement 
for the preferred image may be masked by the strong responses to subsequent presentations of the 
preferred image.  
 
To quantify these observations across cells, we computed a change modulation index that compares 
the response to image changes with the 10th repetition following the change (Figure 4D). When 
computing this metric for the preferred image for each cell, excitatory populations typically had positive 
values of this index, whereas VIP cells had negative change modulation index values, reflecting an 
increasing strength of response with stimulus repetition of the preferred image. However, when 
considering the mean response across all images, both cell classes had positive values of the index 
(Supplemental Figure 4B), indicating larger change responses across multiple images. For both 
changes and the average of all flashes, the strength of the change modulation index was higher for 
novel image sets in excitatory cells.  
 
These results show that the activity of excitatory and VIP cells is modulated by stimulus repetition 
following a change, and that enhanced activity for stimulus changes is present across cell classes and 
image sets. The observed differences in activity following stimulus repetition could reflect stimulus 
specific adaptation, enhancement associated with a global change signal, or a combination of these 
factors.  
 
Activity is more strongly stimulus modulated during sessions with novel images  
 
We noticed that the VIP population response for the familiar image set was only weakly stimulus driven, 
in comparison to sessions with novel images (Figure 4B,C). To quantify this, we computed a cell by cell 
metric of stimulus modulation (Matteucci et al., 2019), based on the power at the stimulus frequency 
(1.33 Hz) over an 8 second window following a change to the preferred image for each cell (Figure 4F). 
The stimulus modulation index is larger when activity is strongly coupled to the stimulus frequency 
across repetitive flashes (example cells and associated stimulus modulation index values are shown in 
Figure 4E). While many VIP cells were strongly stimulus modulated for novel images, modulation at the 
stimulus frequency was weak for familiar images (Figure 4F, bottom panel), consistent an overall 
reduction in stimulus driven activity with experience. Excitatory cells also showed reduced stimulus 
modulation for familiar images, although the effect was not as pronounced as for VIP cells (Figure 4F, 
top panel).  
 
Trial-to-trial reliability of neural activity can be modulated by bottom-up salience, behavioral context, 
and learning. Accordingly, we next tested whether response reliability differed for familiar and novel 
image sets. We quantified reliability for image responsive cells by computing the average pairwise 
Pearson correlation coefficient across flashes, using the dF/F trace in a 500ms window after stimulus 
onset (example cells and associated reliability values shown in Figure 4G). Reliability was computed 
separately for the 1st, 5th, 10th, and 15th flashes after a change to each cell’s preferred image (Figure 
4H). We found that reliability was higher for novel image sets in both excitatory and VIP populations, 
and this result extended across stimulus repetition. Further, reliability was higher for novel images even 
when only considering the most image selective cells in the population (Supplemental Figure 4C).  
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Together, these results show that neural activity during task performance with novel, unfamiliar images 
is stronger across the population, more stimulus driven, and more reliable across trials compared to 
activity for images that were extensively experienced during training.  
 
Inter-stimulus activity dynamics of VIP cells are altered by training history 
 
During sessions with familiar images, we observed that VIP cells displayed activity that began ramping 
up during the gray period prior to image onset (Figure 4C). To further explore these dynamics and their 
relationship to experience, we examined the average population response of excitatory and VIP cells to 
all image flashes for each image set (Figure 5A). Excitatory neurons had a sharp stimulus-locked 
increase in activity following image onset, and although the response magnitude was lower with familiar 
images, the dynamics were consistent across images sets. In contrast, the dynamics of the VIP 
population were almost anti-correlated between familiar and novel images sets. With novel images, VIP 
population activity increased following stimulus onset, but with familiar images, activity increased during 
the inter-stimulus interval and peaked at stimulus onset. Consistent with this effect, the distribution of 
peak response times across VIP cells was shifted earlier in time for familiar versus novel images sets 
(Supplemental Figure 5A).  
 
Individual cells typically showed either stimulus-evoked responses or ramping activity during the pre-
stimulus period that peaked at the time of stimulus onset (Figure 5B). To characterize these dynamics 
across the population, we made use of a ramping index (Makino and Komiyama, 2015) to quantify 
activity increases or decreases within the pre-stimulus and stimulus epochs (250ms windows, indicated 
by light and dark gray shading, respectively, in Figures 5A,B,E). This index compares activity between 
the early and late portions of a window, giving a positive value for activity increases and a negative 
value for activity decreases (Figure 5A, right panel inset). While positive pre-stimulus ramping was 
much less prevalent in excitatory cells than in VIP cells, both cell classes had larger pre-stimulus ramp 
values and reduced stimulus ramp values for image set A (Supplemental Figure 5B,C), indicating 
stronger pre-stimulus activity and reduced stimulus activity for familiar images. This ramp index can be 
unstable for cells with low activity, so all subsequent analysis was limited to active cells that had a 
mean dF/F greater than 0.05 in the stimulus window for the preferred image.  
 
The values of the ramp index for the pre-stimulus and stimulus windows were typically anti-correlated 
with each other (Figure 5C; VIP: r = -0.72, -0.78, -0.61, -0.83 for image sets A-D; excitatory: r = -0.29, -
0.35, -0.32, -0.26 for image sets A-D; p<0.05 for all comparisons). Cells were naturally divided into four 
groups based on their pattern of activity before and after stimulus onset (the four groups correspond to 
the four quadrants of the plot of pre-stimulus versus stimulus ramp index in Figure 5C). For example, 
cells in quadrant 1 (Q1) had increasing dF/F values in the stimulus window (corresponding to a positive 
ramp index) and decreasing values for the pre-stimulus window (corresponding to a negative ramp 
index), consistent with a stimulus-evoked response profile. Cells in quadrant 4 (Q4) were the opposite, 
having increasing activity prior to stimulus onset and decreasing activity thereafter. The average 
population response profile across cells belonging to each of these quadrants is shown in Figure 5E.  
 
The majority of excitatory cells for were located in Q1, consistent with strong stimulus-evoked activity 
(range = 72-84% of cells for image sets A-D; Figure 5D). The majority of VIP inhibitory cells were also 
in Q1 when tested with novel image sets (range = 69-78% for image sets B-D). However, there was a 
large increase in the proportion of VIP cells in Q4 showing pre-stimulus ramping for sessions with the 
familiar image set (55% for image set A compared to 7-9% for image sets B-D; Figure 5D). This 
represents an experience-dependent shift in inter-stimulus activity of the VIP population. Cells 
belonging to these distinct response types also differed in their stimulus-evoked response properties. 
Q4 cells had earlier response times (Figure 5F) and were less image selective (Figure 5I). In contrast, 
Q1 cells, in line with being sensory-driven, were more stimulus modulated by repeated image flashes, 
more reliable across trials, and more image selective than Q4 inter-stimulus ramping type cells (Figures 
5G-I). 
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VIP cells have strong ramping activity during omission of an expected stimulus 
 
Would cells with pre-stimulus ramping continue to ramp if an image was omitted? To assess this, we 
analyzed activity during periods in which the stimulus flash was randomly omitted. Such trials made up 
5% of all stimulus flashes during 2P imaging sessions (with the exception of the change flash and the 
flash immediately prior to a change).  
 
Strikingly, during stimulus omission in sessions with familiar images, VIP population activity continued 
to ramp up until the subsequent stimulus flash, more than doubling in response magnitude within the 
omission window (Figure 6A). This ramping was much stronger during familiar compared to novel 
image sessions. Omission ramping behavior was not present in the excitatory population on average. 
While individual excitatory cells could show omission ramping (Figure 6B), these types of responses 
were extremely rare across the population (Figure 6C). In contrast, for familiar image sessions, most 
VIP cells showed an increase in activity during the omission period (from time = 0 sec to time =0.75 sec 
in Figure 6D). In novel image sessions, VIP cell activity was concentrated outside the omission period, 
with visible stimulus-locked activity in the surrounding timepoints. Still, a subset of VIP cells for image 
sets B-D showed some degree of activity during the omission period. 
 
To quantify ramping activity associated with stimulus omission across cells, we computed the ramping 
index over the stimulus omission window. Here we focused on cells that were active during the 
omission, with an absolute dF/F of > 0.05 dF/F (3-6% of excitatory cells and 68-76% of VIP cells met 
this criterion; Figure 6E). Most VIP cells that met the minimum activity level had positive values of the 
omission ramp index for sessions with familiar images (Figure 6F, right panel). Overall, 80% of VIP 
cells showed omission ramping for familiar sessions, compared to 40.5% of cells for novel sessions on 
average. While ramping was rare in excitatory cells, the fraction of cells with ramping during omission 
was slightly increased for sessions with familiar images (1.1% for familiar, 0.6% for novel on average).  
 
When looking at the response profiles of individual cells (Figure 6B), we noticed a relationship between 
omission ramping and stimulus-related dynamics. Typically, cells that had strong stimulus-evoked 
responses showed little to no activity in the omitted window, whereas cells with pre-stimulus activity had 
the strongest ramping during stimulus omission (Figure 6B). Indeed, there was a correlation between 
the pre-stimulus ramping index and the omission ramping index for VIP cells (Figure 6G). However, the 
slope of this relationship differed between familiar and novel images. To explore this difference, we 
computed the fraction of cells that had both a positive omission ramp index and a positive stimulus 
ramp index (Figure 6H) and found that the majority of VIP cells that show omission ramping during 
novel image sessions also have increasing activity following stimulus presentation (example cell 
showing this profile in upper right panel of Figure 6B). This indicates that during visual stimulation with 
novel images, VIP cells are more likely to show a combination of sensory driven activity and ramping 
during omission.  
 
