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Abstract—Estimating effective population size, given a coalescent
genealogy reconstructed from sequences that are longitudinally sampled
from that population, is an important problem in epidemiology and
macroevolution. Here the population represents infected individuals
across a viral epidemic or historical abundances of a species of interest.
The coalescent and sample times delineate the branches and tips of the
reconstructed genealogy. Popular skyline estimators use these coalescent
times to infer population size, but presume that sample times are
predetermined and uninformative. We question this assumption, and
formulate a new skyline method, termed the epoch sampling skyline plot
(ESP), to rigorously incorporate sample time information. Our method
uses an epochal sampling model in which the longitudinal sampling rate
has a piecewise-constant, proportional dependence on population size,
with constants of proportionality known as sampling intensities. We prove
that the ESP can at least double the best precision achievable by standard
skylines, while still fitting practical and flexible sampling scenarios.
These include widely used density and frequency dependent protocols,
which feature fixed sampling intensities, or constant sample counts.
We show that sampling intensities, and population sizes can be jointly
estimated, and that our estimates are markedly improved in periods
where standard skyline methods are biased by long coalescent branches.
We benchmark the ESP against existing approaches using simulated
and empirical datasets, and provide efficient Bayesian (BEAST2) and
maximum-likelihood implementations. Ignoring the sampling process
disregards a rich source of information that could become increasingly
important as data collection improves and intensifies.
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I. INTRODUCTION

The coalescent process describes how fluctuations in effective pop-
ulation size influence the genealogical patterns of sequences sampled
from that population (Kingman, 1982). In molecular epidemiology
and macroevolution, where the coalescent process is widely used
as a null model for diversity, the population usually represents the
infected caseload in a viral epidemic or the abundance of an animal
species. Sequences are sampled longitudinally (in time) across that
epidemic (Pybus and Rambaut, 2009) or obtained from ancient DNA
(e.g. fossils) that span the history of that species (Shapiro and
Hofreiter, 2014). Estimating the effective population size from a
coalescent genealogy that is reconstructed from those temporally
sampled sequences (also known as a heterochronous tree), is an
important and common problem.

The skyline family of inference methods (Strimmer and Pybus,
2001; Drummond et al., 2005; Minin et al., 2008; Gill et al., 2012),
which are extensions of the classic skyline plot (Pybus et al., 2000),
present popular, and prevailing solutions to this problem. These
methods estimate a piecewise-constant population size profile using
only the coalescent event times, which form the branching points of
the reconstructed tree, and are inversely proportional to population
size (Kingman, 1982). Sequence sampling times, which compose
the tips of this tree, are thought to be preset by extrinsic factors
such as historical surveillance programmes or operational capacities
(Ho and Shapiro, 2011). As a result, skyline methods presume that

sampling times are uninformative, and independent of population size
(Drummond et al., 2005; Parag and Pybus, 2019).

Recent work has started to challenge this assumption, and assess
its consequences. In Volz and Frost (2014), it was shown, for a
coalescent process with exponentially growing population size, that
including sampling time information could notably improve the
precision of parameter estimates, provided that the sampling time
process was correctly specified. This work recommended augmenting
the coalescent process with a sampling time model, and defined
a proportional sampling process, in which the sample rate at any
time was linearly dependent on the population size at that time. This
augmented model was generalised by Karcher et al. (2016) to include
non-linear dependence, which they termed preferential sampling,
and to allow for piecewise-constant population sizes. This study
cautioned that misleading inferences could be obtained if preferential
sampling, when present, is ignored, and is currently being extended
to incorporate covariate models (Karcher et al., 2019).

While these works make noteworthy progress in evaluating and
using sampling time information, their conclusions are based en-
tirely on simulations and empirical observations. Consequently, they
cannot provide provable or precisely quantifiable insights. Further,
they do not explicitly consider the types of protocols likely to be
practically implemented by collection centres, monitoring stations or
surveillance programmes. Instead, they treat the sampling process as
an additional, parametric model that is appended onto the coalescent
process (Karcher et al., 2016). Here we attempt to resolve these issues
by developing a new integrated sampling aware coalescent skyline
model, which we term the epoch sampling skyline plot (ESP). The
ESP presents a methodologically different approach. It reformulates
the classic skyline plot to directly include a flexible epochal sampling
model that can simulate practical scenarios.

This assumes that sampling occurs in epochs, which could approx-
imate weekly or monthly surveillance cycles, epidemic half-seasons
or specific fossil collection periods, among others. The boundaries of
each epoch are delineated by the actual sample times of the recon-
structed tree. This guarantees model identifiability and guards against
unsupported inferences. For example, we cannot expect to estimate
weekly sample rate changes from a tree with monthly tips. Within an
epoch, sample times depend proportionally on population size, with
a constant of proportionality that we call the sampling intensity. This
intensity measures the average sampling effort over the epoch, with
larger values corresponding to faster rates of sample accumulation.
We allow the sampling intensity to change discontinuously between
epochs. This results in a piecewise-constant sampling process that
can flexibly fit many sampling protocols.

If we define a single persistent epoch, then we model density
dependent sampling, in which the rate of collecting samples directly
correlates with the effective population size. This is a common pro-
tocol, which posits that the availability of sequences depends on the
size of the population to be sampled (Karcher et al., 2016). Density
dependent protocols result in a fixed proportion of the population
being sequenced per time period. If instead, we define many epochs
uniformly across time, and adjust the sampling intensity within each
epoch to produce an approximately equal number of samples per
epoch, then we obtain a frequency dependent sampling strategy. This
strategy models practical, extrinsic limitations to sampling effort,
such as surveillance capacity (Ho and Shapiro, 2011), and results
in a fixed number of sequences being sampled per time period,
irrespective of population size. This protocol gives a snapshot of the
genetic diversity within the population during each epoch, and is used,
for example, to monitor various strains of an infectious disease.

