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Modern experimental techniques such as Hi–C make it possible to measure the probability that
different chromosomal regions are close in space. Usually, these measurements are characterized by
the scaling of the contact probability as a function of the genomic distance between regions. In this
work, we introduce a multifractal analysis of chromosomal contact maps. Our analysis shows that
Hi–C maps display a non-trivial multifractal spectrum. We introduce a simple analytical model
that describes the structure of chromosomes as a hierarchical set of domains nested in each other
and we solve it exactly. The predicted multifractal spectrum is characterized by a phase transition
between two phases with different fractal dimension, in excellent agreement with experimental data.
These results support the view that there is no privileged level in the hierarchy of conformational
domains. Within the same model, the scaling exponent of the contact probability can also be
calculated. We argue that such procedure leads to a much more precise estimate of the contact
probability exponent than previous approaches. By applying this method to experimental data,
we demonstrate that it can capture subtle conformational differences among chromosomes that are
robust in different realizations of the same experiment.

I. INTRODUCTION

During cellular interphase, mammalian chromosomes
assume a globular structure in the nucleus [1, 2]. Their
conformational properties can be studied in vivo with a
set of techniques called chromosome conformation cap-
ture [3], most notably their version called Hi–C [4]. Re-
sults of Hi–C experiments can be represented as matrices
whose elements are proportional to the contact probabil-
ity in space between pairs of chromosome regions [5].

A way to characterize the information contained in Hi–
C matrices is by studying the decay of the contact proba-
bility pij of two chromosomal regions i and j with respect
to their genomic distance |i− j|. Empirically, such decay
is well described by a scaling law

pij ∼ |i− j|−β . (1)

The fitted contact probability exponent for mouse chro-
mosomes is β ≈ 0.75 [6]. Such low value is incompati-
ble with simple equilibrium homopolymeric models. An
explanation proposed for such low exponent is that the
chromosome fiber is not at thermodynamic equilibrium,
but populates a ’crumpled globule’ with β ≈ 1 [4, 7].
Similarly low scaling exponents can also be obtained if
the interaction in the polymer are mediated by other
molecules [8] or by an active loop-extrusion mechanism
[9]. Low exponents can also emerge in heteropolymers as
consequences of finite–size effects, amplified by the het-
erogeneity of monomer interactions [10].

Another distinct feature of Hi–C matrices is the pres-
ence of blocks along the diagonal with large values of the

∗Electronic address: simone.pigolotti@oist.jp

contact probability. Physically, these blocks correspond-
ing to structured regions of the chromosome with den-
sity larger than the surrounding. Historically, structures
on the multi–megabase scale are called ’compartments’,
sub–megabase structures are called ’topological associat-
ing domains’ (TADs) and those at the kilobase scale are
called ’contact domains’. It was suggested that the phys-
ical interaction that stabilizes compartments is different
than that which stabilizes smaller structures [11].

Despite this distinction, a quantitative analysis of Hi–
C matrices points to a continuous hierarchy of structures
nested into each other. Although the level of the hi-
erarchy corresponding to TADs is biologically more im-
portant than the others because of its relevance for gene
regulation [12], it does not seem to be privileged from the
conformational point of view [13]. It has been recently
suggested that, because of this hierarchical structure, the
properties of Hi–C matrices can be studied by an itera-
tive coarse-graining procedure [14].

In this paper, we perform a multifractal analysis of
Hi–C matrices of mouse embryonic stem cells [5, 15].
The theory of multifractals has been developed to study
heterogeneous systems characterized by scale invariance
such as chaotic systems and turbulent flows [16–18]. The
theory of multifractals describes the scaling of moments
of the probability distribution of a system as a function
of a coarse-graining resolution. This procedure leads to
a family of scaling exponents (the multifractal spectrum)
as a function of the moments. A linear multifractal spec-
trum indicates that the system is homogeneous, i.e. all
of its parts are characterized by the same scaling be-
havior. Our analysis shows that the multifractal spec-
trum of mouse Hi–C data presents two different linear
regimes, one at low moments with the properties of a
two-dimensional object and one at high moments char-
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acterized by a fractal dimension between one and two.
In the theory of multifractals, such scenario is analogous
to a phase transition in statistical physics, with the mo-
ments playing the role of an inverse temperature [19].

