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Abstract We propose a variational method for joint motion estimation and source
identification in one-dimensional image sequences. The problem is motivated by
fluorescence microscopy data of laser nanoablations of cell membranes in live
Drosophila embryos, which can be conveniently—and without loss of significant
information—represented in space-time plots, so called kymographs. Based on me-
chanical models of tissue formation, we propose a variational formulation that is
based on the nonhomogenous continuity equation and investigate the solution of
this ill-posed inverse problem using convective regularisation. We show existence
of a minimiser of the minimisation problem, derive the associated Euler–Lagrange
equations, and numerically solve them using a finite element discretisation together
with Newton’s method. Based on synthetic data, we demonstrate that source esti-
mation can be crucial whenever signal variations can not be explained by advection
alone. Furthermore, we perform an extensive evaluation and comparison of various
models, including standard optical flow, based on manually annotated kymographs
that measure velocities of visible features. Finally, we present results for data gener-
ated by a mechanical model of tissue formation and demonstrate that our approach
reliably estimates both a velocity and a source.
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2 Lang et al.

1 Introduction

1.1 Motivation

Motion estimation is a ubiquitous and fundamental problem in image analysis, see
e.g. [5]. It is concerned with the efficient and accurate estimation of displacement
fields in spatio-temporal data and has a wide range of applications, not necessarily
limited to natural images. Optical flow [30] is one popular example of motion esti-
mation, which designates the apparent motion of brightness patterns in a sequence of
images and is based on the assumption of constant brightness. Recently, optical flow
methods have been used for the quantitative analysis of biological image sequences
on cellular and subcellular level. See, for instance, [2, 9, 10, 21, 31, 34, 39, 44, 50].
While the concept is in practice well-suited for natural scenes, the use of the less
restrictive continuity equation, which arises from mass conservation, can be more
favourable in certain scenarios. For instance, in [15, 16] it is used for fluid flow
estimation.

In developmental biology, the study of the morphogenesis of model organisms is
specifically calling for image analysismethods that are able to extract time-dependent
deformations and flow velocities frommicroscopy image sequences. Morphogenesis
is the process that leads to an organism developing its shape as a result of the im-
plementation of a genetic programme [28] and includes, among other mechanisms,
tissue deformations. These deformations can be observed through video microscopy
by fluorescently labelling molecules that are associated with compounds of mechan-
ical relevance within an embryo [32].

In many cases, these molecules are organised spatially in discrete structures,
such as cell membranes. To compute deformations on the level of these molecular
structures, segmentation or detection, and subsequent tracking are the methods of
choice [22]. As a result, detailed knowledge of the mechanics of morphogenetic
processes can be gained [7]. In case the recorded tissue lacks structure, particle
image velocimetry (PIV) is generally used to compute (sparse) displacement fields
in image sequences. See, for example, [37, 47].

One difficulty in abovementioned approaches is that the observed structures often
have a short life time and are being degraded during the observation, while new
structures of the same type are being created [47]. Indeed, thesemolecular structures,
and thus their fluorescent signal response, can be described by an advection–reaction
equation rather than pure advection [42]. The signal variations due to reaction are a
source of error in the estimation of motion that we propose to address in this paper.

Beyond the need of measurements of dense velocities of moving fluorescently-
labelled molecular structures that prove robust with respect to the reaction term, it is
of general interest to quantify the reaction term itself [42], and of general interest to
extract information about all the physical quantities and processes, such as diffusion,
that govern the observed tissue flow. For this, an accurate estimation of the velocity
field corresponding to the time evolution of the distribution of fluorescent molecules
is crucial [42, 47].
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Joint Motion Estimation and Source Identification 3

Fig. 1: Depicted are frames no. 4, 6, 10, 20, 40, 60, 80, and 90 (left to right, top
to bottom) of a 2D image sequence of fluorescently labelled cell membranes of
Drosophila during a laser nanoablation. The entire sequence contains 100 frames
recorded over roughly 6.5 s, and the imaged section spans approximately 42.2 ×
42.2µm2. The laser ablation is applied at frame number five, i.e. between the first
and the second image shown. Its location is indicated with a magenta arrow. Observe
the instantaneous recoiling and tissue loss of the cut membrane, and the subsequent
growth of tissue in the cut region. Moreover, note the changes in contrast over time
and the line artefacts.

In this article, we argue that utilising variational motion estimation can help
to identify physical quantities by estimating velocities in real data. For simplicity,
we choose to demonstrate this method in a case where the biophysical data can
be reduced to one space dimension. This allows to create convenient space-time
representations, so-called kymographs.

One-dimensional data are indeed relevant in tissue dynamics when the cell-
cell junctions are found to be aligned along a straight line called a supracellular
actomyosin cable [8, 40]. A common experiment to investigate the function of these
cables is to cut them locally using intense laser illumination [25] and to observe
the dynamics that follow. Figure 1 illustrates a prototypical two-dimensional (time-
lapse) fluorescence microscopy image sequence where a cable is being severed by
such a laser ablation.

Most of the relevant dynamics occur along the cable itself, thus projecting the
recorded signal in a narrow stripe of less than two micrometers along its average
direction preserves most of the information. See Fig. 2 for an example of a kymo-
graph obtained from the image sequence shown in Fig. 1. Variations in fluorescence
intensity are clearly visible and displacements of features can easily be measured,
e.g. with existing (tracking) tools [12, 13, 38, 41]. See also Fig. 8 for an example of
manually created tracks.
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4 Lang et al.

Fig. 2: The left image shows one frame of the image sequence in Fig. 1. A supra-
cellular cable is indicated with a magenta rectangle. To reduce the problem to one
dimension, the data is summed along the transverse direction within the rectan-
gular zone. The right image depicts the kymograph obtained from this dimension
reduction. Time runs from top to bottom and the horizontal black line at frame five
indicates the time of the laser ablation, during which the signal acquisition was
paused.

Analysing such data is challenging for many reasons. First, simultaneous estima-
tion of velocity and decay or increase of the signal renders the problem ill-posed, as
we will illustrate below, and suitable (qualitative) assumptions on favoured solutions
are required. Second, the obtained kymographs are very noisy, contain artefacts due
to the acquisition technique, and sometimes suffer from off-plane motion of the
cables. Third, the velocity field potentially contains discontinuities at the time of the
laser ablation. Fourth, data is missing during the application of the laser cut and only
a limited field of view is available due to the nature of the kymograph. Moreover,
bleaching of tissue leads to a decrease in contrast when being exposed over long
periods of time. See Figs. 1 and 2 for illustration of these issues. In this work we
address mainly issues one and two.

Motivated by the laser nanoablation problem we restrict ourselves to the one-
dimensional case and denote by Ω ⊂ R the spatial domain. For T > 0, we model
the actomyosin concentration as a function f : (0,T) × Ω → R that is proportional
to the observed fluorescence response. In the following, we assume that it solves the
Cauchy problem for the nonhomogeneous continuity equation in one dimension:

∂t f + ∂x( f v) = k in (0,T) ×Ω,
f (0, ·) = f0 in Ω.

(1)

Here, v : (0,T) ×Ω→ R is a given velocity field, k : (0,T) ×Ω→ R a given source
(or sink), and f0 : Ω→ R a given initial condition.

Solution theory for problem (1) is closely related to solutions of the initial value
problem

∂tφ(t, x0) = v(t, φ(t, x0)), in (0,T),
φ(0, x0) = x0, in Ω,

(2)
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Joint Motion Estimation and Source Identification 5

via the method of characteristics, see e.g. [24, Chap. 3.2]. Here, the map φ : [0,T) ×
Ω→ Ω denotes a so-called flow of v. Existence and uniqueness of problem (1) can
be established by application of the Picard–Lindelöf theorem to (2), provided that
both v and k are sufficiently regular. In particular, it can be shown that (2) has a
unique (global) solution and, moreover, that this solution is a diffeomorphism. For
an introduction and for details we refer, for instance, to [18, 60].