We develop the epoch sampling skyline plot in New Approaches,
and then demonstrate how to jointly estimate population size and
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the epochal sampling intensities in Results, within both maximum
likelihood and Bayesian frameworks. There we also benchmark the
ESP against existing skyline techniques using both simulated and em-
pirical epidemic data (seasonal influenza in New York state and steppe
bison in Beringia). In particular, we model and infer under practical
density, and frequency dependent sampling protocols, to illustrate the
efficacy of the ESP. We show that the counteracting proportional and
inverse dependencies in our skyline especially improves estimates
in periods where standard skylines are biased by long coalescent
branches. We quantify and guarantee these improvements by proving
that the information available for estimating population size (and
hence the best precision of these estimates) can more than double by
including the epochal model. In Materials and Methods we examine
further theoretical properties of our skyline and detail its maximum-
likelihood and Bayesian implementations. The former is available on
GitHub, while the latter is provided as an integrated package in the
popular software BEAST2 (Bouckaert et al., 2019).

II. NEW APPROACHES

Consider a coalescent tree reconstructed from sequences sampled
longitudinally along an epidemic or from fossils spanning a period
of interest. Let the effective population size underlying this process
at time t, into the past, be N(t). Standard coalescent skyline
approaches to estimating N(t) assume that sequence sample times
are uninformative (Drummond et al., 2005), and so draw all of their
inferential power from the reconstructed coalescent time series. These
methods approximate N(t) with a p segment piecewise-constant
function:

∑p
j=1Nj 1[tj−1, tj)(t), with tj − tj−1 as the duration of

the j th segment and 1A(x) as an indicator variable, which is 1 if
x ∈ A and 0 otherwise, for some set A. Here t0 = 0 is the present.
Fig. 1 illustrates a coalescent sub-tree spanning the j th segment, with
population size Nj . Two epochs with intensities β1 and β2, occur
within this segment. Observe that coalescent event times (grey) form
the branching points of this tree, while sampling events (cyan) control
when new tips are introduced.

We use ∆i to measure the duration of the ith inter-event period
or interval within this segment, and define the lineage count in this
interval as li. If there are k intervals in the j th segment then tj −
tj−1 =

∑k
i=1 ∆i. We use the sets S and C to indicate whether

an interval ends with a sampling or coalescent event respectively.
Then s =

∑k
i=1 1S(i) and c =

∑k
i=1 1C(i) count the number of

sampling and coalescent events in this segment, and k = s + c.
Note that s, c and k are not fixed, and can have different values
for all p segments. Events which occur at a change-point belong
to the interval that precedes that change-point (hence the sampling
events 1S(2) and 1S(3) belong to the first epoch, and the starting two
lineages are included in the likelihood of the (j − 1)th segment).

Coalescent events falling within this segment follow a Poisson
process with rate αiN

−1
j , with αi =

(
li
2

)
, and Nj , as the un-

known population size parameter (Kingman, 1982). As a result,
αi∆i ∼ exp(N−1

j ) describes the key informative relationship in
coalescent processes. Standard skyline methods capitalise on this
dependence, but assume that intervals that end in sampling events are
uninformative. These are the {∆i : i ∈ S}. Under this assumption
the maximum Fisher information, about Nj , that can be extracted by
these methods is cN−2

j (Parag and Pybus, 2017).
Our approach instead posits that the sample times within the ith

interval of the j th segment derive from a Poisson process of rate
βiNj . Here βi is the sampling intensity governing the sampling effort
made across ∆i. This encodes the extra informative relationship:
βi∆i ∼ exp(Nj), and is the most complex sampling model that can
be included within the skyline framework. We remove unnecessary

complexity from this model by defining epochs as consecutive sets
of intervals (which may span different segments) over which the
sampling intensity is constant. Thus, within an epoch all βi take the
same value (in Fig. 1 βi for i ≤ 3 are all set to β1). Epoch change
times are assumed to coincide with sample times, and the sampling
intensity is set to 0 beyond the last sample, where the ESP reduces to
a standard skyline model. Our description ensures that each skyline
segment, and epoch has at least one coalescent, and sampling event,
respectively. This guarantees that the ESP is maximally flexible, yet
statistically identifiable (Parag and Pybus, 2019).

Our epochal model, unlike previous attempts at incorporating
sample times (Volz and Frost, 2014; Karcher et al., 2016), accounts
for the discreteness of practical sampling protocols (sampling often
occurs in bursts with discontinuous sampling effort changes between
collection periods), and does not assume any long-term parametric
relationship between sampling and the infected population (epochal
sampling intensities are independent of one another). Using this
framework we construct the ESP log-likelihood for the j th segment,
Lj = log P(T |Nj), as in Eq. (1), with T as the reconstructed tree.

Lj =

k∑
i=1

1S(i) log (βiNj) + 1C(i) log
(
αiN

−1
j

)
−∆i

(
βiNj + αiN

−1
j

) (1)

The complete log-likelihood is then L =
∑p
j=1 Lj . The waiting

time until the end of any interval contributes −∆i

(
βiNj + αiN

−1
j

)
,

while sampling and coalescent events introduce the 1S(i) log(βiNj)
and 1C(i) log(αiN

−1
j ) terms, respectively. Eq. (1) is related to the

augmented log-likelihood from Karcher et al. (2016), but differs in
both the population size and sampling models used. If we define p′

epochs over T , then there are p + p′ unknown parameters in our
log-likelihood (the set of Nj and distinct, non-zero βi).

The epoch sampling skyline is obtained from Eq. (1) by com-
puting the grouped maximum likelihood estimate (MLE), N̂j . It
involves solving a pair of quadratic equations that depend on the
relative number of sampling and coalescent events in that segment,
s − c (see Material and Methods). Defining a =

∑k
i=1 αi∆i and

b =
∑k
i=1 βi∆i, we obtain Eq. (2), from the roots of these quadratics.

N̂j =



s− c
2b

+

√(s− c
2b

)2
+
a

b
if s ≥ c

(
c− s
2a

+

√(c− s
2a

)2
+
b

a

)−1

if s ≤ c

(2)

Eq. (2) forms our main result. In practice, since the MLE of each
βi, β̂i, is jointly estimated, we usually replace b with

∑k
i=1 β̂i∆i.

If s = c, both parts of Eq. (2) converge to the simple square root
estimator, N̂j =

√
ab−1. Grouping over k adjacent intervals in our

skyline leads to improved population size estimates that are quick to
compute and easy to generalise. Note that if s = 0, and c = 1 then
Eq. (2) recovers the classic skyline plot (Pybus et al., 2000).