To understand this observation, we introduce a hier-
archical domain model of Hi–C matrices, characterized
by a fractal hierarchy of block domains along the diago-
nal. We calculate analytically the multifractal spectrum
of the model. Strikingly, the analytical solution explains
the phase transition and provides an excellent fit to the
experimental multifractal spectrum. This suggests that
the multifractal spectrum of Hi–C matrix directly reflects
the nested organization of domains within the chromo-
somes. Within the model, we also calculate exactly the
scaling exponent β. We find that the determination of
β from the multifractal spectrum more robust than with
conventional methods.

II. SCALING PROPERTIES OF HI–C MAPS

We illustrate the main idea of our work within the
example of a Hi–C map of chromosome 1 in mouse em-
bryonic stem cells [15], Fig. 1A. Darker red pixels in the
figure represent higher contact probabilities. We seek
to statistically characterize the information contained in
this map.

A common way to approach this problem is to study
the decay of the contact probability with the genomic
distance, i.e. the distance from the diagonal [4, 7]. This
approach is sketched in Fig. 1B for the same data. The
decay of contact probability at distance x . 106 bp is
well described by the power law of Eq. (1). The fitted
value of the exponent β is in general smaller than one; in
this example β ≈ 0.78.

By carefully observing Fig. 1A, it is possible to dis-
cern domains of different sizes, sometimes nested into
each other, corresponding to a hierarchy of domains in
the chromosome. In principle, it is unclear whether this
complex structure relates with the power-law decay of
the contact probability in Fig.1B. To shed light on this
issue, we take the original Hi–C map and construct a
hierarchy of coarse-grained versions of it, Fig.1C. Such
coarser maps are obtained by considering a grid of reso-
lution ε and making a two-dimensional histogram of the
Hi–C map. Geometrical structures of linear size smaller
than ε are not resolved in these maps.

The key idea of a multifractal [17, 18] is to analyze
scaling of moments of the coarse-grained Hi–C maps as
a function of the mesh size ε. To this aim, we introduce
a partition function

Z(q, ε) =
∑
ij

pij(ε)
q (2)

where pi(ε) is the density in bin i at resolution ε.
For convenience, we always consider normalized maps,
so that Z(1, ε) =

∑
ij pij(ε) = 1 for all choices of ε. In
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FIG. 1: A) Hi–C map for mouse chromosome 1 [15]. Darker
shades of red correspond to higher values of the contact prob-
ability pij B) Scaling of the contact probability pij as a func-
tion of the distance d = |i − j|. The continuous line is a
best-fit of a power law, Eq. (1), in the range of distances
d ∈ [105, 3 106], yielding β ≈ 0.78. C) Sequential coarse-
graining of the Hi–C map at increasing values of the resolution
ε = 4 105, 1.2 106, 2 106 bp. D) Scaling of Z(q) as a function
of resolution, see Eqs. (2) and (3). Different lines correspond
to different values of q, increasing from top to bottom from
q = 0 to q = 5 at intervals of ∆q = 0.5. E) Corresponding
multifractal spectrum K(q). Here and throughout the paper,
spectra are obtained by a fit in log-log scale of Z(q, ε) versus
ε in the range ε ∈ [105, 3 106] unless specified otherwise.

practice, the smallest possible value of ε is the resolu-
tion of the experimental map, in our case ε = 4 104 bp .
The name ”partition function” for Z(q, ε) originates from
an analogy with equilibrium statistical mechanics, where
the exponent q plays the role of an inverse temperature.
Indeed in an inhomogeneous system, for q → 0 (high
temperature), all states give similar contributions to the
sum in Eq. (2), whereas for large q (low temperature) the
sum is dominated by relatively few terms characterized
by highest values of the measure pij .