In this work we are concerned with the solution of the inverse problem associated
with (1), which is to estimate a pair (v, k)> from (potentially noisy) observations f .
Its ill-posedness is immediate because the problem is underdetermined and, given a
solution (v1, k1)

>, the pair (v2, k1 − ∂x( f v1)+ ∂x( f v2))
> for v2 differentiable denotes

a solution as well. In addition, it is easy to see that—without further assumptions on
v and on k—the pair (0, ∂t f )> is always a solution, albeit not a desired one.

In view of this ill-posedness and this ambiguity we consider the variational form

min
(v,k)>

D(v, k, f ) + αR(v, k), (3)

where the data term D(v, k, f ) is the squared L2 norm of the first equation in (1),
R(v, k) a suitable regularisation functional, and α > 0 is a regularisation parameter.
In this article we consider different choices of R. While source identification has
been treated before in the literature, e.g. in [4], the main goal of this article is to
recover a source (or sink) k which is constant along characteristics of the flow (2).
In other words, we are interested in utilising the convective derivative

d
dt

k(t, φ(t, x0)), (4)

for regularisation.
Its use is inspired by the work in [33], where the convective derivative of the

velocity along itself was used. From a physical perspective this choice seems natural
as, in comparison to using, for instance, the L2 norm or the H1 seminorm for
regularisation of k, it is consistent with the movement of the tracked cell tissue,
which can be assumed to be the main origin of changes in the observed fluorescence
intensity. However, from a numerical point of view this choice comes at the expense
of having to solve nonlinear optimality conditions.

1.2 Contributions

The main contributions of this article are as follows. First, we propose a variational
model based on the non-homogeneous continuity equation for joint motion esti-
mation and source identification in kymographs. Second, we study the variational
properties of utilising the convective derivative (4) for regularisation. Following
[33], we establish existence of minimisers of the nonconvex functional. Third, for
the numerical solution of the corresponding nonlinear Euler–Lagrange equations
we propose to use Newton’s method and a finite element discretisation. Fourth, we
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6 Lang et al.

present numerical results based on kymographs of laser nanoablation experiments
conducted in live Drosophila embryos. Moreover, we provide an extensive experi-
mental evaluation of different data fidelity and regularisation functionals based on
manually created tracks, and evaluate our approach using synthetic data generated
by solving a mechanical model of tissue formation.

1.3 Related Work

In [30], Horn and Schunck were the first to pursue a variational approach for dense
motion estimation between a pair of images. They considered a quadratic Tikhonov-
type functional that relies on conservation of brightness and used (squared) H1

Sobolev seminorm regularisation. This isotropic regularisation incorporates a pref-
erence for spatially regular vector fields.Well-posedness of the functional was proved
in [51] and the problem was solved numerically with a finite element method. For a
general introduction to variational optical flow see, for instance, [5].

In [57], the problem was treated on the space-time domain and extended to
incorporate both spatial as well as temporal isotropic regularisation. In [56], a
unifying framework for a family of convex functionals was established, and both
isotropic and anisotropic variants were considered. We refer to [54] for more details
on nonlinear diffusion filtering, and to [55] for an overview of numerous optical flow
models and a taxonomy of isotropic and anisotropic regularisation functionals.

The convective derivative has already been used in several works. For instance,
in [14] for simultaneous image inpainting and motion estimation. In [43], an optical
flow term was incorporated in a Mumford–Shah-type functional for joint image
denoising and edge detection in image sequences. Moreover, in [11] it was used for
joint motion estimation and image reconstruction in a more general inverse problems
setting. In [33] the convective acceleration was used for regularisation together with
a contrast invariant Horn–Schunck-type functional. The corresponding nonlinear
Euler–Lagrange equations were solved using a finite element method and alternating
minimisation.

According to [16], the article [52] is credited for being the first to propose the
use of the less restrictive continuity equation for motion estimation. Later it was
used, for instance, to find 3D deformations in medical images [53, 20], to analyse
meteorological satellite images [6, 16, 61], and to estimate fluid [15, 59] and blood
flow [3] in image sequences. For a general survey on variational methods for fluid
flow estimation see [29].

Whenever mass conservation is not satisfied exactly, e.g. due to illumination
changes, it can be beneficial to account for these violations. For instance, in [27] they
incorporated physical models. In [4] they simultaneously estimated image intensity,
flux, and a potential source. In contrast to our work, only L2 integrability of the
source was assumed and the constraint was enforced exactly, leading to an optimal
control formulation, which was solved with a finite element method.
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2 Problem Formulation

2.1 Preliminaries

Notation

ForT > 0 andΩ ⊂ R a bounded, connected, and open set we denote by E = (0,T)×Ω
the spatio-temporal domain and by ∂E its boundary. For a smooth function f : E →
Rwe denote by ∂t f , respectively, ∂x f the partial derivatives with respect to time and
with respect to space, and by ∇ f = (∂t f , ∂x f )> its spatio-temporal gradient. The
space-time Laplacian of f is denoted by ∆ f . Analogously, for a smooth vector field
w : E → R2 with w = (w1,w2)>, its gradient is denoted by ∇w = (∇w1,∇w2)> and
its spatio-temporal divergence is given by ∇ · w = ∂tw1 + ∂xw

2. Moreover, we will
write A . B whenever there exists a constant c > 0 such that A ≤ cB holds. Finally,
by the Cauchy–Schwarz inequality and application of Young’s inequality, we have

‖a + b‖2
L2 . ‖a‖2L2 + ‖b‖2L2 . (5)

Here, and in the following, we use ‖·‖L2 instead of ‖·‖L2(E ,R) and ‖·‖L2(E ,R2) for
simplicity.

Convective Derivative

Let φ : E → Ω be a flow through the domain Ω, i.e. for every t ∈ (0,T) the map
φ(t, ·) : Ω → Ω is a diffeomorphism and, for a fixed starting point x0 ∈ Ω, the
trajectory φ(·, x0) is smooth.

With every trajectory φ(·, x0) that originates at x0 ∈ Ωwe can associate a velocity
at every time t ∈ (0,T) via (2). Thus, a flow φ gives rise to a scalar (velocity) field
v : E → R by means of

v(t, x) = ∂tφ(t, x0)

����
x0=φ−1(t ,x)

, (6)

where φ−1(t, x) denotes the inverse of φ(t, ·) at x ∈ Ω, which is the starting point of
the curve that passes through x at time t.

For a scalar quantity k : E → R, we define the convective derivative of k along a
flow φ, denoted by Dvk, as

Dvk(t, x) B
d
dt

k(t, φ(t, x0))

����
x0=φ−1(t ,x)

= ∂t k(t, x) + ∂xk(t, x)v(t, x).

For convenience we adopt the notation v̄ = (1, v)>. Clearly, Dvk = ∇k · v̄ vanishes
for pairs (v, k)> such that v̄ ⊥ ∇k inR2. Moreover, from a straightforward calculation
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8 Lang et al.

x

t

x0

φ(·, x0)

v̄

∇k

Fig. 3: Illustration of a pair (v, k)> minimising (8) where the velocity v is constant.

we obtain
|Dvk |2 = ∇k>v̄v̄>∇k, (7)

where v̄v̄> is the matrix
v̄v̄> =

(
1 v

v vv

)
.

As noted in [33], the action of Dvk becomes more clear by writing (7) as

|Dvk |2 = |v̄ |2
(
∇k ·

v̄

|v̄ |

)2
= |∇k |2

(
v̄ ·
∇k
|∇k |

)2
.

The first identity states that, for fixed v̄, minimisation of the functional

F : (v, k)> 7→ ‖Dvk ‖2
L2 (8)

promotes functions k that vary little in the direction of v̄. In addition, the weighting
factor gives importance to regions of large v̄. On the other hand, the second identity
states that, for fixed k, minimisation of (8) favours functions v̄ that are tangent to
the level lines of k. This time, importance is given to regions where ∇k is large. See
Fig. 3 for illustration.

The connection to anisotropic diffusion [54] is immediate when considering the
Euler–Lagrange equations associated with (8). They read

∂xkDvk = 0,
∇ · (v̄v̄>∇k) = 0.