The ESP has several important and desirable properties. Its coun-
teracting proportional and inverse dependencies mean that it has
more informative intervals in regions where long coalescent branches
would generally hinder standard skyline inference. This spreads the
information more uniformly across the time period of investiga-
tion. Moreover, it provably improves overall estimate precision (see
Results). The Fisher information the ESP extracts from the same
reconstructed tree is now at least (s + c)N−2

j , for the j th segment.
Thus, whenever the number of sampling and coalescent events are
roughly equal, our best attainable asymptotic precision (which is the
inverse of the variance), at minimum, doubles.
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Fig. 1: Schematic of epoch sampling skyline. A temporally sampled (heterochronous) tree consists of sampled tips and coalescing branches.
A portion of this tree over the jth segment where effective population size is assumed to be fixed at Nj is shown (top). Our epoch model
assumes a piecewise constant sample intensity function comprising two epochs over this tree segment (middle). The sampling times (cyan),
inform on these epoch intensities (and determine the epoch boundaries) while the coalescent event times (grey) allow inference of Nj (bottom)
(and control the segment changes). See New Approaches for definitions of the mathematical notation used.

III. RESULTS

A. Simulated Performance

We start by comparing the solution of Eq. (2) to the classic skyline
plot from Pybus et al. (2000), which ignores sampling dependencies,
and is the basis for all popular standard skyline methods. We
keep the number of piecewise-constant segments inferred (model
dimensionality) roughly the same by fixing k = 2 in the ESP. Here
we assume a single, known sampling intensity for clarity, and only
examine the period until the last observed sample time (into the past).
Beyond this point, the sampling model is inactive. We demonstrate
the relative ability of both methods to recover different population
size dynamics in Fig. 2a–Fig. 2c. In these plots the top panel is the
classic skyline, the middle panel is the ESP at k = 2 (for the same,
fixed sampled tree), and the bottom panel gives the distribution of
sampling (cyan) and coalescent (grey) events.

The ESP significantly improves inference. It provides much better
estimation in periods of large population size (Fig. 2a), and can
handle sharp changes (Fig. 2c). Standard skyline approaches are
known to fail in these cases because coalescent branches are too long,
making their estimates unreliable or inflexible. Further, coalescent
events usually cluster around bottlenecks (Fig. 2b), causing standard
methods to lose fidelity across cyclic epidemics. Epochal sampling
events, however, fall in periods of sparse coalescence, thus allowing
the ESP to circumvent these classically problematic conditions.

Due to the noisy nature of the classic skyline plot, the generalised
skyline was introduced in Strimmer and Pybus (2001). It grouped
intervals to achieve a bias-variance trade-off that led to smoother

estimates. This grouping is at the core of some popular skyline
approaches (Drummond et al., 2005). We can achieve a similar effect
in our skyline by increasing the grouping parameter, k (see Fig. 2d).
This extends the generalised skyline to include knowledge of the
individual events within a group, and to allow for sampling.

Having clarified the attributes of our skyline we now examine more
practical examples, where the sampling intensities are unknown. We
assume that the times corresponding to all sampling events are avail-
able. In this work we consider two realistic, and widely used sampling
protocols, which we respectively refer to as density dependent, and
frequency dependent. Density dependent sampling models a direct
correlation between the time-varying effective population size and
the sampling rate. It features a single sampling intensity over an
epoch that persists throughout the complete sampling period, and is
the simplest model described within our epochal framework.

In practice, health bodies or treatment centres may provide a
relatively fixed number of samples over some recurrent, longitudinal
interval of an epidemic (e.g. seasonal case counts). This number could
be constrained by extrinsic factors such as surveillance or sequencing
capacity. Similar constraints may control the availability of ancient
DNA sequences in macroevolutionary studies, though these are likely
to be more random in time. In these cases, due to underlying changes
in the demographic function, the sampling intensity is also effectively
time-varying. The frequency dependent sampling protocol models this
scenario, which explores the full complexity of our epochal model.
Given its extra complexity, we only examine frequency dependent
sampling under our fixed tree maximum-likelihood approach as a
proof of concept. Later, we will provide detailed analyses of both
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Fig. 2: ESP performance. Panels (a)-(c) compare the classic skyline (top) to the ESP at k = 2 (middle) for exponential growth, cyclical
logistic growth and steep periodic dynamics. Here the skylines are in cyan and the true demographic function (to be inferred) in dashed black.
The classic skyline fails when the population size is large (a), or when there are notable fluctuations between large and small populations
(b-c). This results from the uneven clustering of coalescent events (grey in bottom). The sampling events (cyan in bottom sub-panels) are
inversely distributed to the coalescent ones and so the ESP has more evenly spread information throughout these demographic functions.
Consequently it achieves better tracking, for the same number of population size segments. Panel (d) shows how increasing the grouping,
k, can improve the smoothing of the ESP for a bottleneck demographic function. All trees were simulated using the phylodyn R package
(Karcher et al., 2017) with approximately 300 coalescent and sample events.

schemes (with comparisons to popular skyline approaches) using our
Bayesian package in BEAST2, which samples across group sizes and
accounts for genealogical uncertainty (see Materials and Methods).

We define our sampling protocol as having p′ epochs. Hence there
are p′ unknown sets of βi values to infer (within each epoch all βi
take the same value). We use β to represent this vector of unknowns,
and let its MLE be β̂. Note that epoch and population size change-
points do not need to be synchronised, and we are jointly estimating a
total of p+p′ parameters. Fig. 3a–Fig. 3d present our joint estimates
of N and β at k = 20 for several test epidemic scenarios with
frequency dependent sampling at p′ = 100 (Fig. 3a and Fig. 3c)
or p′ = 50 (Fig. 3b and Fig. 3d). Since sampling is uniform
across epochs, β takes a complimentary form to the population size
fluctuations. In the N̂ plots (top panels) the dark grey represents the
ESP with known β and the cyan is the jointly estimated ESP under
the MLE β̂ (see Eq. (2)). In the β̂ plots (bottom panels) the true β is
in grey while the estimated 95% Fisher information based confidence

intervals (±2I(β̂)−
1
2 , see Materials and Methods) are in cyan. We

faithfully reproduce changes in both the population size and sampling
intensity, demonstrating the power of the ESP.