For a scale-invariant system, one expects a power-law
scaling of the partition function as a function of the mesh
size ε, at least for ε small enough
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Z(q, ε) ∼ εK(q) ε→ 0. (3)

We observed a beautiful power-law behavior as pre-
dicted by Eq. (3) in chromosomes, Fig.1D. The function
K(q) is the multifractal spectrum and characterizes the
scaling behavior with resolution of the partition function
[18]. To gain intuition about the multifractal spectrum,
it is useful to first consider the simple case of a homo-
geneous, possibly fractal object of physical dimension D.
Such object can be filled a number N ∼ ε−D of bins of
size ε, where ∼ denotes the leading order for small ε.
Since the object is homogeneous, such bins would have
comparable weight. Normalization then implies that in
the filled bins pij ∼ εD. Substituting these estimates into
Eq. (3) we obtain

K(q) = D(q − 1). (4)

This means that homogeneous objects are characterized
by a linear multifractal spectrum, with a slope equal to
the fractal dimension. Conversely, a non-linear multi-
fractal spectrum signals that the geometric set behaves
in a different way depending on the weight attributed to
the measure of each element. The multifractal spectrum
of chromosome 1 is markedly nonlinear, Fig. 1E. In the
following, we shall see that an exactly solvable model can
account for all these observations in terms of a single free
parameter.

III. HIERARCHICAL DOMAIN MODEL

To rationalize the multifractal spectrum of chromo-
somes, we introduce a hierarchical domain model able
to generate synthetic contact matrices similar to the ex-
perimental ones. The model is defined in terms of an
iterative transformation of a measure on the unit square
[0, 1] × [0, 1]. At each iteration n, the unit square is di-
vided into smaller squares of size ε = 2−n. We use ε for
the side of the square since this length plays the same
role as the coarse graining resolution for experimental
contact maps. Inside each of these squares the measure
is uniform, so that the measure can be represented by a
2n × 2n matrix whose entries are the probabilities pij in
each square. The transformation is constructed in such
a way that the measure remains normalized at each iter-
ation. The first iteration reads

(
a b
b a

)
(5)

with a > b > 0. Normalization requires b = 1/2 − a.
This means that, effectively, the model is defined by a
single free parameter a. Because of the normalization and
the requirement that the measure should be concentrated
along the diagonal, such parameter falls in the range

1

4
≤ a ≤ 1

2
. (6)

 n
 =

 7
 n

 =
 3

a = 0.3

 n
 =

 1

a = 0.4

FIG. 2: Fractal model at different iterations n and for two
different values of parameter a.

In each of the following iterations, the blocks along
the diagonal are divided in 4 sub-blocks by multiplying
by the same matrix of Eq. (5), whereas the off-diagonal
blocks are divided in 4 identical sub-blocks. Following
this procedure, the measure at the second iteration reads

 a2 ab b/4 b/4
ab a2 b/4 b/4
b/4 b/4 a2 ab
b/4 b/4 ab a2

 (7)

and the third iteration reads



a3 a2b ab/4 ab/4 b/16 b/16 b/16 b/16
a2b a3 ab/4 ab/4 b/16 b/16 b/16 b/16
ab/4 ab/4 a3 a2b b/16 b/16 b/16 b/16
ab/4 ab/4 a2b a3 b/16 b/16 b/16 b/16
b/16 b/16 b/16 b/16 a3 a2b ab/4 ab/4
b/16 b/16 b/16 b/16 a2b a3 ab/4 ab/4
b/16 b/16 b/16 b/16 ab/4 ab/4 a3 a2b
b/16 b/16 b/16 b/16 ab/4 ab/4 a2b a3


(8)

Physically, the parameter a represents the ”weight” of
TADs compared to the rest of the Hi–C map. Matrices
with larger values of a have a measure more concentrated
along the diagonal, whereas matrices with lower a are
characterized by a more uniform measure. In particular,
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in the limiting case a = 1/4 the matrix is completely
uniform at all iterations, whereas for a = 1/2 the matrix
is characterized by a uniform measure on the diagonal
and all the off-diagonal elements are zero. Examples of
measures after different numbers of iterations are shown
in Fig. 2.