(9)

Note that the system (9) is nonlinear.
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2.2 Variational Model and Existence of a Minimiser

In this section we formulate the joint motion estimation and source identification
problem and study the use of (8) as regularisation functional. For simplicity, we will
denote a velocity-source pair by w = (v, k)>. In the following, we intend to minimise
a variational formulation of the form

E(w) B ‖∂t f + ∂x( f v) − k ‖2
L2 + αR(w), (10)

where R is yet to be defined and α > 0 is a regularisation parameter.
In order to fix a concrete choice of R let us discuss two issues. First, it should be

selected such that the functional is well-defined for an appropriate function space.
In particular, we require the weak derivative of v in the data term in (10) to exist and
to be bounded with respect to an appropriate norm. Second, ∂x( f v) and k need to
differ qualitatively in order to obtain a meaningful decomposition of the signal ∂t f .

Before we state the model, let us follow the ideas in [33, Chap. 5.2.2] and discuss
some issues arising with the choice

αR(w) B α‖Dvk ‖2
L2 .

To ensure well-definedness of the functional (10) we derive, by application of (5)
and HÃ¶lder’s inequality, the estimates

‖∂t f + ∂x( f v) − k ‖2
L2 . ‖∂t f ‖2

L2 + ‖ f ‖2L∞ ‖∂xv‖
2
L2 + ‖∂x f ‖2L∞ ‖v‖

2
L2 + ‖k ‖2L2,

and
‖Dvk ‖2

L2 . ‖∂t k ‖2L2 + ‖v‖
2
L∞ ‖∂xk ‖2

L2 .

As a consequence, minimisation over the space

X = {(v, k)> : v ∈ L∞(E), ∂xv ∈ L2(E), k ∈ H1(E)}, (11)

seems appropriate for data f ∈ W1,∞(E) in the space of functions with essentially
bounded weak derivatives up to first order.

However, in order to show existence of minimisers of (10) by application of the
direct method [19], one requires a coercivity estimate of the form

‖w‖2X − b . E(w), (12)

where b ≥ 0 is some constant and the norm of the space X is defined via

‖w‖2X = ‖v‖
2
L∞ + ‖∂xv‖

2
L2 + ‖k ‖2H1 .

Without further restriction of the data f , the above functional is not coercive with
respect to this space as the following example shows.

Example
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10 Lang et al.

Let f = ax for some 0 < a < +∞ and, consequentially, we have that ∂x f = a. Let
{wn} be the sequence with wn = (n,an)>, for n ∈ N, and observe that ‖wn‖X → ∞

as n→ +∞, while the value of the functional E stays bounded, in fact, zero.

Moreover, it is clear that, for pairs w = (0, k)>, the inequality (12) cannot hold
in general. As a remedy, we consider minimising over all pairs w = (v, k)> arising
from the Sobolev space H1(E,R2). Its norm is defined via

‖w‖2
H1 = ‖w‖

2
L2 + ‖∇w‖

2
L2 .

In further consequence, our goal is to find a minimiser w ∈ H1(E,R2) of the
functional E in (10) with

αRCR(w) B α‖∇w‖2
L2 + β‖Dvk ‖2

L2,

and regularisation parameters α, β > 0. Our final model thus reads

E(w) B ‖∂t f + ∂x( f v) − k ‖2
L2 + α‖∇w‖

2
L2 + β‖Dvk ‖2

L2 . (13)

Let us establish the existence of a minimiser to the problem minw∈H1(E ,R2) E(w).
The following lemma will be used to show coercivity of E and is along the lines of
[51, p. 29].

Lemma 1 Let w ∈ L2(E,R2) be constant. Then, for ∇−1 f B (∂x f ,−1)> with ∂x f .
const. the inequality

‖w‖2
L2 . ‖∇−1 f · w‖2

L2 (14)

holds.

Proof First, observe that, by the Cauchy–Schwarz inequality, the assumption ∂x f .
const. is equivalent to

|〈∂x f ,1〉L2 | < |E |‖∂x f ‖L2, (15)

where |E | denotes the measure of E .
Next, suppose to the contrary that there is no C > 0 such that (14) holds. Then,

for all n ∈ N there exists wn ∈ L2(E,R2) such that

‖∇−1 f · wn‖
2
L2 <

1
n
‖wn‖

2
L2 .

Let w̃n B wn/‖wn‖L2 with w̃n = (ṽn, k̃n)> and obtain ‖∇−1 f · w̃n‖
2
L2 < 1/n. But

then,
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1
n
> ‖∇−1 f · w̃n‖

2
L2

=

∫
E

(∂x f ṽn − k̃n)2 dE

=

∫
E

(∂x f 2ṽ2
n + k̃2

n − 2∂x f ṽn k̃n) dE

≥

∫
E

(∂x f 2ṽ2
n + k̃2

n) dE − 2|〈∂x f ṽn, k̃n〉L2 |

≥

∫
E

(∂x f 2ṽ2
n + k̃2

n) dE − 2‖∂x f ṽn‖L2 ‖ k̃n‖L2
|〈∂x f ṽn, k̃n〉L2 |

‖∂x f ṽn‖L2 ‖ k̃n‖L2

≥

(
‖∂x f ṽn‖2L2 + ‖ k̃n‖2L2

) (
1 −

|〈∂x f ṽn, k̃n〉L2 |

‖∂x f ṽn‖L2 ‖ k̃n‖L2

)
,

together with (15) implies that ṽn, k̃n → 0 as n→ +∞, contradicting the assumption.
Therefore, (14) holds. �

In particular, Lemma 1 holds for the (componentwise) average wE of w, defined as

wE =
1
|E |

∫
E

w dE .

The following proposition is a straightforward adaptation of [33, Prop. 1] and utilises
the direct method in the calculus of variations [19].

Proposition 1 For f ∈ W1,∞(E) satisfying (15), the functional E admits a minimiser
in H1(E,R2).

Proof The functional is proper and bounded from below since all terms are nonneg-
ative and, for w identically zero,

E(w) = ‖∂t f ‖2
L2 . ‖∂t f ‖2L∞ < +∞,

since f ∈ W1,∞(E).
Next, we show coercivity of (13) with respect to H1(E,R2). Observe that

‖w‖2
L2 . ‖wE ‖

2
L2 + ‖w − wE ‖

2
L2

. ‖∇−1 f · wE ‖
2
L2 + ‖∇w‖

2
L2

. ‖∇−1 f · w‖2
L2 + ‖∇−1 f · (w − wE )‖

2
L2 + ‖∇w‖

2
L2

. ‖v∂x f − k ‖2
L2 + ‖∇w‖

2
L2

. ‖∂x( f v) − k ‖2
L2 + ‖∇w‖

2
L2

. E(w) + ‖∂t f ‖2
L2 .

The chain of inequalities follows from (5), (14), the Poincaré–Wirtinger inequality
[24, Chap. 5.8],

‖w − wE ‖L2 . ‖∇w‖L2,
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12 Lang et al.

and the assumption f ∈ W1,∞(E). Coercivity of E with respect to H1(E,R2) then
follows since ‖∇w‖2

L2 . E(w).
Next, we discuss sequential weak lower-semicontinuity of E. Let {wn} ⊂

H1(E,R2) such that wn ⇀ ŵ in H1(E,R2). In particular, we have that ∇wn ⇀ ∇ŵ
in L2(E,R4). For 1 < p < 2, the compact embedding H1(E,R2) ⊂ W1,p(E,R2) ⊂⊂
L2(E,R2) holds, see [24, Chap. 5.7]. As a consequence, there exists a subse-
quence, also denoted by wn, such that wn → ŵ in L2(E,R2). Then, weak lower-
semicontinuity of E follows by application of [19, Thm. 3.23] since, for fixed w, we
have that all terms are convex in ∇w. In particular, |Dvk |2 is a quadratic form and
therefore convex in ∇w, since v̄v̄> in (7) is symmetric positive semidefinite.