B. Bayesian Simulation Study

Having explored the performance of our maximum likelihood
ESP, we now investigate and validate our Bayesian implementation,
which we call the BESP. The BESP incorporates the ESP log-
likelihood within the powerful computational framework of BEAST2
(see Materials and Methods). Here we benchmark the ability of the
BESP to recover accurate and unbiased parameter estimates. We
simulated 100 replicate coalescent genealogies (using the phylodyn
R package (Karcher et al., 2017)) under (1) constant-size, (2) bottle-
neck, (3) boom-bust, (4) cyclical boom-bust and (5) logistic growth
and decline population size trajectories (N(t)). In all simulations
we used frequency dependent sampling with roughly equal numbers
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(a) (b)

(c) (d)

Fig. 3: Joint population size and sampling intensity inference. Panels (a)-(d) examine ESP population size (top) and sampling intensity (bottom)
estimates under frequency dependent sampling for cyclical logistic, boom-bust, steep periodic and bottleneck dynamics. Simulations (a) and
(c) use 2000 samples over 4 cycles with p’ = 100 and k = 20, while (b) and (d) use 1000 samples with p’ = 50. In the top sub-panels
the joint ESP population size estimates (cyan) are compared to the true demographic function (dashed) and the ESP with known sampling
intensity. The bottom sub-panels show the ESP intensity estimates (cyan) with their 95% Fisher information confidence intervals against the
true sampling intensity (grey).

of samples split over 24 equidistant sampling epochs. We used fixed
trees to avoid confounding noise from genealogical uncertainty due to
substitution model parameter and tree topology estimates, and jointly
inferred N and β from each replicate fixed tree via the BESP.

In all inferences we grouped coalescent and sampling events into
p = 100 equally informed population size segments (i.e. k is equal
for all segments) to estimate N and used p′ = 24 roughly equidistant
sampling epochs for β. We assessed the BESP by computing the
relative bias, relative highest posterior density (HPD) interval width
and coverage, averaged across its inferred N or β between the
most recent and oldest samples. Together, these statistics allow us to
quantify the bias and precision of the BESP estimator. Further details
on the simulations, inferences and summary statistics can be found
in the supplementary material. The results of our simulation study
are given in Fig. 4. Example replicate trees and inferred trajectories
are provided in Fig S1-S5.

Both N and β are slightly overestimated, with a somewhat larger
bias in the β estimates. Nonetheless, the boxplots for the mean
relative bias intersect 0 for all 5 simulation scenarios, verifying good
tracking accuracy. The mean relative HPD interval widths of the
population size estimates are below 2 (the width under a Gaussian

approximation with standard deviation equal to the absolute value
of the parameter is approximately 3.92) for all replicate cases, with
only a few outliers under the logistic and boom-bust scenario. The
boom-bust case features β estimates with mean HPD interval widths
greater than 2, but only for a few replicates. This is a consequence of
the BESP not having enough power for precise estimates of β during
the most recent sampling epoch under boom-bust dynamics (see Fig.
S3). Relative HPD intervals smaller than 2 indicate that estimates are
at least twice as precise as a standard Gaussian approximation. Lastly,
the mean coverage is always close to 1, indicating that the true N
and β are both included within the HPD intervals for the majority of
the sampling period. In combination, these results validate the low
bias and high precision of the BESP approach.

C. Case Study 1: Seasonal Influenza

Seasonal influenza causes yearly epidemics during winter in tem-
perate regions. Strong selective pressures on receptor and antibody
binding sites of the surface glycoprotein haemagglutinin (HA) drives
antigenic drift, which results in the continuous replacement of circu-
lating strains with new variants (Ferguson et al., 2003). This constant
emergence of novel genetic strains able to re-infect hosts immune
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Fig. 4: Standard boxplots and stripcharts for the mean relative bias, mean relative HPD interval and mean coverage for the population size
(N ) and sampling intensity (β) estimates inferred from 100 replicate simulations across 5 scenarios. Statistics were averaged across parameter
estimates from the most recent to the oldest samples.

to earlier strains causes a significant public health burden (Heester-
beek et al., 2015). Among circulating subtypes, influenza A/H3N2
dominates most years, causes the most synchronous outbreaks and is
associated with the highest morbidity and mortality (Viboud et al.,
2006). Rambaut et al. (2008) used 1,302 complete A/H3N2 and
A/H1N1 viral genomes sampled from temperate regions to show that
a source-sink model provides a plausible explanation for seasonal
influenza dynamics.

In this model strains re-emerge annually from a tropical source
population and then, through global aviation networks, seed winter
epidemics in temperate sink regions. In virus genomes sampled from
temperate regions the interplay between strong selection on surface
antigens and global travel networks manifests as an exponential
increase in genetic diversity at the start of each flu season, followed
by a bottleneck at the end of that season. Rambaut et al. (2008)
found that the Bayesian skyline plot (BSP), which ignores sam-
pling information, can recover this pattern from A/H3N2 genomic
sequences. Subsequently, Karcher et al. (2016) demonstrated, via
a preferential sampling model, that these population size estimates
could be improved by incorporating sampling time information.

We extend the analysis of seasonal influenza by using our BESP
approach to investigate variations in the sampling intensity between
seasons. Our dataset comprises 637 HA sequences of 1,698 bp from
New York State that were previously examined in Rambaut et al.
(2008). These sequences were originally extracted from the National

Center for Biotechnology Influenza Virus Sequence Database and rep-
resent 12 complete influenza seasons, from 1993/1994 to 2004/2005.
We use the BESP with p = 40 population size segments and p′ = 12
sampling epochs, with each epoch roughly corresponding to the
duration of one influenza season.

We compare our results to the BSP and an additional BESP with
density dependent sampling i.e. a single, perennial sampling intensity.
Note that while the population size parameter of the BESP, N , is
proportional to the effective population size in the absence of natural
selection (N = Neτ where τ is the average generation time), this
does not hold for influenza, where strong directional selection exists.
Instead, we interpret N as a measure of relative genetic diversity, as
in Rambaut et al. (2008). Here we directly infer our estimates from
the sequencing data, while incorporating phylogenetic uncertainty.
All substitution and clock models we employ are in keeping with
Rambaut et al. (2008). Further model details can be found in the
supplementary material.