Overall, these results demonstrate that the dynamics of VIP cells in visual cortex are strongly impacted 
by experience.
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DISCUSSION 
 
By imaging cortical activity in L2/3 excitatory and VIP inhibitory neurons during a visual task with 
familiar and novel images, we identified several changes associated with training history. Extended 
behavioral experience with natural scene images resulted in reduced overall activity levels and 
increased selectivity of single neuron representations. In contrast, responses to novel images were 
strong and reliable, particularly for stimulus changes. Interestingly, VIP cells had distinct activity 
dynamics and stimulus omission responses when tested with familiar versus novel images. Novel 
images drove stimulus-locked activity in VIP cells, whereas VIP cells were primarily active during the 
inter-stimulus interval during sessions with familiar images. Together these results indicate that both 
stimulus coding and temporal dynamics of visual cortical circuits can be impacted by experience in a 
cell type-specific manner.  
 
Distinct activity and tuning in excitatory versus VIP cells  
 
Across all conditions, VIP cells had higher overall average activity levels compared to excitatory 
neurons. In contrast, excitatory neurons were more strongly stimulus modulated and had more reliable 
stimulus-evoked responses. Excitatory cells were sharply tuned for natural images, whereas VIP cells 
responded more broadly, and were more correlated with each other. These results are consistent with 
previous studies showing overall activity and selectivity differences of VIP compared to excitatory cells 
(Kerlin et al., 2010; de Vries et al., 2018). We also observed that stimulus repetition influenced activity: 
both cell classes showed stronger responses to changes relative to subsequent stimulus repetitions, 
and the change response was more broadly tuned than the adapted response (10th stimulus 
repetition). These differences could be a result of stimulus specific adaptation (Grill-Spector et al., 
2006; Nelken and Ulanovsky, 2007), or novelty enhancement (Hamm and Yuste, 2016; Homann et al., 
2017; Vinken et al., 2017), potentially reflecting a combination of bottom-up, top-down, or 
neuromodulatory influences (Ranganath and Rainer, 2003).  
 
Experience reduces overall activity and sharpens tuning  
 
Whereas stimulus repetition was associated with reduced activity on short timescales (~seconds), we 
also observed reduced activity in both VIP and excitatory cells due to long-term experience with highly 
familiar images (~days-weeks). The fraction of image responsive cells (Figure 2) and response 
magnitude across the population (Figure 3, Figure 4) was lower with familiar versus novel images. 
Previous studies have shown reductions in activity with experience (Anderson et al., 2008; Mruczek 
and Sheinberg, 2007; Woloszyn and Sheinberg, 2012), and enhancement for novelty (Hamm and 
Yuste, 2016; Homann et al., 2017; Ranganath and Rainer, 2003). A recent study found that experience-
induced reductions in the fraction of active cells can be specific to distinct functional subpopulations: 
‘transient’ cells were reduced with experience, but ‘sustained’ and ‘suppressed by contrast’ cells 
showed no change in the fraction of active cells (Weskelblatt and Niell, 2019). Reduced activity for 
highly familiar stimuli may serve to more efficiently code for stimuli which are predictable, utilizing a 
smaller population of cells to represent learned information (LeMessurier and Feldman, 2018). On the 
other hand, enhanced activity for novel stimuli may be involved in the detection of salient and 
behaviorally meaningful events by augmenting output to downstream targets and facilitating associative 
plasticity (Ranganath and Rainer, 2003). Consistent with this idea, we observe a nearly two-fold 
increase in the number of cells that respond to novel images compared to familiar ones, for both 
excitatory and VIP inhibitory populations (Figure 2G,H). 
 
We found that stimulus selectivity of single cells, measured by lifetime sparseness, was higher in L2/3 
excitatory cells when tested with familiar images. Stimulus experience and task learning have been 
shown to increase orientation selectivity in the visual cortex of mice (Fiser et al., 2016; Frenkel et al., 
2006; Jurjut et al., 2017; Khan et al., 2018; Poort et al., 2015) and selectivity for natural images 
including complex objects in primates (Freedman et al., 2006; Ghose et al., 2002; Meyer et al., 2014; 
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Schoups et al., 2001; Yang and Maunsell, 2004). Although few studies have explored cell type-specific 
differences in stimulus tuning following experience, one study in macaque IT showed that both regular 
spiking (putative excitatory) and fast spiking (putative inhibitory) cells showed increased stimulus 
selectivity for familiar images (Woloszyn and Sheinberg, 2012). A study in mice reported increased 
selectivity with experience in excitatory and multiple inhibitory cell types, including PV and SST, but did 
not find a change in selectivity for VIP cells (Khan et al., 2018).  
 
Many studies have shown that experience-dependent changes in responsiveness and selectivity can 
underlie improvements in perception and behavior. Here, we did not observe significant differences in 
behavioral performance between familiar and novel image sets. Mice rapidly generalized task 
performance to novel images and had comparable hit and false alarm rates, reaction times, and 
patterns of running behavior across image sets (Figure 1, Supplemental Figure 1). Accordingly, it is 
unlikely that the differences in response properties for familiar versus novel images are the 
consequence of differences in animal behavior or task performance. Consistent task performance 
despite differences in stimulus coding suggests increased activity for novel images could help maintain 
task performance in a new stimulus context, or alternatively, that a more efficient representation is 
sufficient for performance with familiar images.   
 
Experience alters temporal dynamics of VIP cells  
 
One of the main findings in this study is that extended visual experience with natural scene stimuli 
leads to altered activity dynamics in VIP inhibitory cells in layer 2/3 of visual cortex (Figure 5). VIP 
populations were largely stimulus-driven by novel images but showed prominent inter-stimulus ramping 
activity with familiar images. This represents a major experience-induced change in response dynamics 
that has not been demonstrated previously. We found an inverse relationship between inter-stimulus 
ramping and stimulus-triggered ramping in VIP cells, indicating a trade-off between sensory-driven and 
pre-stimulus activity (Figure 5). Further, cells with inter-stimulus ramping continue to increase their 
activity following stimulus omission, up until the time of the next stimulus onset (Figure 6). The 
magnitude of omission-related activity was several times larger than stimulus-driven activity, suggesting 
these are meaningful signals that could strongly influence network activity.  
 
What does pre-stimulus and stimulus-omission ramping activity in VIP cells represent? One possibility 
is that this activity reflects the temporal structure of the behavioral task such that these signals encode 
predictions about stimulus timing or reward expectation, or serve as a general attentional signal (Nobre 
and Van Ede, 2018). Previous studies have described stimulus and reward expectation signals in the 
visual cortex of rodents, including an early example showing that pairing visual stimulation with a 
temporally predictable reward produces reward timing signals in visual cortex (Shuler and Bear, 2006). 
Cholinergic signaling has been implicated in mediating these changes (Chubykin et al., 2013), as well 
as other attention and learning dependent effects (Hasselmo, 1995; Lee and Dan, 2012). Given the 
strong neuromodulatory drive to VIP cells, including cholinergic input, neuromodulation is a candidate 
mechanism to underlie the shift in response dynamics we observe across the VIP population. Visual 
cortex has also been shown to learn experience-dependent stimulus predictions for repeated 
sequences of visual stimuli (Gavornik and Bear, 2014; Xu et al., 2012). However, in these studies, the 
predictive signal peaked at the expected time of the predicted event on omission trials, whereas our 
results show a continued ramping past the expected time of stimulus onset on omission trials. This 
suggests that the pre-stimulus ramping and associated omission ramping signals we observe may 
represent something other than a pure prediction of timing of stimulus or reward.  
 
In virtual navigation paradigms in which mice locomote along a linear track, V1 neurons have been 
found to predict upcoming stimuli at specific locations, with separate populations of cells that respond 
when expected stimuli are omitted (Fiser et al., 2016). In contrast, we observe a correlation between 
pre-stimulus and omission related activity on a cell by cell basis, specifically for VIP cells (Figure 6G), 
and these cells are generally unselective for image identity (Figure 5I). Another study using virtual 
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navigation with a visual discrimination task found pre-stimulus ramping activity specifically in the 
subpopulation of excitatory cells that encoded the rewarded stimulus, suggestive of reward anticipation 
(Poort et al., 2015). The emergence of an experience dependent ramping profile in anticipation of an 
imminent foot shock has also been documented (Makino and Komiyama, 2015). However, without an 
omission condition, it is unclear how these cells would behave if the expectation was violated. Further 
modifications of our change detection task to include omitted rewards, or to vary the inter-stimulus 
interval, could help to distinguish between coding of stimulus timing versus reward anticipation. Another 
open question is whether pre-stimulus ramping behavior emerges following passive exposure to the 
same set of familiar images in the absence of reward, or whether active task performance and 
reinforcement are necessary for the emergence of this phenomenon. 
 