Finally, by application of [19, Thm. 3.30], the functional E admits a minimiser.�

Let us add, however, that the convective regularisation functional F is nonconvex,
as the following example shows. We pick w1 = (0, x)> and w2 = (1,0)>, and obtain

0 = F (w1) = F (w2) < F ((w1 + w2)/2) =
|E |
16

.

Therefore, E is nonconvex in general and several minima might exist. However, for
β = 0 a unique minimiser exists.

3 Numerical Solution

In this section we derive necessary conditions for minimisers of (13) and discuss the
numerical solution of a weak formulation by means of Newton’s method.

3.1 Euler–Lagrange Equations

For convenience let us abbreviate F B ∂t f + ∂x( f v) − k. The Euler–Lagrange
equations [17, Chap. IV] associated with minimisation of the functional E in (13)
then read

f ∂xF + α∆v − β∂xkDvk = 0,
F + ∇ · ((αId + βv̄v̄>)∇k) = 0,

(16)

where Id denotes the identity matrix of size two. Recall from Sec. 2.1 that ∆ and ∇
are spatio-temporal operators. Moreover, the natural boundary conditions at ∂E are
given by

n ·
((

0
f F

)
+ α∇v

)
= 0,

n · ((αId + βv̄v̄>)∇k) = 0,
(17)

where n ∈ R2 is the outward unit normal to the space-time domain E .

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 2, 2019. ; https://doi.org/10.1101/686261doi: bioRxiv preprint 

https://doi.org/10.1101/686261
http://creativecommons.org/licenses/by-nc/4.0/


Joint Motion Estimation and Source Identification 13

Let us highlight two aspects of (16). First, note that the system is nonlinear in
the unknown w = (v, k)> due to the convective regularisation. Second, as already
mentioned in Sec. 2.1, there is a connection of the second set of equations in (16) with
anisotropic diffusion with the diffusion tensor given by αId+βv̄v̄>. The investigation
of existence and regularity of solutions of (16) is left for future research.

3.2 Weak Formulation and Newton’s Method

We minimise E by applying Newton’s method to the weak formulation associated
with (16) together with boundary conditions (17). It is derived as follows.

Multiplying with a test function ϕ = (ϕ1, ϕ2)> ∈ H1(E,R2), integrating by parts
under consideration of (17), and adding both equations leads to the following varia-
tional problem: Find w ∈ H1(E,R2) such that

G(w; ϕ) B (G1 + G2)(w; ϕ) = 0, ∀ϕ ∈ H1(E,R2), (18)

with

G1(w; ϕ) = −
∫
E

F∂x( f ϕ1) dx − α
∫
E

∇v · ∇ϕ1 dx − β
∫
E

∂xkDvkϕ1 dx,

G2(w; ϕ) =
∫
E

Fϕ2 dx − α
∫
E

∇k · ∇ϕ2 dx − β
∫
E

(v̄v̄>∇k) · ∇ϕ2 dx.

The Gâteaux derivative DG(w; δw, ϕ) of G at w ∈ H1(E,R2) in the direction of
δw = (δv, δk)> ∈ H1(E,R2) is given by (DG1 + DG2)(w; δw, ϕ) with

DG1(w; δw, ϕ) = −
∫
E

(∂x( f δv) − δk) ∂x( f ϕ1) dx − α
∫
E

∇δv · ∇ϕ1 dx

− β

∫
E

(
∂xkDvδk + (∂xk)2δv + ∂xδkDvk

)
ϕ1 dx,

DG2(w; δw, ϕ) =
∫
E

(∂x( f δv) − δk) ϕ2 dx − α
∫
E

∇δk · ∇ϕ2 dx

− β

∫
E

(V∇k + v̄v̄>∇δk) · ∇ϕ2 dx.

(19)

Here, V is the Gâteaux derivative of v̄v̄> at v in the direction δv and reads

V =
(

0 δv
δv 2vδv

)
.

We solve the nonlinear problem (18) with Newton’s method, which proceeds
as follows. Starting from an initial solution w(0) B (0,0)> we update the solution
according to the rule

w(n+1) = w(n) + δw, (20)
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14 Lang et al.

where δw is the update and n ∈ N0. Computing δw in each step requires to solve a
linear variational problem: Find δw ∈ H1(E,R2) such that

a(δw, ϕ) = `(ϕ), ∀ϕ ∈ H1(E,R2), (21)

with
a(δw, ϕ) = DG(w(n); δw, ϕ),

`(ϕ) = −G(w(n); ϕ).

Note that the dependence on the current iterate w(n) is through G and DG, defined
in (18) and (19), respectively. In our experiments we observed that (20) typically
converges within only a few iterations.

3.3 Discretisation

We have implemented the weak formulation in FEniCS [1], which can also handle
Newton’s method automatically. The formulation (18) was discretised using multi-
linear finite elements. Since kymographs serve as input data we have discretised the
rectangular space-time domain E with a triangular mesh based on the regular grid
so that every vertex of the mesh corresponds to one pixel of the image f and to one
pair of values of the unknown w.

Moreover, in the implementation we penalise weak derivatives differently in
space and time. This results in four regularisation parameters αi

j , with i = {v, k}
and j = {t, x}, for the H1 seminorm in (13) and one additional parameter β for the
convective regularisation. Due to the equivalence of norms the existence result in
Prop. 1 still holds true.

Integrals are computed exactly with an appropriate Gauss quadrature, which is
automatically selected by FEniCS. Similarly, since the image f is represented by a
piecewise multilinear function, products of partial derivatives of f that appear on
the right-hand side of (21) are automatically projected onto the correct space.

As termination criterion for Newton’s method we used the default criteria of
FEniCS with both the absolute and the relative residual of (18) set to 10−10. The
maximum number of iterations was set to 15. Convergence was typically achieved
within only a few iterations, which usually amounted to just a few seconds of
computing time on a standard consumer laptop. It needs to be mentioned that, in our
experiments we found that, the method fails to converge when the parameters αk

t

and αk
x are chosen too small in comparison to β. This is, however, in line with the

theoretical results in Sec. 2.2, which require H1 regularity of k.
Both the source code1 of our Python implementation and the microscopy data2

used in the experiments are available online.

1 https://doi.org/10.5281/zenodo.3263889

2 https://doi.org/10.5281/zenodo.3257654
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4 Experimental Results

In this section we present numerical results. In the first part, we demonstrate the
importance of estimating a source based on synthetic data. Then, in the second part
we show results for nonsynthetic microscopy data. After briefly discussing the data,
we investigate the effects of varying the regularisation parameter β, which controls
the amount of convective regularisation.We then qualitatively compare the (standard)
1D variational optical flowmodel with our continuity equation-based formulation for
several choices of the regularisation functional αR in (10). In addition, we present a
quantitative evaluation of the considered models based on recoil velocities obtained
frommanual tracking of features in kymographs. Finally, in the last part, we evaluate
our approach based on data coming from the solution of a mechanical model of
tissue formation.

In all results, the computed velocity fields are presented visually with the help of
streamlines, see e.g. [58]. These are integral curves computed by numerically solving
the ordinary differential equation (2) for the estimated velocity v and a selected
number of initial points. The resulting curves are then colour coded according to their
velocities and shown superimposed with the kymograph data. This representation is
more comprehensible and allows to visually check whether the estimated velocities
are approximately correct.

4.1 Analytical example

In order to demonstrate the necessity of estimating a source when the changes in the
signal cannot be explained using mass conservation we conducted experiments for
synthetic data. To this end, we generated a signal f , given as

f (t, x) = e−
t
τ cos

( x − v0t
λ

)
,

on a periodic domainΩ = (0,1) and for the time interval [0,1]. The parameters were
set to τ = 1 and to λ = 1/(4π). This signal shifts to the right with constant velocity
v0 = 0.1 and decays exponentially over time in its magnitude. It can easily be verified
that the source is given by k(t, x) = − f (t, x)/τ.

We then solved the variational problem using in one case the homogenous and
in one case the non-homogenous continuity equation. Periodic boundary conditions
in space were enforced, and regularisation parameters were set to αv

j = 10−3, αk
j =

10−4, for j ∈ {t, x}, and to β = 10−3. Since k is not constant along characteristics in
this example we haven chosen β quite small.