Fig. 5A shows that considerably fewer samples in the dataset
originate from the 1995/1996, 2000/2001 and 2002/2003 influenza
seasons. This is consistent with independent epidemiological surveil-
lance data, which shows that none of these seasons were dominated
by A/H3N2 (Goldstein et al., 2011; Ferguson et al., 2003). The
inferred genetic diversity trajectory (Fig. 5B) is highly synchronous,
with peaks at the midpoint of each season, except 2000/2001 and
2002/2003. The complete absence of a peak in 2000/2001 agrees
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Fig. 5: (A) Sample density through time for the 637 HA sequences used in the example. Red shading shows the kernel density estimate, blue
dots indicate stripcharts of individual samples for each season. The height of the strip chart for each season is proportional to the sample
density. Grey shading indicate the approximate period of influenza observation in New York state during each season (MMWR week 40 to
week 20 in the next year). Cross-hatched seasons indicate seasons when A/H3N2 was not the dominant subtype. (B) Median and 95% HPD
intervals of the genetic diversity estimates (Neτ ) through time with the BESP (blue) and BSP (red). (C) Median and 95% HPD intervals of
the sampling intensities (β) estimated for each sampling epoch with the BESP.

with surveillance data, as almost no A/H3N2 cases were reported
that season (Goldstein et al., 2011). On the other hand, the BESP
infers a small, somewhat later peak for the 2002/2003 season.
Surveillance data indicates that while 2002/2003 was very mild and
dominated by a mixture of A/H1N1 and B, a substantial proportion of
A/H3N2 cases were reported toward the end of that season (Goldstein
et al., 2011). Finally, while the 1995/1996 season was predominantly
A/H1N1, around 40% of influenza incidence was still attributed to
A/H3N2 (Ferguson et al., 2003). This explains why the epidemic
peak inferred for this season is as high as those with only A/H3N2
cases (see Fig. 5B).

Although the the bottleneck level varies in some years (notably
it is higher during 2002 and lower during 1997), this variation is
not substantial and is less visible in absolute size (see Fig. S6). It
appears that the bottleneck level largely depends on the availability
of data since, in the absence of coalescent and sampling events, the
smoothing prior maintains a roughly constant population size estimate
(Volz and Frost, 2014). The strong bottleneck at the tail of each
season ensures that individual A/H3N2 HA sequences contain almost
no information about the genetic diversity of previous seasons. Thus,
the informative events during a given influenza season almost all stem

from sequences sampled in that season. This results in a ladder-like
genealogy and explains why the BESP reveals no information prior
to 1993/1994.

In comparison to the BESP, the BSP does not infer epidemic peaks
in the 1996/1997 and 2002/2003 seasons (Fig. 5B). It also infers
substantially smaller peaks in several other seasons. As observed
above, we expect peaks for 1995/1996 and 2002/2003. The remaining
seasons with lower/no peaks were all dominated by A/H3N2 (Fergu-
son et al., 2003; Goldstein et al., 2011). In particular, the 2003/2004
epidemic was more severe than usual and exclusively composed of
A/H3N2. Thus, we conclude that the BSP does not have sufficient
power to infer all epidemic peaks. Moreover, the BSP does not show
sharp decreases in genetic diversity at the end of influenza seasons.
This agrees well with simulation results, since coalescent events tend
to be sparse during periods of large population size (at the start of
a bottleneck), but sampling events are plentiful (see Fig. 2b). Unlike
the BESP, the BSP cannot exploit these informative sampling events
and fails to detect bottlenecks at the end of influenza seasons.

The inferred β for each season is shown in Fig. 5C. Except for
the 2000/2001 season (during which almost no A/H3N2 cases were
sampled), the 95% HPD intervals of all other seasons intersect. There
is some variation in the median estimates, with larger uncertainty
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associated with the estimates for these years. The genetic diversity
trajectory inferred by a simpler model with density dependent sam-
pling almost matches those of the 12-epoch model above (see Fig
S7). Further, the estimated sampling intensity of this simpler model
passes through the HPD intervals estimated for all epochs except
the 2000/2001 season and is roughly equal to the average intensity
estimated from the 12-epoch model. We conclude that modelling
differences in the sampling intensity through time is inconsequential
to genetic diversity estimates. This is therefore an example of density-
dependent sampling.

D. Case Study 2: Steppe Bison

The demographic history of the steppe bison, which exhibits boom-
bust dynamics, is often used to validate the fitting performance of
skyline methods (Shapiro et al., 2004; Drummond et al., 2005; Gill
et al., 2012). Before the extinctions of the Late Quaternary period,
Beringia (eastern Siberia across the Bering land bridge to Alaska
and northwestern Canada), supported a large diversity of megafauna
with the biomass dominated by bison, horses and mammoths. The
large and diverse population of bison, along with favourable climatic
conditions for specimen preservation means bison fossils suitable
for ancient DNA extraction are abundant across Beringia (Shapiro
et al., 2004). Modern molecular methods and radiocarbon dating
allow the isolation and sequencing of ancient DNA from these
fossils and can date specimens up to 55,000 years old with high
confidence (Shapiro and Hofreiter, 2014). These techniques permit
the reconstruction of time-stamped genealogies, which offer high-
resolution reconstructions of demographic history.

The dataset we use is the same as in Gill et al. (2012) and
consists of mtDNA control region sequences from 135 ancient and 17
modern bison samples, with the oldest sample dated 55.182 thousand
years before present (ka BP). We treat sampling dates as known and
use the BESP to infer the effective population size trajectory and
sampling intensity through time with p = 20 segments, and p′ = 12
epochs. Each epoch lasts approximately 5000 years, except for the
most recent, which stretches from the present to 450 years ago. We
compared our results to a BSP with 20 population size segments, and
a simpler density dependent BESP with a single sampling intensity.
We adopt an HKY substitution model and use a strict molecular clock.
Further model details can be found in the supplementary material.