It is important to note that most prior studies documenting predictive or ramping activity reflect 
measurements from excitatory neurons, and thus may not be directly comparable to our results in VIP 
cells. In fact, it is surprising that we do not observe many excitatory cells with pre-stimulus or omission 
related activity given these prior results. One study of inhibitory cells in visual cortex observed that VIP 
population activity peaked near stimulus onset in an orientation discrimination task, similar to our 
results for familiar images, but did not note a major change in VIP activity dynamics before and after 
learning (Khan et al., 2018). In the prefrontal cortex of the mouse, VIP cell activity during the delay 
period of an auditory go/no-go discrimination task was found to be important for behavior, and 
activation of VIP cells during the delay improved task performance by improving coding in the excitatory 
population (Kamigaki and Dan, 2017). The inter-stimulus activity of VIP cells during sessions with 
familiar images in the change detection task may be similarly important for enhancing the responses of 
subsets of excitatory cells to an expected change stimulus, via disinhibition through SST cells. In 
contrast, during sessions with novel images, VIP activity is driven by stimulus presentation and could 
serve to increase the gain of stimulus evoked excitatory responses to facilitate learning of new images 
via associative plasticity (LeMessurier and Feldman, 2018; Ranganath and Rainer, 2003). Future 
studies examining the evolution of VIP activity across multiple behavior sessions as novel images 
become familiar, as well as concurrent recordings of VIP and excitatory cells and other inhibitory 
classes including SST cells, will be critical to determine the time course and mechanistic nature of 
these interactions.  

 
Predictive coding and experience-dependent changes in activity 
 
Predictive processing has emerged as a powerful paradigm for understanding brain function and may 
help reconcile the traditional view of sensory processing with increasing evidence for experience and 
context dependent modulation in early sensory areas. This family of theories posits that the brain 
constructs an internal model of the environment based on experience, and that incoming sensory 
information is compared with learned expectations to continually update the model (De Lange et al., 
2018; Keller and Mrsic-Flogel, 2018; Lochmann and Deneve, 2011; Rao and Ballard, 1999). This 
dynamic updating with experience may be associated with a shift in the balance of bottom-up sensory 
and top-down predictive pathways as internal representations become more effective at predicting the 
external causes of sensations. As stimuli become familiar with learning, predictive signals are thought 
to ‘explain away’ incoming information by suppressing bottom-up input, resulting in a sparse code. In 
contrast, novel or surprising stimuli are expected to robustly drive neural activity, signaling deviations 
from learned predictions. Our results are consistent with this model, demonstrating reduced activity with 
long-term experience, in addition to within-trial stimulus specific adaptation. Further, the observation of 
a switch between stimulus evoked activity and inter-stimulus ramping in VIP cells provides a novel 
demonstration of an experience dependent change in activity dynamics in a specific subtype of 
inhibitory interneuron that may regulate the balance between top-down predictive and bottom-up 
sensory information. Future studies examining the activity and impact of the diverse inputs to VIP cells, 
including neuromodulatory inputs from subcortical structures and feedback projections from other 
cortical regions, will be important to establish the function of and mechanism behind the shift in VIP 
dynamics with experience.  
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FIGURE LEGENDS 
 
Figure 1: Natural scene change detection task with familiar and novel images. A) Schematic of 
stimulus presentation during the task. Images are presented for 250ms followed by 500ms of gray 
screen. B) Schematic of trial structure. On go trials, a change in image identity occurs and mice must 
lick within the 750ms response window to receive a water reward.  On catch trials, no stimulus change 
occurs and the behavioral response is measured to quantify guessing behavior. C) Example behavior 
performance across 5 minutes of one session, separated into 5 one-minute epochs. Colored vertical 
bars indicate stimulus presentations, different colors are different images. Licks are shown as green tick 
marks. Licks within 750ms of a change result in reward delivery, shown as purple triangles. 5% of all 
non-change image flashes are omitted, visible as a gap in the otherwise periodic stimulus sequence. D) 
Training sequence. Mice are initially trained with static gratings of 2 orientations, first with no gray 
screen in between grating presentations (stage 1), then introducing the 500ms inter stimulus interval 
(stage 2). Next, mice are transitioned to change detection with 8 natural scene images (stage 3, image 
set A). During the 2-photon imaging portion of the experiment, mice are tested with image set A as well 
as 3 novel image sets (B, C, D) on subsequent days. E) The four sets of 8 natural images were shown, 
in separate sessions. F) Example training trajectory of one mouse. Triangles represent behavior 
training and circles represent behavior + 2P imaging sessions. G) Number of sessions spent in each 
stage across mice. Mean +/- 95% confidence intervals in color, individual mice in gray. H) Response 
rates for go and catch trials are similar across image sets, demonstrating that mice generalize task 
performance to novel images. Individual behavior sessions are shown in gray and average +/- 95% 
confidence intervals across sessions for each image set are shown in colors corresponding to image 
sets in C (p>0.05 for all image set comparisons). I) No significant difference in response latency across 
image sets (p>0.05 for all image set comparisons). Mean +/- 95% confidence intervals in color, 
individual sessions in gray.  
 
Supplemental Figure 1: Behavior performance across image sets. A) Number of sessions in each 
training stage for all mice in this study. B) Hit rate for each of the 8 images in the 4 image sets. Mean 
and 95% confidence intervals are shown in black with gray points for individual behavior sessions. C) 
Mean d-prime is similar across image sets (no significant difference across image set pairs except A-B, 
where p=0.002). D) Mean running speed is similar across image sets (p>0.05 for all comparisons). 
Error bars in B-D are 95% confidence intervals. E) Task-related running behavior is similar across 
image sets. Average running trajectory relative to a stimulus change is plotted for each image set. 
Average +/- SEM for go and catch trials (n=6260+/-294 go trials, n=941+/-40 catch trials).  
 
Figure 2: Activity in layer 2/3 excitatory and VIP inhibitory cells during image change detection 
behavior. A) Maximum intensity projection from a 2-photon field of view in layer 2/3 of an Slc17a7-
IRES2-Cre;CaMk2-tTa;Ai93 mouse expressing GCaMP6f in excitatory neurons. B) Same as A for layer 
2/3 inhibitory neurons in a Vip-IRES-Cre; Ai148(GCaMP6f) mouse. C) Example excitatory cells from a 
session with familiar images. Left panel: dF/F traces from 4 excitatory cells over 90 second epoch of a 
behavior session with the familiar image set A. Scale bars on left indicate 150% dF/F. Colored vertical 
bars indicate image presentation times; timing of licks and reward delivery are shown at bottom. Right 
panel: average response of the same 4 cells to each image, as well activity during omission of image 
(right column, gray indicates time of stimulus omission). Scale bars indicate 25% dF/F. Note the 
selectivity of excitatory responses and temporal dynamics relative to stimulus onset. D) 4 excitatory 
cells from session with novel image set C. Left panel scale bars indicate 150% dF/F, right panel scale 
bars indicate 25% dF/F. E) 4 VIP cells from a session with familiar image set A. Note the dynamics of 
the response relative to stimulus onset and stimulus omission. Left panel scale bars indicate 250% 
dF/F, right panel scale bars indicate 25% dF/F. F) 4 VIP cells for a session with novel image set C. 
Note that stimulus evoked responses are unselective and highly correlated across the population. Left 
panel scale bars indicate 250% dF/F, right panel scale bars indicate 25% dF/F. G) A larger fraction of 
cells are image responsive for novel image sets compared to the training set A. Responsiveness is 
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defined for each cell as having >25% of preferred image flashes with a significant response compared 
to a shuffled distribution of stimulus omissions. The fraction of responsive cells is shown for each 
session in gray, with mean +/- 95% confidence intervals in color. p<0.0005 for all comparisons with 
image set A for excitatory cells and p<0.01 for all comparisons with image set A for VIP inhibitory cells. 
H) A larger fraction of cells are responsive to the first flash after an image change for novel image sets. 
Responsiveness computed as described in G, limited to the change flash only. p<0.0006 for all 
comparisons with image set A for excitatory cells, no significant differences for VIP cells (p>0.05 for all 
image set comparisons). I) Cells with elevated activity during stimulus omission are most common in 
VIP populations for the trained image set A. Omission responsiveness is defined as having >25% of 
stimulus omission trials with a significantly larger response than the preceding image flash. p<0.02 for 
A-B and A-C for VIP cells. 
 
Supplemental Figure 2: Image, change, and omission responsiveness. A) Top: number of 
segmented ROIs per imaging session by cell class and image set. Bottom: table of experimental 
sessions including image set, cell class, and area. B) Distribution of significant responses to flashes of 
each cell’s preferred image. Dotted lines indicate the mean. Inset shows image set comparisons where 
p<0.0002.  C) Distribution of significant change trials across cells. Inset shows image set comparisons 
where p<0.0002. D) Distribution omission responsive trials across cells. Very few excitatory cells 
respond during stimulus omission, while a large number of VIP cells show omission related activity, 
especially for the familiar image set. E) 10 excitatory cells from one session with familiar image set A. 
Average response across all presentations of each image (columns, colored bars indicate stimulus 
presentation) and during stimulus omission (right column, gray bar indicates time of stimulus omission). 
Light gray shows response for image change flash for each image in light gray. Cells with highest SNR 
values were selected for display, where SNR is the ratio of mean and standard deviation of dF/F trace. 
F) 10 excitatory cells from a session with novel image set D. G) 10 VIP inhibitory cells from a session 
with familiar image set A. H) 10 VIP inhibitory cells from a session with novel image set B. Scalebars in 
E-H indicate 25% dF/F.  
 