Figure 4 illustrates the results of this experiment. It can clearly be seen that not
accounting for the decay of the signal leads to a velocity that is significantly differ-
ent to v0 in this example, whereas using the non-homogenous continuity equation
estimates both the velocity and the source (not shown) very well.
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16 Lang et al.

Fig. 4: In this example, we demonstrate the necessity of source estimation for de-
caying data. Here, we have generated a signal that shifts to the right with constant
velocity v0 = 0.1 and simultaneously decays exponentially (in magnitude). Shown
are the signal f and streamlines computed from the estimated velocities using the
homogenous (left) and the non-homogenous (right) continuity equation.

4.2 Microscopy Data and Acquisition of Kymographs

The data at hand are 2D image sequences of living Drosophila embryos recorded
with confocal laser-scanning microscopy. We refer to [48] for the used microscopy
technique and for the preparation of flies, as well as for the details of the laser ablation
method. For this study we recorded 15 image sequences, all of which feature cell
membranes that have been fluorescently labelled with E-cadherin:GFP, see [48].
The image sequences feature a square region of approximately 42.2 × 42.2µm2 at a
spatial resolution of 250 × 250 pixels. A typical sequence contains between 60 and
100 frames that were recorded at a temporal interval of 727.67 ms, and the recorded
image intensities f 2D+T are in the range {0, . . . ,255}.

Each of the sequence shows a single plasma-induced laser nanoablation, which
led to the controlled destruction of tissue in a linear region of 2µm length that is
approximately orthogonal to the cable. This ablation is expected to have a width of
the order of the size of one pixel. Recall that in Fig. 1 we show such a typical dataset.

In order to obtain a kymograph from each microscopy sequence, we first labelled
the location of the intersection between the ablation line and the actomyosin cable
with a point c ∈ R2. Then, we visually determined an approximate orientation, given
by a unit vector e ∈ R2, of the selected cable by defining a straight line of length
2L + 1 pixels which passes through c. Typically, L = 100 pixels is sufficient for the
considered datasets.

To create a one-dimensional image sequence we used standard nearest neighbour
sampling along the abovementioned line. A nearest neighbour in terms of the pixel
locations P of f 2D+T is given by

N(x) ∈
{

xp ∈ P : |x − xp | ≤ |x − xq |, ∀p , q
}
.

Then, the sampling points that are separated by distance one and lie along the
abovementioned straight line are given by pi = c + ie, for i = −L, . . . , L. A nearest
neighbour interpolation of f 2D+T along this line is given by f 2D+T(t,N(pi)).

However, due to noise, the spatial extent, and minor displacements of the cable
in orthogonal direction, we also considered sampling points that lie on the parallel
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line of distance j = −h, . . . , h. These points are given by

pi, j = c + ie + je⊥.

Then, at i = 1, . . . ,2L + 1, we define the intensity of a kymograph f δ(t, i) as

f δ(t, i) =
∑

j=−h,...,h

f 2D+T(t,N(c + (i − L − 1)e + je⊥)).

In otherwords, the intensity at i is given as the sumof nearest neighbour interpolations
at points that lie on an orthogonal straight line. The superscript δ indicates noise in the
created kymograph. We found that h = 5 pixels generates satisfactory kymographs.

For this process, we used the reslice tool in Fiji [49] with a slice count of 2h and
no interpolation selected, after manually placing a straight segment along a selected
actomyosin cable, see Fig. 2 for illustration. Subsequently, a projection with the SUM
option selected creates the final kymograph.

Since the image acquisition is paused during the laser ablation, see Fig. 2, we
simply replaced the missing frame with the previous one. Moreover, we applied
a Gaussian filter to the kymograph f δ to guarantee the requirements specified in
Sec. 2.2 and scaled the image intensities to the interval [0,1]. The kernel size of the
Gaussian filter was chosen as 10× 10 pixels and the standard deviation set to σ = 1.
The filtered and normalised kymograph is denoted in the following by f .

4.3 Qualitative Comparison

In the first experiment, we investigated the effect of the convective regularisation
for one chosen kymograph. To this end, we solved the necessary conditions (16) as
outlined in Sec. 3 for varying regularisation parameter β. Figure 5 shows streamlines
for the estimated velocities together with the computed sources. Since we did not
find any significant difference between the results for β = 10−4 and for β = 0, we
simply omit the latter.

The two main findings of this experiment are as follows. First, for the chosen
dataset, the convective regularisation can help to estimate more accurate velocities
shortly after the ablation was applied. As can be seen in Fig. 5c (left) and Fig. 5d
(right), this leads to a more accurate estimation of the recoil velocities at the cut
ends. In Fig. 5d we display a magnified view of the results in the cut region.

Second, as expected, with increasing β the estimated source gets more regular
in the direction of the flow, see Figs. 5a–5c (right). In particular, the oscillations
in space and time in the estimated source, which can be most likely attributed to
noise and to artefacts created during the acquisition, decrease significantly. This
certainly can lead to better interpretability and help to get a better understanding of
the estimated reaction term k. Observe also the decrease in the magnitude of k as β
increases. This is made apparent by the colour coding.
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(a) β = 10−4.

(b) β = 10−3.

(c) β = 10−2.

(d) Shown is a magnified view of the cut region of the above results (ordered left to right).

Fig. 5: Visualisation of the effect of the convective regularisation. Shown in 5a–5c
are kymographs f δ (left) with streamlines superimposed and the estimated source
k (right) for increasing regularisation parameter β (from top to bottom). The other
parameters were fixed and set to αv

j = 5 · 10−3 and αk
j = 10−4, for j ∈ {t, x}.

In the next experiment, we qualitatively compare the standard variational optical
flow model with H1 seminorm regularisation and the continuity equation-based
model in (10) paired with different regularisation functionals. The first model we
consider is based on the optical flow equation [30] in one space dimension, which
reads

∂t f + ∂x f v = 0, (22)

and assumes that f is constant along characteristics of the flow (2). Even though
no source k is estimated in this model, the main motivation for its inclusion in the
evaluation is that it can serve as a baseline method. The quantitative evaluation in
Sec. 4.4 is based on manually created tracks that follow highly visible features in
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(a) Streamline representation of the velocity obtained by solving the variational optical flow problem
(23) with spatio-temporal H1 seminorm regularisation. Parameters were set to αv

j = 5 · 10−3, for
j ∈ {t , x }.

(b) Result obtained using αRH 1-L2 with parameters set to αv
j = 5 · 10−3 and γ = 10−1.

(c) Result obtained using αRH 1 with parameters set to αv
j = 5 · 10−3 and αk

j = 10−4.

(d) Result obtained usingαRCR with parameters set toαv
j = 5 ·10−3,αk

j = 10−4, and β = 2.5 ·10−3.

Fig. 6: Qualitative comparison of different models based on one chosen dataset.
Regularisation parameters were chosen manually so that the recovered streamlines
best matched the cut ends.

the kymographs and, in many cases, roughly preserve their intensity as the tissue
deforms. See Fig. 8 for illustration.

We highlight that, given ∂x f , 0, equation (22) admits a unique solution, namely
v = −∂t f /∂x f . However, due to noise degradation and aforementioned artefacts
it is beneficial to solve (22) in a variational framework. Therefore, we consider
minimising the functional

‖∂t f + ∂x f v‖2
L2 + α‖∇v‖

2
L2, (23)
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Fig. 7: Shown is a magnified view of the cut region of the results shown in Fig. 6
(ordered left to right, top to bottom).

analogously to the solution method outlined in Sec. 3. In contrast to the functional
(13), the corresponding Euler–Lagrange equations are linear and the weak formula-
tion can be solved directly.

All other functionals we investigate are based on (10) and read

‖∂t f + ∂x( f v) − k ‖2
L2 + αRi(w).