A. Multifractal scaling

We now write the partition function Z(q, n), corre-
sponding to the definition of Eq. (2) with ε = 2−n. For
example, we have

Z(q, 1) = 2aq + 2bq

Z(q, 2) = 4(a2)q + 4(ab)q + 8(b/4)q

Z(q, 3) = 8(a3)q + 8(a2b)q + 16(ab/4)q + 32(b/16)q

Z(q, 4) = 16(a4)q + 16(a3b)q + 32(a2b/4)q +

+ 64(ab/16) + 128(b/64)q. (9)

The general expression of the partition function is

Z(q, n) =
n∑
k=0

2[n+max(n−k−1,0)]
[

akb(1−δkn)

4max(n−k−1,0)

]q
(10)

where δkn is the Kronecker delta. We express the par-
tition function in the form

Z(q, n) =
n∑
k=0

exp[ξ(k)] (11)

where we defined the exponent

ξ(k) = [n+ max(n− k − 1, 0)] ln 2 + kq ln a+

+ (1− δkn)q ln b−max(n− k − 1, 0)q ln 4.(12)

We now seek for the maximum of the exponent. As-
suming n − k − 1 ≥ 0 and deriving the exponent with
respect to k we obtain

dξ

dk
= − ln 2 + q ln 4a (13)

which is positive for q > qc = (ln 2)/(ln 4a). This means
that, for q ≥ qc, the leading term is either ξ(n) or ξ(n−1).
Since ξ(n) − ξ(n − 1) = q ln(a/b), the maximum of the
exponent is attained at k = n.

Fr large n, the partition function of Eq. (11) is domi-
nated by the term corresponding to the maximum of the
exponent. We therefore substitute, for large n, Z(q, n) ∼
exp[ξ(n)] ∼ εK(q) with the length scale ε = 2−n. We
directly obtain

2nanq ∼ 2−nK(q) (14)

from which

K(q) = −q ln a

ln 2
− 1. (15)

zoom

FIG. 3: Multifractal spectra of the hierarchical domain model
and experimental Hi–C are both quantitatively predicted by
our theory. A) Multifractal spectra of the model, numerically
calculated for n = 10 iterations of the model, for different
values of a shown in the caption. The lines are theoretical
predictions of Eqs. (15) and (17). Small discrepancies for low
values of a and high moments are due to finite-size effects.
B) Multifractal spectra of the first three chromosomes. The
spectra of the three sets of experimental data are quantita-
tively very similar and in excellent agreement with the theory
(continuous line) with a value of a ≈ 0.425 The agreement
can be better appreciated in a zoom of the data (inset).

For a = 1/2 the distribution is linear and we have
D = 1. For a = 1/4 the distribution is uniform on the
square, so that D = 2. Between these two limiting cases,
Eq. (15) predicts that the distribution is monofractal
with a dimension D = − ln a/ ln 2 between 1 and 2.

Let us now figure out the scaling in the “high temper-
ature phase” where − ln 2 + q ln 4a < 0. In this case, the
term dominating the scaling is k = 0, so that

22n−1bq4(1−n)q ∼ 2−nK(q) (16)
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which implies

K(q) = 2(q − 1). (17)

This means that, since the scaling is determined by
the terms far from the diagonal in the high temperature
phase, the spectrum is that of a regular two-dimensional
set.

Summarizing, the saddle-point calculation predicts
a multifractal spectrum characterized by two linear
regimes: one with slope − log(a)/ log(2) for q < qc =
(ln 2)/(ln 4a), Eq. (15), and one with slope 2 for q < qc,
Eq. (17). Such predictions are very well confirmed by
numerical simulations, Fig. 3A, with very small discrep-
ancies for high values of q and low values of a arising
from finite size effects. These results confirm the validity
of our saddle point approximation.

Strikingly, our theory predicts extremely well also the
multifractal spectra of real chromosomes, as illustrated
in Fig. 3B for the first three chromosomes, with a value
of a ≈ 0.425 and very little variability among the three
chromosomes. We will examine in more details the dif-
ferences among chromosomes in the next section.