Fig. 6A shows that the sample density is roughly constant through
time, except for the most recent sampling epoch (0–450 years BP),
which contains the most samples, and a period between 17 ka BP and
22 ka BP, which contains only 3 samples. This period coincides with
the last glacial maximum (LGM) and Shapiro et al. (2004) reports
that fossils from this time period are sparse. This extrinsic constraint
meant that DNA could only be amplified from a few samples. The
N and β estimates through time are shown in Fig. 6B and C,
respectively. For comparison, the estimates of N under the BSP are
also presented in Fig. 6B. We observe a persistent and sustained
growth until a population peak around 45 ka BP. A rapid decline to
a population bottleneck around 12 ka BP then follows, with a slight
recovery in the recent past.

Both methods result in similar N estimates, with largely overlap-
ping HPD intervals. However, the BESP features a more complex
and rapid decline. Further, the BESP recovers a period with stable
effective population size, intersecting with the LGM, before the final
crash to the population bottleneck. Estimates of β vary across 4
orders of magnitude between the most recent and oldest samples.
In particular, there is an order of magnitude difference between
the present (0–450 BP), the period from the population bottleneck
to recovery (450–14,753 BP) and the stable population size period

from the LGM to the crash (14,753–24,762BP). Prior to the LGM β
steadily decreases to a minimum around the time of the population
peak. During this period, comprising the oldest 6 sampling epochs,
the sampling regime is roughly frequency dependent and, as in Fig. 3,
the β estimates mirror N .

Using a simpler BESP with density dependent sampling leads to
N being overestimated by an order of magnitude after the LGM,
as compared to the BSP and the frequency dependent BESP (see
Fig S8B). This implies a sudden exponential growth in the bison
population after the LGM, with the population at its largest at present.
These results are an artefact of the inflexible β estimate under this
model (Fig S8C). Here enforcing a constant sampling intensity results
in a vast underestimation of sampling effort in the period following
the LGM. This in turn engenders spuriously large effective population
sizes. Thus, while the BESP with 12 epochs has enough flexibility
to compensate for changes in the sampling intensity, the BESP
with constant sampling intensity cannot, and infers biased estimates.
Similarly, the BSP makes no assumptions about the sampling model
and infers an unbiased result with slightly more uncertainty than
the BESP with 12 sampling epochs. It is likely that phylogenetic
uncertainty masks any dramatic gains in precision that infromative
sampling could afford here.

E. The Information in Sample Timing

Having demonstrated the benefits of the ESP, we provide theoreti-
cal justification for its improved performance. While sample times are
known to provide a potentially rich source of additional information
(Volz and Frost, 2014), this idea has never been exactly or explicitly
quantified in the literature. Here we apply the Fisher information
approach from Parag and Pybus (2019) to assess the ESP against all
standard skyline estimators, and to evaluate the benefits of integrating
sampling with coalescent events. As in New Approaches we consider
the part of the reconstructed tree that spans the j th population size,
Nj , and contains s sampling and c coalescent events. We use Fisher
information because it delimits the maximum asymptotic precision
attainable by any unbiased estimator of Nj , such as the MLE (Kay,
1993). This precision defines the inverse of the variance around that
estimator. The Fisher information is computed as the expected second
derivative of the log-likelihood function (see Materials and Methods).

Popular skyline inference methods such as the Bayesian skyline
plot (BSP) (Drummond et al., 2005), the Skyride (Minin et al., 2008),
and the Skygrid (Gill et al., 2012) are all based around the log-
likelihood Lj, c, given in Eq. (3).

Lj, c =

k∑
i=1

1C(i) log(αiN
−1
j )−∆i(αiN

−1
j ) (3)

This only considers the c coalescent events to be informative about
Nj . The specific log-likelihoods of these skyline methods can be
obtained from Eq. (3) by simply altering either its population size or
interval grouping procedure. Standard skyline estimates are then the
MLEs of Eq. (3) or some related Bayesian variant. This gives the
left side of Eq. (4), which modifies the grouped generalised skyline
estimates of Strimmer and Pybus (2001) to cases where individual
event times (within that group) are known.

N̂j, c =
1

c

k∑
i=1

αi∆i =
a

c
, Ic(Nj) = cN−2

j (4)

The Fisher information, Ic(Nj), under these various skyline ap-
proaches, however, is identical and given by the right side of
Eq. (4) (Parag and Pybus, 2019). The maximum precision (minimum
variance), around N̂j, c, achievable by all of these methods, is then
its reciprocal, Ic(Nj)−1 (Kay, 1993).
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We define a sampling equivalent to these skyline approaches, which
completely ignores the coalescent event information in Eq. (5).

Lj, s =

k∑
i=1

1S(i) log(βiNj)−∆i(βiNj) (5)

This log-likelihood assumes that only the s epochal sampling events
are informative. The MLE and Fisher information follow in Eq. (6).

N̂j, s = s

(
k∑
i=1

βi∆i

)−1

=
s

b
, Is(Nj) = sN−2

j (6)

Interestingly, the per event Fisher information in this sampling
equivalent model is exactly the same as that from any standard skyline
method. This result explains and quantifies the assertion from Volz
and Frost (2014) that N(t) can sometimes be estimated using just
the sample time information.

Having considered its component information sources, we now
examine the ESP, which considers both s sampling and c coalescent
events to be informative. Using Eq. (1) we compute the Fisher infor-
mation of the j th segment, I(Nj). This gives the revealing expression

in Eq. (7), with grouping factor ζj =
∑k
i=1 1S(i)αiβ

−1
i ≥ 0.

I(Nj) = (s+ c)N−2
j + 2ζjN

−4
j (7)

Intriguingly, I(Nj) ≥ Is(Nj) + Ic(Nj). This means that we gain
additional precision by integrating both sampling and coalescent mod-
els (the per event information has increased). This extra information
comes from the counteracting proportional and inverse dependencies.
Further, any segment with equal numbers of sampling and coalescent
events, can now be estimated with at least twice the precision of
any standard skyline approach, for the same reconstructed tree T .
Since n sampled sequences lead to n− 1 coalescent events, and the
total Fisher information is I(N) =

∑p
j=1 I(Nj), then the overall

asymptotic precision across T is roughly, at minimum, doubled.

This justifies and underpins the marked improvements in popu-
lation size inference that the ESP achieved. However, this effect
can sometimes be clouded by other sources of uncertainty such as
genealogical error and disappears when the sampling times actu-
ally contain no information about population size (where the ESP
converges to a standard skyline). An important consequence of this
analysis is the explicit dependence of estimate precision on the
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number of events informing that estimate i.e. c for standard skylines,
s for their sampling equivalent and s+ c for the ESP. This suggests
that whenever the number of informing events in a skyline segment
is small, estimates of that segment should be disregarded (when this
number is 0 the skyline is unidentifiable). We recommend identifying
and excluding such regions from population size estimates as a
precaution against misleading and overconfident inference.