Figure 3: Response sparseness for familiar and novel images. A) Cell by image response matrix 
showing mean response for each image. Response is computed in 500ms window after stimulus onset 
and averaged over all image flashes. Response for L2/3 excitatory and VIP inhibitory cells are shown 
for each stimulus set. B) Response magnitude across the population is larger for novel image sets. The 
mean response across all flashes for each cell’s preferred image was computed before averaging 
across all cells. Error bars show 95% confidence intervals. p<0.001 for comparison of A-B and A-D in 
excitatory cells, p<0.05 for A-B in VIP cells. C) Mean population sparseness across sessions for each 
cell class and image set. Population sparseness is first computed for each image, then averaged 
across images within a session. No significant differences are observed across image sets. Gray points 
are individual sessions, colors indicate mean +/- 95% confidence intervals across sessions. D) 
Example of mean population activity from one session in excitatory cells (left panel) and one session for 
VIP inhibitory cells (right panel), demonstrating high and low population sparseness values. Each plot 
shows population activity for a single image. E) Cumulative distribution of lifetime sparseness for cells 
with > 0.05 dF/F for their preferred image. For excitatory cells, inset shows comparisons where 
p<0.0005. For VIP cells, inset shows where p<0.001. F) Example tuning curves from one excitatory cell 
(left panel) and one VIP inhibitory cell (right panel) demonstrating high and low values of lifetime 
sparseness. G) Same as A) but analysis is restricted to stimulus flashes corresponding to image 
changes. H) Same as B) with analysis restricted to change flashes. p<0.005 for all comparisons with 
image set A for excitatory cells, p<0.007 for A-C comparison for VIP cells. I) Same as C) with analysis 
restricted to change flashes. No significant differences are observed across image sets. J) Same as F) 
with analysis restricted to change flashes. Inset shows where p<0.001. K) Excitatory population tuning 
curve, averaged across cells with activity > 0.05 dF/F, comparing the image response to changes (light 
gray) with the average of all flashes (dark gray), for familiar images (left panel) and novel images (right 
panel) separately. L) Same as K) for VIP inhibitory cells.  
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Supplemental Figure 3: Response strength for familiar and novel images. A) Distribution of image 
response magnitude across cells, taken as the mean dF/F value over all flashes for each cell’s 
preferred image. Inset indicates where p<0.05. B) Distribution of change response magnitude, taken as 
the mean dF/F value over all change flashes for each cell’s preferred image. C) Fraction of cells with a 
mean image response > 0.05 dF/F for their preferred image. D) Fraction of cells with a mean change 
fesponse > 0.05 dF/F for their preferred image. E) Population tuning curve across image sets, 
averaged across all flashes for cells with > 0.05 dF/F image response. F) Population tuning curve 
across image sets, averaged across change flashes for cells with > 0.05 dF/F change response.  
 
Figure 4: Increased stimulus modulation and reliability for novel images. A) Trial averaged 
response to the preferred image across all excitatory cells, aligned to the time of the change to the 
preferred image (averaging across multiple images prior to time = 0s). Note the larger fraction of cells 
with a visible change response for novel image sets B-D. B) Trial averaged responses of VIP inhibitory 
cells for their preferred stimulus, aligned to the change time. Note the increase in stimulus evoked 
activity for novel image sets B-D. C) Population average response for all cells to their preferred image 
for excitatory and VIP inhibitory populations, aligned to the time of the change to the preferred image. 
Population response strength is consistently higher for novel image sets compared to the familiar image 
set A. For excitatory cells, the change response has the largest magnitude followed by a reduction in 
activity with stimulus repetition. Traces show mean+/-SEM across all cells. D) The change modulation 
index compares the response to the first stimulus following a change with the 10th repetition of that 
image. The index is computed for the preferred image of each cell, then averaged within a session 
(gray points). Colored points show mean +/- 95% confidence intervals. No significant differences across 
image sets for excitatory or VIP. E)  Example responses demonstrating strong modulation at the 
stimulus frequency (top panel, modulation index: 5.65 for the 0-8s period after the change time) and 
weak stimulus modulation (bottom panel, modulation index: 1.94 for t=0-8s). See methods for 
description of stimulus modulation index. F) Cumulative distribution of the stimulus modulation index 
across cells for each image set by cell class. Responses are more strongly stimulus modulated for 
novel image sets, especially for VIP populations. Dotted lines indicate the mean of each distribution. 
Inset shows where p<0.0005. G) Example cell responses for the first image flash after a change, 
showing individual trials for the cell’s preferred stimulus in gray and the trial average in black, 
demonstrating high reliability (top panel, average trial to trial correlation of the dF/F trace = 0.94), and 
lower reliability (lower panel, average trial to trial correlation = 0.39).  H) Responses to novel images 
and stimulus changes have the highest response reliability. Boxplots show the distribution of mean 
reliability across sessions, computed first for each cell as a function of stimulus repetition number, then 
averaged within a session. Repetition 1 is the first flash after an image change and repetition 10 is the 
10th image presentation after a change.  
 
Supplemental Figure 4: Change modulation across images. A) Population average response for all 
cells across all images for excitatory and VIP inhibitory populations, aligned to the change time. 
Population response strength is consistently higher for novel image sets compared to the familiar image 
set A. For excitatory cells, the change response has the largest magnitude followed by a reduction in 
activity with stimulus repetition. Traces show mean+/-SEM across all cells. B) Change modulation 
index comparing the 1st flash with the 10th flash across all images, averaged across cells within each 
session. Colored points show mean +/- 95% confidence intervals, gray points show individual sessions. 
No significant differences across image sets for excitatory or VIP. p<0.05 for comparison of A-B and A-
C for excitatory cells. C) Responses to novel images (blue box plots) show higher trial to trial reliability 
compared to familiar images (red blox plots), for both image selective (lifetime sparseness > 0.3) and 
unselective (lifetime sparseness < 0.3) populations. Boxplots show distribution across responsive cells 
for each condition. Asterix on plot indicates comparisons where p<0.05.  
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Figure 5: Experience-dependent shift in the dynamics of VIP inhibitory cells. A) Population 
activity averaged over all image flashes for all cells (traces show mean+/-SEM). Note distinct dynamics 
in VIP population for novel versus familiar images sets. Inset, a ramping index is used to quantify 
ramping in pre-stimulus and stimulus windows (gray shading); this index compares the dF/F values in 
the first (early) and second (late) portions of the window. B) Example cells showing activity dynamics 
and associated ramping index values for the pre-stimulus and stimulus periods. Positive values of the 
ramp index indicate increasing dF/F values in the window, whereas negative values indicate decreasing 
values. C) Relationship of pre-stimulus ramping index (x-axis) with stimulus ramping index (y-axis). 
Note the negative correlation for both excitatory (r=-0.47 for image set A, r=-0.47 for B, r=-0.42 for C, 
r=-0.35 for D. p<0.005 for all image sets) and VIP cells (r=-0.61 for image set A, -0.75 for B, -0.66 for C, 
-0.83 for D. p<0.005 for all image sets). Cells can be separated into 4 quadrants based on pre- and 
stimulus ramping indices (Q1-4). Only cells with a minimum level of activity (> 0.05 dF/F) in the stimulus 
window are included in panels C-I. D) Fraction of cells belonging to each quadrant across cell class and 
image set. Cells with pre-stimulus ramping (Q4 cells, increasing activity during pre-stimulus period, 
negative during stimulus period) are more prevalent for familiar images, particularly for VIP cells, 
whereas stimulus-evoked responses (Q1 cells, negative ramping during pre-stimulus window, positive 
during stimulus window) are more prevalent for novel image sets. E) Normalized population response 
for cells belonging to each quadrant from C). F) Time to peak is lower for Q4 pre-stimulus ramping 
cells. G) Stimulus modulation index is stronger for Q1 stimulus ramping type cells on average, except 
for familiar images with VIP. H) Trial to trial response reliability across all flashes is higher for stimulus 
driven Q1 cells compared to pre-stimulus ramping Q4 cells. I) Lifetime sparseness for different cell 
groups. Image selectivity is higher for Q1 cells compared to Q4 cells for excitatory populations, 
consistent with these cells being a sensory driven population. 
 
Supplemental Figure 5: Activity dynamics depend on experience. A) Distribution of time to peak 
response across cells is shifted towards the right for familiar images (red) across the VIP population. 
Note the bi-modality of response timing for excitatory cells, likely corresponding to on- and off-
responsive populations. No significant differences are observed across image sets for excitatory cells. 
For VIP cells, p<0.0005 for all comparisons with image set A. B) Distribution of pre-stimulus ramp index 
is shifted towards more positive values in sessions with image set A for both excitatory and VIP 
inhibitory populations, indicating an increased prevalence of predictive signals. For excitatory cells, 
p<0.0005 for all comparisons across image sets except B-D. For VIP cells, p<0.0005 for all 
comparisons with image set A, p<0.01 for B-D.  C) Distribution of stimulus ramp index is shifted 
towards more positive values for novel image sets for both excitatory and VIP inhibitory populations, 
consistent with increased stimulus responsiveness for novel images. For excitatory cells, p<0.001 for all 
comparisons across image sets except B-D. For VIP cells, p<0.0005 for all comparisons with image set 
A. 
 