Here, αRi represent different choices in the regularisation and, consequentially, also
in the function space we minimise over. Since the above functional doesn’t require
any Sobolev regularity of the source k, we investigate the setting where v ∈ H1(E)
and k ∈ L2(E), that is

αRH1-L2 (w) B α‖∇v‖2
L2 + γ‖k ‖2L2, (24)

with γ > 0. Moreover, we also consider the choice v ∈ H1(E) and k ∈ H1(E). The
regularisation functional then reads

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 2, 2019. ; https://doi.org/10.1101/686261doi: bioRxiv preprint 

https://doi.org/10.1101/686261
http://creativecommons.org/licenses/by-nc/4.0/


Joint Motion Estimation and Source Identification 21

αRH1 (w) B α‖∇w‖2
L2 . (25)

Finally, we will present results for the setting v ∈ H1(E) and k ∈ H1(E) together
with the convective regularisation. This is the main model investigated in Sec. 2.2
and is given by

αRCR(w) B α‖∇w‖2
L2 + β‖Dvk ‖2

L2 . (26)

In Fig. 6 we show minimising functions for models (23)–(26) and in Fig. 7
we display a magnified view of the cut region. For all models, the regularisation
parameters were chosenmanually so that the streamlines obtained from the computed
velocities best matched the cut ends which resulted from the laser ablation. For
comparison, we also refer the reader to Fig. 8, which shows manually tracked cut
ends. The four main observations from this experiment were as follows.

First, in Fig. 6a, which shows a minimising function of the optical flow model
(23), it is clearly visible that many characteristics follow paths of constant fluores-
cence intensity. See also the two outermost markers in Fig. 7 (left). However, this
model underestimate the recoil velocity shortly after the cut and may lead to wrong
characteristics, see the middle marker in Fig. 7 (left).

Second, in Fig. 6b we illustrate a minimising pair (v, k)> of the continuity
equation-based model using αRH1−L2 . It is apparent that k captures both noise
and artefacts, and leads to an undesirable underestimation of the velocities in the cut
region. See also Fig. 7 (second from left). While this model unsurprisingly results
in the smallest residual error (in norm) of the non-homogenous continuity equation,
cf. also Table 1, it is insufficient for a meaningful quantification of tissue loss and
growth.

Third, in Fig. 6c we depict a minimising pair for the model using αRH1 as
regularisation functional. Less noise is picked up by the source k and the recovered
velocities v are closer to what one would expect in the cut region, see also Fig. 7
(third image from left). However, undesired oscillatory patterns are present in the
source k.

Finally, in Fig. 6d we show a minimiser of the model using convective regulari-
sation, that is αRCR. This particular choice leads to significant visual improvement
both in the recovered velocity and the estimated source. Specifically, as the stream-
lines in the cut region right after the laser ablation in Fig. 7 show (see top markers),
the movement of the tissue is captured very well. In addition, bright features such as
the left cut end, cf. the bottom marker in Fig. 7, are followed accurately. Moreover,
the changes in the fluorescence intensities are indicated nicely in the visualisation of
the source k, see Fig. 6d (right). In particular, the significant increase between the
cut ends towards the end of the sequence, possibly due to wound healing, is indicated
adequately.

In summary, it can be said that our variational model based on the non-
homogenous continuity equation together with convective regularisation can lead
to improved results compared to existing models when parameters are selected by
hand and comparison is performed visually.
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Fig. 8: Visualisation of manually created tracks of features (left) used for the eval-
uation superimposed with the corresponding kymograph and their corresponding
third-order spline representation (right). Colour in the spline representation indi-
cates velocity.

4.4 Quantitative Comparison based on Measured Recoil Velocities

In this section, we compare the models (23)–(26) presented in the previous section
from a quantitative point of view. Our evaluation is based on manually measured
recoil velocities of clearly visible features in the kymographs, and include the cut
ends resulting from the laser nanoablation.

For this comparison, we have annotated 15 kymographs in Fiji [49] to obtain
discrete trajectories to compare to. See Fig. 8 (left) for an example. These tracks
can then be used to compare to either the estimated velocities or to the computed
characteristics that solve (2) numerically. Observe in Fig. 8 that all trajectories start
only after the ablation, which is the main region of interest from a tissue mechanics
point of view.

Before presenting the comparison, let us briefly discuss the methodology and
the used evaluation criteria. Since some created tracks do not feature a coordinate
for each time instant we interpolated each track i with a third-order spline φi. As a
result, velocities ∂tφi can be computed conveniently and used for comparison to the
velocities estimated by the variational approach. See Fig. 8 for an example of tracks
(left) and their corresponding spline interpolations (right), which are colour coded
according to their velocities.

In our experiments we found that each kymograph requires the regularisation
parameters to be adjusted individually. Therefore, in the experimental comparison,
we performed a search over all parameter combinations

αi
j, γ, β ∈ {10−3,5 · 10−3,10−2,5 · 10−2,10−1}, with i = {v, k} and j = {t, x}, (27)

for whichever parameters are applicable to the respective model. In the case of the
most complex model, i.e. the one that includes the convective regularisation (26),
this amounted to probing 55 parameter combinations per dataset. For each of the
criteria listed below, we recorded the best result that was obtained with each model
and for each kymograph during the parameter search.
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Error in Residual

In the first comparison, the goal was to see which model best fits the recorded data.
In Table 1 we report the L1 norm of the smallest observed residual of the underlying
model equation, that is

‖∂t f + ∂x f v‖L1 and ‖∂t f + ∂x( f v) − k ‖L1 .

As expected, the model αRH1-L2 results on average and for every single dataset
in the smallest residual. However, as already mentioned in Sec. 4.3, due to the
high noise level it is only of limited use for quantifying the reaction term as k
captures a significant amount of noise. The main finding of this experiment is that
the optical flow model is by far not capturing the entire essence of the dataset, which
is indicated by the high residual in comparison to the continuity equation-based
models.Moreover, let us also highlight that the residual is on average not significantly
increased in comparison to the αRH1 model when the convective regularisation is
used in addition.

Dataset OF αRH 1-L2 αRH 1 αRCR
1 0.45 0.16 0.34 0.34
2 0.65 0.27 0.52 0.53
3 0.44 0.17 0.36 0.36
4 0.36 0.13 0.26 0.26
5 0.62 0.26 0.49 0.49
6 0.49 0.17 0.36 0.37
7 0.56 0.20 0.42 0.43
8 0.50 0.16 0.38 0.40
9 0.29 0.12 0.24 0.25
10 0.43 0.17 0.33 0.34
11 0.42 0.16 0.30 0.31
12 0.32 0.12 0.23 0.23
13 0.52 0.20 0.37 0.38
14 0.64 0.26 0.51 0.52
15 0.33 0.11 0.22 0.23
Average 0.47 0.18 0.36 0.36

Table 1: Residual error for every
dataset and every model investi-
gated. For each dataset we show
the smallest residual in L1 norm
that is obtained during the parameter
search.

Fig. 9: Plotted is themean error (28) (ver-
tical axis) for the model αRH1 for each
of the 15 datasets (in different colours)
and all probed parameter combinations
(horizontal axis). It can be seen that no
single tested parameter settings led to a
small error for all datasets.
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Error in Velocity

In the second comparison, we looked at the absolute error between the velocity of
each manually created track and the velocities estimated with our models. For a
particular track φi of a dataset, we define this error at time t ∈ [0,Ti] as

|∂tφi(t) − v(t, φi(t))|.

Here, Ti > 0 is the length of the track and we have assumed for simplicity that all
trajectories start at t = 0. The velocity v needs to be interpolated, since φi is a spline
representation.

In further consequence we computed, for each dataset and for each parameter
configuration, the mean squared L2 norm of the error in velocity along all its N
tracks. It is given by

E(v) B
1
N

N∑
i=1

1
|Ti |
‖∂tφi − v(·, φi)‖

2
L2([0,Ti ])

. (28)

In our experiments, in none of the tested models we could find a single parameter
combination that worked well for most datasets in terms of the mean error E(v).
This can be seen, for example, in Fig. 9, where we have plotted exemplary for each
dataset and for each parameter setting in (27) the error E(v) for the model αRH1 .