To verify whether the multifractal spectrum in Fig.
3 is truly a signature of a hierarchical mechanism and
not a more generic statistical feature, we numerically
computed the spectra of two null models: one charac-
terized by a power-law decay plus blocks at a single scale
pij = |i− j|−0.8 + bij (where bij is 1 if i and j belongs to
the same block of linear size 64 and zero otherwise), and
another characterized by the same power law plus white
noise with zero mean and standard deviation 0.1. In the
latter case, the noise is truncated to ensure that prob-
abilities are always non-negative. The solution of Eqs.
(15) and (17) provides a much better fit to the hierar-
chical model (sum of residuals ≈ 0.04) than either block
model (sum of residuals ≈ 0.8) or the power law plus
noise model (sum of residuals ≈ 0.3), data not shown.
The sums of residuals for the fits to the first three chro-
mosomes are in order 0.049, 0.051 and 0.043. Taken to-
gether, these observations support the idea that the spe-
cific multifractal spectrum of the hierarchical model is
compatible with that observed in chromosomes and sig-
nificantly different than that of other simple models that
are lacking a hierarchy of domains.

B. Scaling of the contact probability

We now study the decay of the contact probability with
the genomic distance d = |i − j|. In our framework, the
contact probability P (d;n) at the n-th iteration can be
expressed as the total probability of blocks at a distance
from the diagonal equal to d

P (d;n) =
∑
ij

pij(n)δ|i−j|,d. (18)

10
-6

10
-5

10
5

10
6

P
(d

)

distance d

a = 0.3
a = 0.35

a = 0.4
a = 0.45

FIG. 4: Decay of contact probability P (d;n) as a function of
the genomic distance d in the hierarchical model for n = 10
and different values of the parameter a, shown in the figure
legend. Continuous lines are the exponent predictions of Eq.
(25).

To find an explicit form for P (d;n) we use our ex-
pression of the partition function, Eq. (11), for q = 1.
The only difference between P (d;n) and Z(1, n) is the
Kronecker delta in (18), that selects a subset of terms
contributing to the partition function. In particular, we
note from the structure of the matrix that each term with
a given power of a first increases linearly with d up to a
maximum, then decreases linearly to zero. Following this
observation, we introduce the triangular function

g(x) =

{
x if 0 ≤ x ≤ 1

2
1− x if 1

2 ≤ x ≤ 1
. (19)

Using this definition permits to write P (d;n) in the
form

P (d;n) =
n−1∑
k=0

2ng(d 2k−n)
akb(1−δkn)

4max(n−k−1,0) . (20)

We now approximate the sum with an integral

P (d;n) ≈
∫ n− ln 2d

ln 2

−∞
dk d exp [k ln 2 + k ln a+ (21)

+ (1− δkn) ln b−max(n− k − 1, 0) ln 4]

+

∫ n− ln d
ln 2

n− ln 2d
ln 2

dk exp
[
n ln 2 + ln

(
1− d e(k−n) ln 2

)
+ k ln a+ (1− δkn) ln b−max(n− k − 1, 0) ln 4]

In the first integral, the derivative of the exponent with
respect to k is equal to ln(8a) and is therefore always
positive due to Eq. (6). The derivative of the exponent
in the second integral is equal to

ln(4a)− d2(k−n) ln(2)

1− d2k−n
. (22)
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which vanishes at

d 2(k
∗−n) =

ln(4a)

ln(4a) + ln 2
. (23)

One has 1/2 < d 2(k
∗−n) < 1, so that the maximum

of the exponent falls within the integration domain. Ap-
proximating the integral with the maximum of the inte-
grand yields

P (d;n) ∼ d−
ln(4a)
ln(2) (24)

for large n. This implies that the contact probability
scales with the exponent

β =
ln(4a)

ln(2)
. (25)

In the allowed range of a given by Eq. (6), the contact
probability exponent predicted by Eq. (25) falls in the
range β ∈ [0, 1]. The prediction of Eq. (25) is supported
by numerical simulations, see Fig. 4. This confirms the
validity of our saddle-point approximation.

IV. ESTIMATES OF CONTACT PROBABILITY
EXPONENT

An important practical consequence of our theory is
that it provides an alternative method to estimate the
contact probability exponent β via Eq. (25). This re-
quires estimating the scaling exponents of the partition
function. In practice, the partition function exhibits a
much cleaner scaling than the contact probability, as seen
by comparing Fig. 1D with Fig. 1B. In this Section we
scrutinize in more details the robustness of fits of the ex-
ponent β with the two methods. We also compare the
experimental results in [15] with two different realization
of a more recent experiment [5].