Figure 6: VIP cells show strong ramping activity during stimulus omission. A)  Average 
population activity during stimulus omission. On average, excitatory neurons have no change in activity 
during stimulus omission (left panel). In contrast, activity of the VIP population in sessions with familiar 
images (image set A) continues to ramp up until the time of the next stimulus presentation. In sessions 
with novel images, the VIP population also shows little change in activity following stimulus omission 
(right panel, image sets B-D). Inset, window over which an omission ramp index is computed. Note 
image-evoked activity before and after the omission for excitatory populations and VIP inhibitory 
populations for novel images, but not the familiar image set A. B) Example cells showing different 
response dynamics during stimulus (gray bars) and omission periods. Cells typically show either 
stimulus-evoked activity and no omission response, or pre-stimulus ramping and strong omission 
responses. Some cells (example on top right) show a combination of stimulus-evoked and omission 
activity. C) Heatmap of activity around the time of stimulus omission across all excitatory cells, sorted 
by magnitude of activity in the omission window (start of omission period is shown by white vertical line 
at time = 0 and extends to 750ms thereafter when the next stimulus is presented). Image responses 
are visible before and after stimulus omission, but activity is near zero for most excitatory cells during 
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stimulus omission. D) Heatmap of omission-related activity across all VIP cells. Most VIP cells show 
ramping during omission for image set A, with fewer cells exhibiting omission ramping in sessions with 
novel image sets. E) Cumulative distribution of mean dF/F activity during the omission window. Dotted 
lines indicate the mean of each distribution. For excitatory cells, p<0.0005 for all comparisons with 
image set A. For VIP cells, p<0.002 for all comparisons with image set A. F) Cumulative distribution of 
stimulus omission ramp index showing increased ramping activity for VIP cells with familiar image set 
A. Note that the omitted ramp index is only computed for cells with a mean dF/F value > 0.05 dF/F 
during the omission window. No significant differences between image sets for excitatory cells. For VIP 
cells, p<0.0005 for all comparisons with image set A. G) The strength of the omission ramp index (y-
axis) and pre-stimulus ramp index (x-axis) are positively correlated, indicating that cells with pre-
stimulus activity typically also show ramping during stimulus omission. Fits were not significant for 
excitatory cells. For VIP, p<0.005 for all image sets, r=0.38 for image set A, r=0.62 for B, r=0.53 for C, 
r=0.58 for D. H) Fraction of omission ramping cells with positive stimulus-evoked activity is higher for 
novel image sets.  
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MATERIALS AND METHODS 
 
Mice 

All experiments and procedures were performed in accordance with protocols approved by the 
Allen Institute Animal Care and Use Committee. We used male and female transgenic mice expressing 
GCaMP6f in VIP inhibitory interneurons (double transgenic: VIP-IRES-Cre x Ai148 mice; 
https://www.jax.org/strain/010908; https://www.jax.org/strain/030328) or in excitatory glutamatergic 
neurons (triple transgenic: Slc17a7-IRES2-Cre x CaMKII-tTA x Ai93; https://www.jax.org/strain/023527, 
https://www.jax.org/strain/010712, https://www.jax.org/strain/024108) were used in these experiments. 
Mice were single housed and maintained on a reverse 12-hour light cycle (off at 9am, on at 9pm) and 
all experiments were performed during the dark cycle. 
 
Surgery 

Surgical procedures were performed as described in (de Vries et al., 2018). Headpost and 
cranial window surgery was performed on healthy mice that ranged in age from 5-12 weeks. Pre-
operative injections of dexamethasone (3.2 mg/kg, S.C.) were administered at 12h and 3h before 
surgery.  Mice were initially anesthetized with 5% isoflurane (1-3 min) and placed in a stereotaxic frame 
(Model# 1900, Kopf, Tujunga, CA), and isoflurane levels were maintained at 1.5-2.5% for surgery.  An 
incision was made to remove skin, and the exposed skull was levelled with respect to pitch (bregma-
lambda level), roll and yaw.  The stereotax was zeroed at lambda using a custom headframe holder 
equipped with stylus affixed to a clamp-plate.  The stylus was then replaced with the headframe to 
center the headframe well at 2.8 mm lateral and 1.3 mm anterior to lambda.  The headframe was 
affixed to the skull with white Metabond and once dried, the mouse was placed in a custom clamp to 
position the skull at a rotated angle of 23° such that visual cortex was horizontal to facilitate the 
craniotomy. A circular piece of skull 5 mm in diameter was removed, and a durotomy was performed. A 
coverslip stack (two 5 mm and one 7 mm glass coverslip adhered together) was cemented in place with 
Vetbond (Goldey et al., 2014). Metabond cement was applied around the cranial window inside the well 
to secure the glass window.  Post-surgical brain health was documented using a custom photo-
documentation system and at one, two, and seven days following surgery, animals were assessed for 
overall health (bright, alert and responsive), cranial window clarity, and brain health. After 1-2 week 
recovery from surgery animals underwent intrinsic signal imaging for retinotopic mapping, then entered 
into behavioral training. 
 
Intrinsic signal imaging 

Intrinsic signal imaging (ISI) was performed as described in (de Vries et al., 2018) to produce a 
retinotopic map to define visual area boundaries and target in vivo two-photon calcium imaging 
experiments to the center of visual space in each imaged area. Mice were lightly anesthetized with 1-
1.4% isoflurane administered with a somnosuite (model #715; Kent Scientific, CON). Vital signs were 
monitored with a Physiosuite (model # PS-MSTAT-RT; Kent Scientific). Eye drops (Lacri-Lube 
Lubricant Eye Ointment; Refresh) were applied to maintain hydration and clarity of eye during 
anesthesia. Mice were headfixed for imaging. 

The brain surface was illuminated with two independent LED lights: green (peak λ=527nm; 
FWHM=50nm; Cree Inc., C503B-GCN-CY0C0791) and red (peak λ=635nm and FWHM of 20nm; 
Avago Technologies, HLMP-EG08-Y2000) mounted on the optical lens. A pair of Nikon lenses lens 
(Nikon Nikkor 105mm f/2.8,  Nikon Nikkor 35mm f/1.4), provided 3.0x magnification (M=105/35) onto an 
Andor Zyla 5.5 10tap sCMOS camera. A bandpass filter (Semrock; FF01-630/92nm) was used to only 
record reflected red light onto the brain. 

A 24” monitor was positioned 10 cm from the right eye. The monitor was rotated 30° relative to 
the animal’s dorsoventral axis and tilted 70° off the horizon to ensure that the stimulus was 
perpendicular to the optic axis of the eye (Oommen and Stahl, 2008). The visual stimulus for mapping 
retinopy was a 20° x 155° drifting bar containing a checkerboard pattern, with individual square sizes 
measuring 25º, that alternated black and white as it moved across a mean-luminance gray background. 
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The bar moved in each of the four cardinal directions 10 times. The stimulus was warped spatially so 
that a spherical representation could be displayed on a flat monitor (Marshel et al., 2011). 

After defocusing from the surface vasculature (between 500 μm and 1500 μm along the optical 
axis), up to 10 independent ISI timeseries were acquired and used to measure the hemodynamic 
response to the visual stimulus. Averaged sign maps were produced from a minimum of 3 timeseries 
images for a combined minimum of 30 stimulus sweeps in each direction (Garrett et al., 2014). 

The resulting ISI maps were automatically segmented by comparing the sign, location, size, and 
spatial relationships of the segmented areas against those compiled in an ISI-derived atlas of visual 
areas. A cost function, defined by the discrepancy between the properties of the matched areas, was 
minimized to identify the best match between visual areas in the experimental sign map and those in 
the atlas, resulting in an auto-segmented and annotated map for each experiment. Manual correction 
and editing of the results included merging and splitting of segmented and annotated areas to correct 
errors. Finally, target maps were created to guide in vivo two-photon imaging location using the 
retinotopic map. The center of retinotopic space was computed from azimuth and altitude maps and 
adjusted for variability in eye position relative to the monitor by zeroing to the anatomical center V1. 
The corresponding retinotopic location was identified for each visual area, and two-photon imaging was 
targeted to a region within 20° of the center of gaze.  

 

Behavior Training 
 
Water restriction and habituation 

Throughout behavior training mice were water-restricted in order to maintain consistent 
motivation to learn and perform the behavioral task (Guo et al., 2014). Prior to water restriction mice 
were weighed once daily for three days to obtain a stable, initial baseline weight. During the first week 
of water restriction mice were handled daily and habituated to increasing duration of head fixation in the 
behavior enclosure over a five-day period. Thus, the first day of behavior training occurred after 10 
days of water restriction. Mice were trained 5 days per week and could earn as much water as possible 
during the daily one hour sessions; supplemental water was provided if earned volume fell below 1.0 
mL and/or body weight fell under 80-85% of their initial baseline weight. On non-training days mice 
were weighed and received enough water provision to reach their target weight of 80-85% (never less 
than 1.0 mL per day). 
 