The log-likelihood of Eq. (1) also provides power for inferring the
sampling intensities across time (the βi parameters). The MLE and
Fisher information provided by T about βi over the duration of the
j th population segment are given in Eq. (8).

β̂i = 1S(i) (∆iNj)
−1 , I(βi) = 1S(i)β

−2
i (8)

The MLE depends on Nj , and thus has to be jointly estimated. The
algorithms used to solve this problem are described in Materials
and Methods. The Fisher information shows that only intervals
ending with sampling events offer the power to estimate a sampling
intensity parameter. This corresponds to the most flexible sampling
model possible. Our epochs group across the βi so that the power
for estimating an epochal sampling intensity depends on the total
number of sampling events within that epoch. Since by definition
each epoch has at least one sampling event, statistical identifiability is
guaranteed (Parag and Pybus, 2019). Observe that our ability to infer
these unknown piecewise-constant sampling parameters is exactly
analogous to that of standard skyline approaches with respect to
population size. Similarly we recommend ignoring epochs featuring
a small number of sampling events.

IV. DISCUSSION

The epoch sampling skyline plot or ESP is a practically motivated,
yet theoretically justified approach to demographic inference under
temporally sampled, coalescent genealogies. By exploiting both pro-
portional, and inverse-proportional piecewise-constant dependencies,
it can potentially and provably double the best achievable precision
of our effective population size estimates. Moreover, it facilitates
the flexible inference of hidden, time-varying sampling intensities
that modulate realistic data collection protocols. It presents a natural,
and meaningful generalisation of standard skyline approaches to non-
independent sampling processes.

The notable improvement in population size inference results from
two factors. First, by treating sampling times within an epochal
framework, we effectively double the number of data points we have
for inference. The fact that each sampling data point, in isolation,
contains exactly as much information as a coalescent event ensures
that we at least double our best asymptotic precision. Second,
the precision achievable by a skyline method is a function of the
distribution of informative events (Parag and Pybus, 2019). Since,
in standard skylines this distribution depends inversely on population
size, then periods of large population size tend to have few coalescent
events (long branches), while bottlenecks contain clusters of events.
This skewed distribution usually leads to inconsistent estimation
performance (Gattepaille et al., 2016).

The inclusion of sampling events, however, brings a second class
of informative event, which clusters in a contrasting way to the
coalescent events. This compensatory effect leads to a more uniform
distribution of informative events over the entire skyline (as observed
in Fig. 2). This not only improves precision, but helps to reduce bias,
as demonstrated in the simulated and empirical examples that we
analysed. In addition, distributing informative events more evenly
across time leads to an increase in the temporal resolution of the
model, which in turn increases the power to detect and recover
changes in the population size over time.

The epochal sampling model that we developed was inspired by
practical data collection protocols in infectious disease epidemics,
which often recur over discrete periods of time (usually weeks or
months). The proportional dependence assumed within an epoch
reflects the idea that sampling is often based on availability, and hence
likely to be correlated with the number of infected in an epidemic
(Stack et al., 2010). However, across time (e.g. epidemic seasons),
as resources improve, and surveillance becomes more systematic, we
expect that the rate of sample collection will change discontinuously.
Equally, throughout an epidemic, other external factors could dramat-
ically change the sampling effort in some periods (e.g. ‘fog of war’
effects) (Viboud et al., 2018).

In macroevolution, an analogous situation exists for studies relying
on ancient DNA sequenced from fossils dating from different geo-
logic ages. Specimen preservation and the rate of DNA decay are
both highly dependent on climatic conditions (Shapiro and Hofre-
iter, 2014). Thus, while the number of suitable specimens sampled
from a short geologic time period is expected to be proportional
to species abundance, the constant of proportionality is likely to
vary discontinuously between geologic ages. By defining different
sampling intensities within epochs we are able to characterise, and
estimate these types of dramatic trends within a flexible, and powerful
inference framework.

Our framework differs from earlier approaches, which often use
parametric sampling models. In particular, Karcher et al. (2016)
made important progress in merging coalescent and sample time
information, using a parametric, non-linear sampling rate of form
eγ0N(t)γ1 , with γ0 and γ1 as unknowns to be inferred. While
this formulation works well, it does not allow for non-polynomial
dependencies, discontinuous changes or periods with zero sampling
effort. Further, its performance was neither theoretically examined nor
guaranteed. Our epochal model resolves these issues, has maximum
flexibility, and diverges from these approaches in the same way that
skyline methods differ from parametric coalescent estimators (Parag
and Pybus, 2017).

A central benefit of our epochal model is the power to infer
unknown sampling intensity trends. But what do these trends mean
for real protocols? The sampling intensity describes how quickly
new sequences are being collected or reported relative to effective
population size. It has units of [time−2]. Since effective population
size has dimensionality of [time] (measured in generations) then
our model directly infers changes in the rate of collecting samples
per generation. Further, since these intensities modulate a Poisson
process, then over an infinitesimal period they define a piecewise-
constant sampling probability that may be the coalescent analogue
to the sampling model used in phylogenetic birth-death skyline
approaches (Stadler et al., 2013).

We focussed on two practical sampling models, which we termed
as density and frequency dependent. The former defines a fixed
sampling intensity, is equivalent to the Karcher et al. (2016) rate
above with (γ0, γ1) = (0, 1), and is the least complex sampling
model. The latter is vastly more flexible, featuring epochal intensities
({βi}) that adjust with population size to allow for a fixed number
of samples per collection period. Over several simulated scenarios,
we demonstrated the ability of the ESP to robustly infer changes
in both the effective population size and sampling intensity. Then,
using two empirical case studies, we verified that our approach
can reliably distinguish between frequency and density dependent
hypotheses, even when genealogical uncertainty is included. This
extends and generalises the works of Karcher et al. (2016) and
Volz and Frost (2014), which are limited to parametric, density
dependent type sampling models. We ensure this extension is usable
and available by providing a maximum likelihood ESP for quick fixed
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tree computations, and a more sophisticated Bayesian ESP (BESP)
in BEAST2, which seamlessly integrates the ESP with various clock
and substitution models for direct inference from sampled sequences.
These packages can be found at: [URLs to be included].