As a consequence, we report in Table 2 (left) the best mean error E(v) that
we obtained for each dataset by the grid search. The main findings are as follows.
First, and most importantly, the continuity equation-based model with convective
regularisation performed on average as well as the optical flow-based model when
using E(v) as evaluation criterion, with the advantage of simultaneously yielding an
estimate of the source.

A possible explanation for the comparably good performance of the optical flow-
based model is that the manually created tracks approximately constitute trajectories
of constant intensities rather than the characteristics associated with (1). However,
in combination with the findings presented in Table 1, which show that the average
residual is much smaller when using a continuity equation-based model with H1

seminorm or convective regularisation, we are confident to state that these models
are capable of estimating a meaningful source that can explain significantly more
details of the observed signal.

In addition, we also evaluated (28) with ‖·‖2
L2 replaced by ‖·‖L∞ , see Table 2

(right). Qualitatively, this leads to slightly different results for some datasets but still
supports our main findings.

Let us illustrate the advantage of the convective regularisation on the basis of one
particular dataset. In Fig. 10 we show the best result obtained for dataset number
eight for three models. For this particular dataset, the model αRCR outperforms all
other models according to Table 2.

Figure 10a (left) shows the best result for the optical flow model and Fig. 10a
(right) the manually created tracks for this kymograph used to evaluate the computed
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Dataset OF αRH 1-L2 αRH 1 αRCR
1 0.33 0.45 0.40 0.38
2 0.16 0.17 0.17 0.17
3 0.30 0.35 0.29 0.29
4 0.39 0.44 0.44 0.43
5 0.26 0.31 0.25 0.25
6 0.41 0.50 0.45 0.41
7 0.28 0.34 0.31 0.31
8 0.29 0.33 0.24 0.22
9 0.21 0.22 0.18 0.18
10 0.18 0.24 0.18 0.18
11 0.17 0.21 0.19 0.19
12 0.25 0.31 0.24 0.23
13 0.20 0.31 0.25 0.25
14 0.55 0.53 0.49 0.49
15 0.24 0.30 0.28 0.28
Average 0.28 0.33 0.29 0.28

Dataset OF αRH 1-L2 αRH 1 αRCR
1 0.20 0.25 0.23 0.23
2 0.16 0.16 0.21 0.21
3 0.22 0.31 0.22 0.22
4 0.16 0.18 0.17 0.17
5 0.20 0.23 0.15 0.15
6 0.24 0.46 0.41 0.39
7 0.19 0.29 0.23 0.22
8 0.20 0.19 0.15 0.14
9 0.10 0.10 0.08 0.09
10 0.18 0.16 0.09 0.09
11 0.17 0.29 0.14 0.14
12 0.13 0.18 0.14 0.14
13 0.19 0.27 0.19 0.19
14 0.39 0.45 0.38 0.38
15 0.28 0.44 0.30 0.30
Maximum 0.39 0.46 0.41 0.39

Table 2: Tables depict the average error E(v) in the L2 norm (left), as in (28), and
the maximum error (right) for every dataset and every model investigated. For each
dataset we show the smallest error that is obtained during the parameter search.

velocities. Notice the inaccurate velocity between the cut ends shortly after the laser
ablation. Moreover, towards the end of the sequence, where the both cut ends meet
again, the characteristics seem inappropriate.

In Fig. 10b we display the result for the model αRH1 . As can be seen in Fig. 10b
(left), the estimated velocity is improved significantly in the cut region and in the
problematic region towards the end of the sequence.

In Fig. 10c (left) we show the result for the model including the convective
regularisation. i.e. for αRCR. The estimated velocity appears visually as good as in
the previous model with the additional advantage that it allows a larger magnitude
shortly after the laser ablation. Observe that in both cases the estimated source is both
spatially and temporally very regular, and apart from beta the same parameters αi

j
were selected. However, in Fig. 10c (right) the effect of the anisotropic regularisation
is clearly visible in the cut region.

Moreover, in Fig. 11 we show the best obtained results for two other datasets. For
comparison, the top row shows the same dataset as in Figs. 5 and 6.

Finally, let us mention that, for the model αRCR, which we solve via Newton’s
method, in total only 53 computations did not converge out of the 3125 parameter
combinations tested on 15 different datasets.

4.5 Comparison based on a Mechanical Model of Tissue Formation

In Sec. 1 we have motivated the use of the non-homogenous continuity equation
(1) mainly through mechanical models that are known to describe tissue formation,
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(a) Streamline representation of the velocity obtained by solving the variational optical flow problem
(23) with spatio-temporal H1 seminorm regularisation with parameters αv

t = 10−1 and αv
x =

5 · 10−2.

(b) Result obtained using αRH 1 with parameters αv
t = 10−1, αv

x = 5 · 10−2, αk
t = 10−1, and

αk
x = ·10−1

(c) Result obtained usingαRCR with parametersαv
t = 10−1,αv

x = 5 ·10−2,αk
t = 10−1,αk

x = ·10−1,
and β = 10−1.

Fig. 10: Best results obtained for dataset number eight in terms of the mean error
(28) in the estimated velocity, see Table 2 (left).

for example, in Drosophila. In order to see whether our variational formulation can
reliably estimate velocity and source that both stem from such a process, we have
implemented the partial differential equation-based model proposed in [26] to create
synthetic data. In this model, the triplet (m, v, σ) solves the system

∂tm + ∂x(mv) = kon − koffm, (29)
∂xσ = ξv, (30)
σ = η∂xv + χm, (31)

for (t, x) ∈ (0,T) × (0,1), subject to the initial and boundary conditions

m(0, x) = m0, in (0,1),
v(0, x) = 0, in (0,1),
v(t, x) = 0, in (0,1) × {0,1}.

(32)

We refer to [45] for a derivation of this model.
Briefly, (29) is an advection–reaction equation modelling mass conservation of

myosin molecules m, subject to rates of adsorption kon > 0 and desorbtion koff > 0,
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Fig. 11: Best results obtained for dataset number three and five in terms of the mean
error (28) in the estimated velocity, see Table 2 (left).

which we assume to be constants. The advection is determined by a mechanical
problem, where mechanical balance (30) involves the stress σ(t, x) in the actin at the
cell-cell junction and a friction force ξv exerted by the surrounding material, which
we assume to be proportional to the velocity. Here, ξ > 0 is the coefficient of viscous
drag. Finally, a constitutive model (31) of the junctional actin is proposed following
e.g. [35, 23, 26] and involves viscous stresses and a pre-stress χm generated by
myosin molecules. Again, η, χ > 0 are constants. In addition, (32) enforces zero flux
at the spatial boundaries, and m0 is an initial concentration. In our experiments we
set it to

m0(x) B 20 −
sin(40x + cos(40x))

5
.

While such a model captures the essential features of actomyosin behaviour
[35, 23, 47], its mean field approach means that away from the perturbation caused
by the laser cut, the concentration m will equilibrate to the trivial solution (m, v, σ) =
(kon/koff,0, χkon/koff), which means that these parameters are uniform in space, and
there will be no feature to track for an image analysis technique. This is also in
contradiction with the experimental observations, where some material points along
the cell-cell junctions exhibit accumulations of myosin that persist over time. One
possible biophysical explanation for these accumulations is a locally larger density
of actin binding sites.

This can be incorporated in the above model by introducing an additional variable
ρ(t, x) and a constant k0

off > 0 that modulates the off rate of myosin

koff(t, x) = k0
offρ(t, x).

In addition, the density ρ obeys the conservation equation

∂t ρ + ∂x(ρv) = 0, (33)
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and satisfies an initial condition. In our experiments we set the initial ρ at t = 0 as

ρ0(x) B 1 +
1 + sin(40x + cos(40x))

10
. (34)

We solve the system (29)–(31) numerically, under additional consideration of (29),
with a standard upwind finite volume discretisation paired with the forward Euler
method. See, for instance, [46, Appx. B] for a brief description. For completeness,
we briefly outline our implementation here.