Apparatus 

Headposted mice were trained in custom-designed, sound-attenuating behavior enclosures. 
Visual stimuli were displayed on a 24” LCD monitor (ASUS, Model # PA248Q) placed at a ~15cm 
distance from the mouse’s right eye. The monitor was rotated 30° relative to the animal’s dorsoventral 
axis and tilted 70° off the horizon to ensure that the stimulus was perpendicular to the optic axis of the 
eye (Oommen and Stahl, 2008). A behavior stage was placed in a consistent location using a kinematic 
mount and consisted of a standardized headframe clamp to enable repeatable positioning of the mouse 
relative to the monitor, and a 6.5” running wheel tilted upwards by 10-15 degrees.  Running behavior 
was measured by a rotational encoder. Water rewards were delivered using a solenoid (NResearch, 
Model #161K011) that allowed for a calibrated volume of fluid to pass through a blunted, 17g 
hyperdermic needle (Hamilton) positioned approximately2-3mm from the animal’s mouth. Licks were 
detected by a capacitive sensor coupled to the reward delivery spout. Running speed, lick times, and 
reward delivery times were recorded on a NI PCI-6612 digital IO board and sampled at the frequency of 
the visual display (60 Hz). 
 
Behavioral training procedure 

Mice were trained for 1 hour/day, 5 days/week using an automated training algorithm. Briefly, 
mice were trained to lick when the identity of a flashed visual stimulus changed. If mice responded 
correctly within a short, post-change response window (750ms) a water reward (5-10uL) was delivered.  
On Day 1 of the automated training procedure mice received a short, 15-min “open loop” conditioning 
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session during which non-contingent water rewards were delivered coincident with 90 degree changes 
in orientation of a full-field, static square-wave grating. This session was intended to 1) introduce the 
mouse to the fluid delivery system and, 2) provide the technician an opportunity to identify the optimal 
lick spout position for each mouse and 3) condition the association between stimulus changes and 
reward delivery. Each session thereafter was run in “closed loop” mode, and progressed through 3 
stages of the operant task (schematized in Figure 1D): 1) static, full-field square wave gratings 
(changes between 0 and 90 degrees), 2) flashed, full-field square-wave gratings (changes between 0 
and 90 degrees) presented for 250ms with an 500ms inter stimulus gray period, and 3) flashed full-field 
natural scenes (8 natural images from the Allen Brain Observatory) presented for 250ms with an 500ms 
inter stimulus gray period. Progression through each stage required mice to achieve a session 
maximum d’ of 2 on two of the last 3 sessions. Thus, the shortest amount of time to reach the final 
stage of training was 5 sessions. Once in stage 3, mice were considered ‘ready for imaging’ when 2 out 
of 3 sequential sessions had a d’ greater than 1 and mice performed at least 100 contingent trials. Mice 
were transitioned to behavior on the two-photon rig as scheduled time on the microscope became 
available. This resulted in a variable training duration in stage 3 across mice (Supplemental Figure 1A).  
 
Session and trial structure  

Each behavior session consisted of a continuous series of GO and CATCH trials, schematized 
in Figure 1B. Briefly, prior to the start of each trial a change-type and change-time were selected.  
Change-type was chosen based on predetermined frequencies such that GO and CATCH trials 
occurred with equal probabilities for sessions with 2 oriented gratings. For the natural image phase in 
which there were 64 change-pair possibilities, CATCH frequency was set to 12.5% (1/8 of the number 
of image transitions). To ensure even sampling of all stimulus transitions, a transition path is selected at 
random from a matrix of 1000 pre-generated paths. Each path takes a pre-determined route through 
each of the 64 possible transitions, including same-to-same, or catch, transitions. Once a transition 
path is completed, another path is chosen at random.  

Change times were selected from an exponential distribution ranging from 2.25 to 8.25 seconds 
(mean of 4.25 seconds) following the start of a trial. Catch trial times were drawn from the same 
distribution such that false alarm rates were measured with the same temporal statistics as change 
trials, to account for any learning of the temporal distribution of change times. On trials when a mouse 
licked prior to the change or catch time, the trial was restarted with the same scheduled change or 
catch time. To prevent mice from getting stuck on a single trial, the number of times a trial could be 
repeated was limited to five. In all, this trial structure permits equal sampling of GO and CATCH trials, 
that when combined with mouse’s licking response, yields HIT, MISS, FALSE ALARM, and CORRECT 
REJECTION trials. In addition to the four trial types described above, behavior sessions contained a 
subset of “free reward” trials (GO trials followed immediately by delivery of a non-contingent reward). 
Behavior sessions across all phases began with 5 free-reward trials. Additionally, to promote continued 
task engagement, one of these free rewards was delivered after 10 consecutive MISS trials.  
 
Two photon imaging during behavior 

 
Visual Stimulation 

Visual stimuli were generated using custom Python scripts written in PsychoPy (Peirce, 2007, 
2008) and were displayed using an ASUS PA248Q LCD monitor, with 1920 x 1200 pixels. Stimuli were 
presented monocularly, and the monitor was positioned 15 cm from the mouse’s eye, and spanned 
120° X 95° of visual space. The monitor was rotated 30° relative to the animal’s midline and tilted 70° 
off the horizon to ensure that the stimulus was perpendicular to the optic axis of the eye (Oommen and 
Stahl, 2008). 

The monitor was gamma corrected and had a mean luminance of 50 cd/m2. To account for the 
close viewing angle of the mouse, a spherical warping was applied to all stimuli to ensure that the 
apparent size, speed, and spatial frequency were constant across the monitor as seen from the 
mouse’s perspective (Marshel et al., 2011). Visual stimuli were presented at 60Hz frame rate.  
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Visual stimuli consisted of a subset of the natural scene images used in the publicly available 
Allen Brain Observatory dataset (https://observatory.brain-map.org/visualcoding/). The 32 natural 
images that we used originated from 3 different databases of natural scene images: the Berkeley 
Segmentation Dataset (images 000, 005, 012, 013, 024, 031, 034, 035, 036, 044, 047, 045, 054, 057) 
(Strasburger et al., 2011), the van Hateren Natural Image Dataset (images 061, 062, 063, 065, 066, 
069, 072, 073, 075, 077, 078, 085, 087, 091) (van Hateren and van der Schaaf, 1998), and the McGill 
Calibrated Colour Image Database (images 104, 106, 114, 115)  (Olmos and Kingdom, 2004). The 
images were presented in grayscale, contrast normalized, matched to have equal mean luminance, and 
resized to 1174 X 918 pixels.  
 
Behavior apparatus 

Running speed measurement, lick detection and reward delivery were performed as described 
above for behavioral training. The monitor was placed in a fixed location relative to the behavior stage 
to ensure a consistent relationship between the mouse’s eye and the screen. Running speed, lick 
times, and reward delivery times were recorded on a NI PCI-6612 digital IO board and sampled at the 
frequency of the visual display (60 Hz). 

 
Two-photon calcium imaging during behavior 

Calcium imaging was performed using a Scientifica Vivoscope 
(https://www.scientifica.uk.com/products/scientifica-vivoscope). Laser excitation was provided by a 
Ti:Sapphire laser (Chameleon Vision – Coherent) at 910 nm. Pre-compensation was set at -10,000 fs2. 
Movies were recorded at 30Hz using resonant scanners over a 400 μm field of view (512x512 pixels). 
Temporal synchronization of calcium imaging, visual stimulation, reward delivery and behavioral output 
(lick times and running speed) was achieved by recording all experimental clocks on a single NI PCI-
6612 digital IO board at 100 kHz.  

Behavior sessions under the two-photon microscope were 1 hour in duration, with task 
parameters identical to stage 3 of the behavior training procedure as described above. In addition, 
during most two-photon imaging sessions, 5% of stimulus flashes were randomly omitted, excluding the 
change flash and the flash immediately prior to the change. These omitted flashes were added to the 
experimental protocol partway into the experiment, resulting in 86/101 (85%) imaging sessions 
including omitted flashes. The 15 sessions without omitted flashes included data from one Slc17a7-
IRES2;CaMKII-tTA;Ai93 mouse (4 sessions in VISp), and two Vip-IRES-Cre;Ai148 mice (3 sessions 
from VISal, and 8 sessions from VISp). Sessions without omitted flashes were excluded from any 
analysis depending on stimulus omission. 

Movies of fluorescence were acquired near the center of retinotopic space in VISp and VISal, 
using ISI target maps and vasculature images as a guide. Once a cortical region was selected, the 
objective was shielded from stray light coming from the stimulus monitor using opaque black tape. All 
recordings were made at a depth of ~175um from the brain surface. Once a field of view was selected, 
a combination of PMT gain and laser power was selected to maximize laser power (based on a look-up 
table against depth) and dynamic range while avoiding pixel saturation (max number of saturated pixels 
<1000). Immersion water was occasionally supplemented while imaging using a micropipette taped to 
the objective (Microfil MF28G67-5 WPI) and connected to a 5 ml syringe via an extension tubing. At the 
end of each experimental session, a z-stack of images (+/- 30 μm around imaging site, 0.1 μm step) 
was collected to evaluate cortical anatomy and evaluate z-drift during experiment. Experiments with z-
drift above 10µm over the course of the entire session were excluded. 