For both methods, the value of β is affected by the
choice of the power-law fitting range. We fixed a lower
cutoff for the power law fits equal to 105 bp, slightly
higher than the minimum resolution of the data, and
plotted the prediction of the exponent β as a function of
the upper cutoff, Fig. 5A. We found that exponent dis-
plays a stronger dependence on the upper cutoff for the
direct power law fit than for the multifractal method.
Moreover, comparing different experiments [5] provides
quite similar values of the exponents β when the mul-
tifractal method is used, whereas a large variability is
observed with the power law fit.

Such more precise inference of the value of β can be ap-
preciated when comparing results of different measures of
Hi–C exponents. The multifractal method predicts much
less variability of the exponent β and much more consis-
tent values across different experiments, with an average
β ≈ 0.77, Fig. 5B. Comparing different replicates of the
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FIG. 5: A) (continuous lines) Power law fit of the first chro-
mosome as a function of the upper cutoff of the power law
fit, shown in the x axis. The three different colors corre-
spond to different experiments (brown: data from [15]; green
and orange: two different experimental realizations from [5]).
Dashed lines denote the same exponents obtained with the
multifractal method. In this case, the exponent β is obtained
from the parameter a via Eq. (25) and the cutoff refers to the
range of ε for the power-law fit of Z(q, ε). The lower cutoff of
all fits is equal to 105. The dashed green curve is barely vis-
ible since the difference with the yellow curve is negligible at
this scale. (B) Comparison of the estimated values of the ex-
ponent β in mouse chromosomes from the experiment in [15]
with those from the experiment in [5]. Each point is a differ-
ent chromosome. (C) Comparison of the estimated values of
the exponent β in mouse chromosomes from two independent
replicates of the same experiments [5]. In panels B and C, the
upper cutoff equal to 3× 106 bp for the multifractal method
and 5× 105 for the power-law fit.

same experiment, the exponents predicted by the mul-
tifractal method present a higher correlation (Pearson
r ≈ 0.998) compared with those obtained by a direct
power law fit (r ≈ 0.994), Fig. 5C.

V. CONCLUSIONS

In this paper, we introduced a multifractal analysis
of Hi–C data as a powerful statistical tool to charac-
terize the scaling properties of chromosomes. We have
shown that the multifractal spectrum computed for chro-
mosomes of mouse embryonic stem cells has a broken–line
shape. To understand this observation we introduced a
hierarchical domain model, whose analytical solution is
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in striking quantitative with the experimental spectrum
of in terms of a single free parameter.

Our solution directly implicates a power–law scaling of
the contact probability with the genomic distance with
exponents β lower than one, also in agreement with ex-
perimental observations. A comparison with other null
models characterized by similar contact probability ex-
ponents but without a hierarchy of domains shows that
the multifractal method is sensitive enough to discard
them. This implies that the predicted form of the mul-
tifractal spectrum provides a more stringent prediction
than the contact probability exponent alone. The analy-
sis proposed here constitutes an excellent benchmark to
select among different polymer models that provide sim-
ilar values of β [7–10].

Our results provide a strong indication that scaling
properties of chromosomes are a direct consequence of the
hierarchical structure of chromosome domains [13, 22].
Recent work has suggested that such domain structure is
generated by a ”hierarchical folding” mechanism, medi-
ated by different proteins such as cohesin and CCCTC-
binding factors [23]. The precise mechanism underly-

ing folding of these domains has been subject of debate
[24]. It will be interesting to test whether the activity of
these factors can produce self-similar structures compat-
ible with our observations.

The shape of the multifractal spectrum is controlled by
a single parameter, that also controls the contact prob-
ability exponent β via Eq. (25). We demonstrated that
the determination of β from the fit of the multifractal
spectrum is a much more robust way of characterizing
the Hi–C map than the direct fit of β, highlighting struc-
tural difference among chromosomes that we consistently
observed in different realizations of the same experiment.
The analysis of the multifractal spectrum is simple and
robust enough to become a routinely tool to analyze con-
tact maps, both from polymer models and experiments.
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