We discretise the space-time domain [0,T]×[0,1] using Nt and Nx equally spaced
discretisation points in time and in space, respectively. For the discretisation of the
unknowns we make use of a centred and a staggered grid, denoted by Gc and Gs ,
respectively. They are defined as

Gc = {(i∆t, ( j − 1/2)∆x) : 0 ≤ i ≤ Nt, 1 ≤ j ≤ Nx} ,

and as
Gs = {(i∆t, ( j − 1)∆x) : 0 ≤ i ≤ Nt, 1 ≤ j ≤ Nx + 1} ,

where ∆t = T/Nt and ∆x = 1/Nx . The concentrations and the stress are then
discretised on the centred grid and the velocity on the staggered grid, leading to

(m, ρ, v, σ) ∈ R |Gc | × R |Gc | × R |Gs | × R |Gc | .

In further consequence, the finite volume discretisation, see e.g. [36, Chap. 4], of
(29) reads

d
dt

mj +
1
∆x

(
F(m)|j+ 1

2
− F(m)|j− 1

2

)
= kon − k0

offρjmj,

where F(m)|j± 1
2
is the flux at the cell boundaries, that is, at the nodes of the staggered

grid. Assuming that m is constant on each cell and using the upstream value of m,
the flux F(m)(t)|j± 1

2
B F(i)

j± 1
2
at time t = i∆t at the boundaries can be written as

F(i)
j+ 1

2
=

1
2
v
(i)

j+ 1
2

(
m(i)

j+1 + m(i)j
)
−

1
2
|v
(i)

j+ 1
2
|

(
m(i)

j+1 − m(i)j
)
.

Similarly, we obtain F(i)
j− 1

2
and, moreover, (17) results in zero flux at the boundaries.

Then, approximating d/dt with forward finite differences yields

m(i+1)
j = m(i)j −

∆t
∆x

(
F(i)
j+ 1

2
− F(i)

j− 1
2

)
+ ∆t

(
kon − koffρ

(i)
j m(i)j

)
. (35)

Analogously, an update equation for ρ is obtained.
The velocity at the current time step (i) is determined as follows. Using (30) to

obtain v = ∂xσ/ξ and substituting it into (31) yields the second-order elliptic partial
differential equation
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σ −
η

ξ
∂xxσ = χm, in (0,1),

∂xσ = 0, in {0,1},
(36)

for the stress σ. Here, the zero Neumann boundary conditions follow from (32).
In each time step we solve (36), given the concentration m(i) from the previous

time instant, with a standard finite-difference scheme using centred differences on
Gc . Then, with the help of (30) the velocity at nodes j + 1/2 can be approximated
with

v
(i)

j+1/2 ≈
1
ξ∆x

(
σ
(i)
j+1 − σ

(i)
j

)
,

where we also use the fact that v is zero outside the spatial domain.
Finally, the concentration m(t+1)

i is updated according to (35) and ρ to its corre-
sponding equation, and the procedure is repeated for the next time instant. The time
interval is adjusted in each step so that the Courant–Friedrichs–Lewy condition is
satisfied. This typically leads to intermediate results that are not recorded.

In our experiments we set Nt = 300 and Nx = 300, and the parameters controlling
the time stepping were set to T = 0.1 and to ∆t = 2.5 · 10−6. The mechanical
parameters in (30) and (31) were chosen as η = 1, ξ = 0.1, and as χ = 1. The
parameters in (31) related to the source were set to kon = 200 and to k0

off = 10.
In order to evaluate our approach described in Sec. 2.2, we conducted two ex-

periments based on this mechanical model. In the first experiment, we used the
solution method outlined above to generate a concentration m, which was then used
as input to our variational formulation defined in (13). In the second experiment, we
generated a concentration by solving (29) for a set velocity v, effectively removing
the mechanical part of the model.

Unknown Velocities

In this experiment, we solved the mechanical model (29)–(31) together with (33)
numerically as outlined above. In order to simulate a laser ablation, the concentration
m0 is set to zero at nodes within the interval [0.495,0.505]. In this way, a disruption
(or loss) of concentration is simulated. Figure 12 (top) shows the solution (m, v) and
the resulting source k = kon − k0

offρm.
We then solved (13) withαRCR numerically based on the generated concentration.

This is achieved by setting f B m. However, in order to match the boundary
conditions in (32) we also used zero Dirichlet boundary conditions for v in (18) at
x ∈ {0,1} and at t = 0. In Fig. 12 (bottom), we depict an approximate minimiser.
The parameters were set to av

j = 10−4, ak
j = 5 · 10−5, and to β = 10−6.

Observe that both the velocity and the source are estimated approximately and are
within the correct order of magnitude. However, let us add that the estimated source
appears quite regular in comparison to the simulation, even though the regularisation
parameters αk

j were set comparably small.
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Fig. 12: Shown is in the top row the solution (m, v, k) of the extended mechanical
model (29)–(31). For simplicity, ρ and σ are omitted. The bottom images depict an
approximate minimiser w = (v, k)> obtained using (10) with αRCR. The left column
shows the myosin concentration m together with streamlines obtained from the
velocities, the middle column depicts the velocity v, and the right column illustrates
the source k.

Predefined Velocities

In the next experiment, we removed the mechanical part and solved just (29) and (33)
with a predefined velocity field v that could potentially resemble a laser nanoablation
in cell membranes as pictured, for example, in Fig. 2.

We generated a velocity profile as follows. First, we define a characteristic φ :
[0,T] → R that is supposed to follow a cut end via the ordinary differential equation

∂tφ(t) = v0e−
t
τ ,

where the constant v0 > 0 is the initial velocity at time zero. Integrating with respect
to time yields the integral curve

φ(t) = c0 + v0τ(1 − e−
t
τ )

where c0 ≥ 0 is a constant defining the starting point of the curve. We then define a
velocity field

v̄(t, x) B ∂tφ(t)

{
x
φ(t) , if x ≤ φ(t),

e−
|x−φ(t )|

` , if x > φ(t),

so that v̄(t, ·) is linear in the interval [0, φ(t)] and decays exponentially in (φ(t),+∞).
Here, τ, ` > 0 are constants and control the decay. Finally, we shift the origin to 1/2,
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Fig. 13: The top row shows functions (m, k) obtained by solving (29) and (33) given
a set velocity v. The bottom images depict an approximate minimiser w = (v, k)>
obtained using (10) with αRCR. The left column shows the myosin concentration m
together with streamlines obtained from the velocities, the middle column depicts
the velocity v, and the right column illustrates the source k.

reflect v̄, and obtain

v(t, x) B

{
v̄(t, x − 1

2 ) if x − 1
2 ≥ 0,

−v̄(t,−(x − 1
2 )) if x − 1

2 < 0.
(37)

In Fig. 13 (top) we illustrate the solution (m, v, k) for this scenario, where v is set
as in (37). The parameter c0 was set to c0 = 0.05 to match the width of the simulated
laser ablation. The other parameters were set to v0 = 1, τ = 0.075, and to ` = 0.05.
All other settings and parameters were kept as in the previous experiment.

Then, we minimised (13) together with convective regularisation numerically
based on the resulting concentration m. Figure 13 (bottom) shows the estimated
velocity and source pair for the synthetic data. A similar behaviour as in the previous
experiment can be observed.

5 Conclusions

In this article, we have investigated a variational model for joint velocity estima-
tion and source identification in challenging fluorescence microscopy data of live
Drosophila embryos that show the controlled destruction of tissue. We exploited the
fact that a large proportion of tissue deformation occurs along one space dimension
and allows to create kymographs. Our formulation is grounded on one-dimensional
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mechanical models of tissue formation and is based on the nonhomogenous con-
tinuity equation. We have discussed the ill-posedness of this problem and devised
a well-posed variational formulation using convective regularisation of the source.
Moreover, we have shown the connection of convective regularisation of the source
to anisotropic diffusion. In a thorough experimental evaluation, we have demon-
strated that motion estimation can benefit from simultaneously estimating a source
and that convective regularisation may help to estimate velocities more accurately.
Our numerical results show that this method could potentially help to quantify the
reaction term in biological models of tissue formation. The extension of our models
to more than one space dimension is left for future research.
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