For each field of view, imaging and behavior sessions were conducted using each of the 4 image 
sets shown in Figure 1C, including the familiar image set A used during behavior training, and 3 novel 
image sets first experienced by the mouse during the imaging phase of the experiment. On subsequent 
imaging days for a given field of view, we returned to the same location by matching (1) the pattern of 
vessels in epi-fluorescence with (2) the pattern of vessels in two photon imaging and (3) the pattern of 
cellular labelling in two photon imaging at the previously recorded location. Typically, only one field of 
view was imaged per mouse, however in 3 out of the 21 mice, fields of view were recorded in both VISp 
and VISal. In cases where an imaging session failed our QC criteria (for example for z-drift >10um, or 
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due to hardware issues such as dropped stimulus of imaging frames; see below), the session was 
retaken. As a result, some sessions with ‘novel’ image sets B, C or D were the second or third 
exposure (67% were first exposure, 27% were the second exposure, 6% were the third or fourth 
exposure). In contrast, mice were exposed to familiar image set A for an average of 17 +/- 14 sessions 
during training.   
 
Quality control 

All data streams were required to pass an initial integrity check. Frame sync times for 2-photon 
can have no more than 6 dropped frames, and a mean physiology period (frame rate) between 0.032 -
0.034. The visual stimulus presentation sync times can have no more than 60 dropped frames and an 
average frame interval between 0.0165 and 0.0167. The display lag of the monitor is measured using a 
photodiode to compare with recorded frame times, and the display lag must not exceed 150ms. The 
running wheel encoder data stream is examined for any visible artifacts (such as a spike in the trace or 
a flat trace despite running activity). The average intensity of the 2-photon field of view may not drift 
more than 10% over the course of a session. The acquired movie is checked for saturation to ensure 
that no more than 500 saturated pixels are present across the duration of the recording session. Z-drift 
is quantified by performing phase correlation between the frames of a 100um z-stack taken after the 
imaging session and a 500 frame average from the beginning of the 2-photon movie and a 500 frame 
average at the end of the movie. If the distance between the z-stack frames found to be most correlated 
with the beginning and end of the movie is greater than 10um, the session is retaken.  
 
Data processing 

All data processing was performed as described in de Vries et al., 2018. 
For each two-photon imaging session, the image processing pipeline included the following steps: 

1) motion correction, 2) image normalization to minimize confounding random variations between 
sessions, 3) segmentation of ROIs, and 4) ROI filtering. Motion correction was performed using phase 
correlation and rigid translation. Segmentation was performed by morphological filtering on normalized 
periodic average images constructed from 400 frame blocks, followed by unification of masks across all 
blocks. ROI filtering was performed to remove segmented regions that were unlikely to correspond to 
cell somas, based on attributes including size and shape (for example, small ROIs likely corresponding 
to apical dendrites were removed).  

Following identification of cell ROIs, the following steps were performed to obtain ∆𝐹/𝐹 (dF/F) 
traces: 1) neuropil subtraction, 2) trace demixing, 3) ∆𝐹/𝐹 computation. For each ROI, a neuropil mask 
was created, consisting of a 13 pixel ring around the cell soma, excluding any other ROIs. The raw 
fluorescence trace was generated by averaging all pixels within each cell ROI and the neuropil mask. A 
neuropil contamination ratio was computed for each ROI and the calcium trace was modeled as 𝐹𝑀 =
𝐹𝐶 + 𝑟𝐹𝑁, where 𝐹𝑀 is the measured fluorescence trace,  𝐹𝐶 is the unknown true ROI fluorescence 
trace, 𝐹𝑁 is the fluorescence of the surrounding neuropil, and 𝑟 is the contamination ratio. After 

determination of 𝑟, we computed the true trace as 𝐹𝐶 = 𝐹𝑀 − 𝑟𝐹𝑁, which is used in all subsequent 
analysis. To avoid artificially correlating neurons' activity by averaging fluorescence over two spatially 
overlapping ROIs, we demixed the activity of all recorded ROIs, as described de Vries et al., 2018. 
Finally, the global dF/F trace for each cell was computed, with the baseline F0 determined by a rolling 
median filter of 180 seconds across the raw fluorescence trace.  

Temporal alignment was performed to link two-photon acquisition frames (30Hz frame rate) with 
visual stimulation frames (60Hz frame rate) and associated behavioral signals (licking, running speed, 
reward delivery, sampled at 60Hz frame rate of visual stimulus). The visual stimulus time nearest to 
each two-photon (2P) frame time was computed, with the condition that the visual stimulus time must 
be before the 2P acquisition time, to ensure that dF/F responses were not attributed to stimulus or 
behavior events occurring after the change in the calcium signal.  
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Data Analysis 
 
Behavior 

Response rates for GO and CATCH trials were calculated by evaluating the fraction of trials of each 
type where a lick was registered within the 750ms response window following the change or sham 
change time (Figure 1H). The fraction of GO trials with a response is the hit rate and the fraction of 
CATCH trials with a lick response is the false alarm rate. The d-prime value for each session was 
computed as: 

𝑑′ = 𝑍[ℎ𝑖𝑡 𝑟𝑎𝑡𝑒] − 𝑍[𝑓𝑎𝑙𝑠𝑒 𝑎𝑙𝑎𝑟𝑚 𝑟𝑎𝑡𝑒] 
Where Z is the inverse of the cumulative distribution function (using scipy.stats.norm.ppf). 

Reaction time was calculated as the time to first lick after the start of the change time on GO trials. 
Mean run speed was calculated by taking the average of the running speed trace in a +/-2 second 
window around the image change time for each GO trial, then averaging across all GO trials in each 
session (Supplemental Figure 1D).The average running speed trace across sessions (Supplemental 
Figure 1E) was computed by averaging the running speed trace across all GO trials in a [-2,6] second 
window around the change time for GO trials or the sham change time for CATCH trials.  

Calculation of all behavior metrics was limited to the portion of the session where the mouse was 
actively engaged in the behavioral task, where engagement was defined those periods during which the 
mouse earned at least 2 rewards per minute. Mice performed 248 engaged GO trials per session on 
average (range = 83-335).  
 
Physiology 

All analysis was performed on the global dF/F traces (where baseline F was computed as the mode 
of a rolling 3-minute window, described in data processing section above).  

Neural responses were analyzed for three main conditions of interest – the time of image 
presentations (across all stimulus flashes), the time of image changes (on GO trials, first flash after an 
image transition), and the time of stimulus omissions (5% of all non-change image flashes were 
randomly omitted). For each individual image presentation (or image omission), the mean response in a 
500ms window after stimulus onset (or the time of omission) was computed (including the 250ms 
stimulus duration and 250ms after, to account for the slow decay of GCaMP6 responses and to include 
cells with delayed responses or off responses after stimulus offset). 

The preferred stimulus for a cell was identified as the image evoking the largest trial-averaged 
response for a given condition. When considering all image presentations, the preferred stimulus is the 
image that evoked the largest mean response, averaged across all stimulus presentations of each 
image. For image changes, the preferred stimulus is the image that evoked the largest mean change 
response, considering only the first image presentation after a change in stimulus identity. Thus, an 
individual cell may have a different preferred image when considering all image flashes versus only the 
change flash. For some analyses of stimulus omissions, we considered omission trials where the 
preceding image was the cell’s preferred image defined across all stimulus presentations. Other 
analyses were agnostic to the identity of the image before and after the omission. Any analyses 
considering the image prior to the omission are indicated in text and figure legends.   

Responsiveness was evaluated on a trial by trial basis (here an individual image presentation is 
considered as a ‘trial’). The mean response for each image flash was compared to a shuffled 
distribution of dF/F values taken from omission periods (the longest period of extended gray screen 
during the session) for each cell. A p-value was computed by resampling the shuffled distribution 
10,000 times and determining the fraction of comparisons where the mean response was larger than 
the shuffled values. If the trial had a significantly larger response compared to the shuffled distribution, 
that trial was deemed responsive. For a cell to be considered image responsive, at least 25% of all 
stimulus presentations for the preferred image for that cell must be significant per the above definition 
(Figure 2G). The distribution of fraction significant image trials (for each cell’s preferred image) is 
shown in Supplemental Figure 2B. For a cell to be considered change responsive, at least 25% of all 
change flashes of the preferred image must be significant (Figure 2H). The distribution of fraction of 
significant change trials (for each cell’s preferred change image) is shown in Supplemental Figure 2C. 
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For omission responsiveness, a different definition was used. In this case, a p-value was computed 
comparing the dF/F trace during the omission window (750ms after the omitted stimulus onset time, up 
to the time of the next stimulus onset) with a 750ms second baseline period prior to the omission (which 
includes the prior stimulus presentation and one inter-stimulus gray period). If 25% of all stimulus 
omission trials had a p-value > 0.05, with the mean omission response being greater than the baseline 
response, the cell was considered omission responsive (Figure 2I). The distribution of fraction of 
responsive omission trials is shown in Supplemental Figure 2C. 

To evaluate image selectivity, we created tuning curves of mean response across the 8 images 
shown in each session, for each cell, for both the change flash (Supplemental Figure 3) and across all 
flashes (Figure 3). We generated a normalized image tuning curve for each image set by sorting each 
cell’s tuning curve by the strength of the mean response to each image, normalizing to the max, and 
averaging across cells (Figure 3G, Supplemental Figure 3E). Only cells meeting the criteria for image 
or change responsiveness described above were included in the calculation of the image tuning curve. 
An insufficient number (<10) of VIP cells were image responsive for image set A, thus a tuning curve 
was not included for this condition in Figure 3G.  To quantify selectivity for individual cells, we used a 
lifetime sparseness metric, computed using the definition in (Vinje and Gallant, 2000): 

𝑆𝑝𝑎𝑟𝑠𝑒𝑛𝑒𝑠𝑠 =

1 −
1
𝑁

(∑ 𝑟𝑖𝑖 )2

∑ 𝑟𝑖
2

𝑖

1 −
1
𝑁

 

where N is the number of images and 𝑟𝑖is the response of the neuron to image i averaged across trials. 
Lifetime sparseness was only computed for image or change responsive cells. Population sparseness 
was computed with the same metric, but where N is the number of neurons and 𝑟𝑖 is average response 
vector of neuron i to all images (Figure 3D, Supplemental Figure 3C). Lifetime and population 
sparseness were computed for the change flash only (Supplemental Figure 3), and for the mean 
response across all image flashes (Figure 3).  
 We computed a reliability metric by taking the average of the trial-to-trial cross correlation of the 
dF/F trace in a [-0.5, 0.75] second window around the stimulus onset time for the preferred image for 
each cell (see example cells in Figure 4D). This metric was evaluated under several conditions: for 
change responsive cells (Supplemental Figure 4E), for cells that were image selective (lifetime 
sparseness value > 0.3) vs. unselective (lifetime sparseness < 0.3) (Supplemental Figure 4F), and as a 
function of stimulus repetition number after a change for the preferred image (repetition 1 = first flash 
after a change, repetition = 10 is the 10th flash in the sequence for that image) (Figure 4E).  
 To better understand the difference in response strength between the first flash after a change 
in image identity compared to after multiple repetitions of a given image, we computed a change 
modulation index (CMI):  

𝑐ℎ𝑎𝑛𝑔𝑒 𝑚𝑜𝑑𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑖𝑛𝑑𝑒𝑥 =
(𝑅1 − 𝑅10)

(𝑅1 + 𝑅10)
 

 

 Where R1 is the trial averaged response to the 1st flash after a change and R10 is the trial 
averaged response to the 10th flash after a change. This metric was computed for each cell, either 
taking the trial average across all images (Supplemental Figure 4D) or the trial average only for each 
cell’s preferred image (Supplemental 4C) then averaged across all cells within a session to produce the 
plots in Supplemental Figures C&D. For Supplemental Figure 4B, the CMI listed in the title for each plot 
was computed using the mean of the population average trace across all images for the 1st and 10th 
repetitions.  
 A stimulus modulation index, measuring the modulation of the response at the stimulus 
frequency, was computed as in (Matteucci et al., 2019):  

𝑠𝑡𝑖𝑚𝑢𝑙𝑢𝑠 𝑚𝑜𝑑𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑖𝑛𝑑𝑒𝑥 = ||
𝑃𝑆(𝑓1) − 〈𝑃𝑆〉𝑓

√〈𝑃𝑆2〉𝑓 − 〈𝑃𝑆〉𝑓
2

||, 
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Where PS is the power spectral density (computed using scipy.signal.welch() with nperseg=128 and fs 
= 1/0.75) of the trial-averaged response over an 8 second window after the time of the change to the 
cell’s preferred stimulus (time = 0-8sec in example figures in Figure 4G), f1 is the stimulus frequency ( 
1/0.75, images are presented every 750ms), and 〈 〉𝑓 indicates the average over frequencies. This 

metric quantifies the difference between the power at the stimulus frequency and the average of the 
power spectrum. The distribution of the signal modulation index value for the preferred image across 
cells is shown in Figure 4H. 

The dynamics of cell responses were evaluated by computing a ramp index over different time 
windows of interest, similar to (Makino and Komiyama, 2015):  

 
𝑅𝑎𝑚𝑝 𝑖𝑛𝑑𝑒𝑥 =  log2(𝑅𝑙𝑎𝑡𝑒 −  𝑅𝑒𝑎𝑟𝑙𝑦) 

 
Where 𝑅𝑙𝑎𝑡𝑒) is the mean response in the first half of a defined window of time, and 𝑅𝑒𝑎𝑟𝑙𝑦) is the 

second half of the window. This index provides a measure of the magnitude and direction of a change 
in a signal within the window. For Figure 5, the ramp index was computed for two windows: the pre-
stimulus window (250ms prior to stimulus onset; Figures 5A&B light shading) and the stimulus window 
(250ms after stimulus offset; Figures 5A&B dark shading) for the mean dF/F trace for each cell across 
all flashes of its preferred image. If the dF/F values are increasing during the window, the ramp index is 
positive. If the dF/F values are decreasing during the window, the ramp index is negative. The ramp 
index was only computed for cells with a mean dF/F value of >0.05 in the stimulus window, as the ramp 
index for a flat, unchanging signal can result in extreme values with little meaning.   

The pre-stimulus and stimulus ramp indices were plotted against each other on a cell by cell 
basis (for cells with a minimum level of activity as described above) and found to be correlated by least 
squares linear regression between the two measures, performed separately for each image set 
(scipy.stats.linregress). Cells fell into four quadrants of this graph based on the relative sign of pre-
stimulus and stimulus ramping. Cells with positive values of the stimulus ramp index and negative 
values of the pre-stimulus ramp index, indicating stimulus evoked activity with no pre-stimulus ramping, 
belonged to quadrant 1 (Q1). Most cells fell into this category. At the other extreme, cells with negative 
values of the stimulus ramp index and positive values of the pre-stimulus ramp index fall in Q4, 
indicating increasing activity prior to stimulus onset, and decreasing activity after stimulus offset. These 
cells showed the largest change in proportion between the familiar and novel image sets, particularly 
for VIP cells (Figure 5D). The fraction of cells belonging to each quadrant was computed for each 
imaging session, then averaged across sessions, in figure 5D. To illustrate the response dynamics 
associated with these cell groups, the mean response across all cells belonging to each quadrant was 
computed, then normalized to its max, for the plots in Figure 5E.  

After grouping cells by their response dynamics, several metrics were computed, as described 
previously, for each group, separated by Cre line and image set, including: time to peak response for 
the average of all image flashes (Figure 5F), the stimulus modulation index (Figure 5G), reliability 
across all image flashes (Figure 5H), and lifetime sparseness across all flashes (Figure 5I). Only cells 
with a minimum level of activity (<0.05 dF/F) were included in this analysis. Plots in Figures 5F-I show 
the mean+/-95% confidence intervals across included cells.  

The ramp index described above was again used to quantify the increase in activity during 
stimulus omission (Figure 6). For cells with a minimum level of activity during the omission period 
(>0.05 mean dF/F; Figure 6E), the ramp index was computed over the 750ms window, taking 250ms 
starting at the time where the omitted stimulus would have been presented as the early portion of the 
window, and the 250ms prior to the beginning of the next image presentation as the late portion of the 
window (note that 250ms in the middle of this 750ms window was unused). A positive value of this 
index indicates increasing activity over the omission period. The distribution of the ramp index values 
over this window across cells with a minimum level of activity during omission quantified in Figure 6F. 
The relationship between pre-stimulus ramping and omitted ramping is shown in Figure 5G on a cell by 
cell basis, with the strength and significance of the correlation determined using least squares linear 
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regression (scipy.stats.linregress) as before. The fraction of cells having both increasing activity during 
the pre-stimulus period and increasing activity following stimulus omission are quantified in Figure 5H.  

 
Statistics and data visualization 

All statistical comparisons were made across image sets, within each cell class. ANOVA 
(scipy.stats.f_oneway) was used to test for an effect of image set, followed by a paired t-test 
(scipy.stats.ttest_ind) with Bonferroni correction for multiple comparisons for each individual image set 
pair. p-values are reported throughout the text and figure legends, and significance of comparisons 
(p<0.05) is indicated by an asterisks in figure insets. Point plots (seaborn.pointplot()) show individual 
sessions as gray points and the mean +/- 95% confidence intervals in color. Point plots lacking gray 
points are the mean +/- 95% confidence intervals across cells. Cumulative distributions across cells 
were generated with seaborn.distplot() with hist=False, hist_kws={'cumulative':True}. Barplot show 
either the mean across cells or the mean +/-SEM across cells. Heatmaps of cell responses were 
created using seaborn.heatmap(). 
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Figure 1: Natural scene change detection task with familiar and novel images
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Supplemental Figure 1: Behavior performance across image sets
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Figure 2: Activity in layer 2/3 excitatory and VIP inhibitory cells during image 
change detection behavior 
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Supplemental Figure 2: Image, change, and omission responsiveness
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Figure 3: Response sparseness for familiar and novel images
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Supplemental Figure 3: Response strength for familiar and novel images
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Figure 4: Increased stimulus modulation and reliability for novel images
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Supplemental Figure 4: Change modulation across images
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Figure 5: Experience-dependent shift in the dynamics of VIP inhibitory cells
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Supplemental Figure 5: Activity dynamics depend on experience
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Figure 6: VIP cells show strong ramping activity during stimulus omission
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