The role of sampling in coalescent inference has generally been
understudied and under-appreciated. Much debate still exists on what
constitutes good rules for sampling, and on the relative benefits and
pitfalls of different sampling protocols (Stack et al., 2010; Parag
and Pybus, 2019; Hall et al., 2016). As surveillance intensifies,
and more heterochronous data becomes available, the answers to
these questions will only increase in importance (Ho and Shapiro,
2011). Continuing improvements in infectious disease monitoring and
sequencing will result in richer and more diverse epidemiological data
than ever before (Baele et al., 2017). Ongoing growth in the number
of dedicated ancient DNA facilities and advances in methods for
isolating and processing ancient DNA will lead to similarly strength-
ened macroevolutionary datasets. As a result, inference methods will
need to be updated or generalised. The flexibility and demonstrable
performance of the ESP position it well, not only to capitalise on this
data trend, but also to help clarify the debate around sampling.

V. MATERIALS AND METHODS

A. Deriving the Epoch Sampling Skyline Plot

Here we construct the log-likelihood for the ESP (Eq. (1)), derive
its population size estimate (Eq. (2)), and its Fisher information
(Eq. (7)). Let the j th piecewise-constant segment of a sampled-
coalescent process have unknown population size Nj , and duration
tj − tj−1 =

∑k
i=1 ∆i. We assume that this segment consists of

k ≥ 1 event intervals, the ith of which has duration ∆i. If this
interval ends in a sampling (coalescent) event then 1S(i) = 1(0),
and 1C(i) = 0(1). The coalescent lineage factors, and sampling
intensities, for the ith interval are respectively αi and βi. Fig. 1
clarifies this notation for a simple reconstructed coalescent genealogy
(tree), T , over this segment.

Standard skyline approaches model coalescent events as the out-
puts of a Poisson process with rate

∑k
i=1 1C(i)αiN

−1
j , but ignore

sampling events. Our epochal method assumes that sampling events
are also produced by a Poisson process, with rate

∑k
i=1 1S(i)βiNj .

The result is a piecewise-constant multi-type Poisson process, with a
combined event rate of λ(t) as in Eq. (9).

λ(t) =

k∑
i=1

1S(i)βiNj + 1C(i)αiN
−1
j (9)

We construct the Poisson log-likelihood for the j th segment, Lj :=
log P(T |Nj , {βi}), as in Eq. (10) (Snyder and Miller, 1991; Parag
and Pybus, 2018).

Lj = −
∫ tj

tj−1

λ(t) dt+

∫ tj

tj−1

log λ(t) dut (10)

The total log-likelihood for a p segment coalescent model is then
L =

∑p
j=1 Lj . For convenience we drop explicit reference to the

set of βi unknowns in this log-likelihood. We discuss our power to
estimate {βi} in the following section. In Eq. (10), dut = 1 at event
times, and 0 otherwise, so that the second integral is a sum over
interval end-points. Eq. (1) is derived by splitting the integrals in
Eq. (10) over the k intervals. Note that L defines new population size
parameters based on (irregular) event times. This contrasts Karcher
et al. (2016), where population sizes change at regular, predefined
times. A benefit of our formulation is that we always have at least one
event informing on each population size parameter, which guarantees
statistical identifiability (Parag and Pybus, 2019).

The skyline estimator that we propose is the grouped MLE of
Eq. (1). This solves ∇NjLj = 0 when s ≥ c, and leads to the
quadratic expression in Eq. (11).

Nj
2 − (s− c)b−1Nj − ab−1 = 0 (11)

Here ∇x is the first partial derivative with respect to x, while s =∑k
i=1 1S(i), and c =

∑k
i=1 1C(i) count the total number of sampling

and coalescent events falling in the j th segment of T . If c ≥ s
then ∇

N−1
j
Lj = 0 must be computed, and then inverted. This gives

Eq. (12), which is a quadratic in N−1
j .

Nj
−2 − (c− s)a−1Nj

−1 − ba−1 = 0 (12)

This conditional MLE approach is needed to avoid singularities in
cases when either s = 0, or c = 0, and to keep population sizes
positive. The roots of these quadratics result in Eq. (2).

The Fisher information of our skyline, with respect to Nj is
I(Nj) := −E

[
∇2
Nj
Lj
]
, with ∇2

x as the second partial derivative
(Kay, 1993). The expectation is taken across the inter-event times.
Using this definition we directly obtain Eq. (13).

I(Nj) = (s− c)N−2
j + 2N−3

j

k∑
i=1

αiE[∆i] (13)

Note that we can replace Lj in the above definition with Lc, j or Ls, j ,
to also recover Eq. (4) and Eq. (6), respectively. The expectation
in Eq. (13) conditions on the type of event in each interval. We
can expand

∑k
i=1 αiE[∆i] to get cNj + N−1

j

∑k
i=1 1S(i)αiβ

−1
i .

Substituting this into Eq. (13) gives Eq. (7), and proves that, by
combining compensatory proportional and inverse population size
dependencies, the ESP can achieve Nj estimates that are, when s ≈ c,
at least twice as precise as those obtained from standard approaches,
which ignore sample timing.

Lastly, we comment on how the MLE of the ESP relates to those
in Eq. (4) and Eq. (6). We group our skyline over the entire tree so
that there is only a single population size to estimate, N1. This is
equivalent to a Kingman coalescent assumption, and is the simplest
model described within all skyline frameworks. Since the number of
coalescent and sampling events are always roughly the same then
we can use the s = c solution of Eq. (2), and the MLEs from

Eq. (4) and Eq. (6) to derive N̂1 =

√
N̂1, sN̂1, c. If we think of the

true population size, N(t), as being continuously time-varying, then
standard skylines estimate its harmonic mean with N̂1, c (Pybus et al.,
2000). Similarly, N̂1, s estimates the arithmetic mean of N(t). The
ESP is then the geometric mean of these two mean estimators, and
hence trades (or smooths) between the benefits of both the standard
skyline, and the sampling model from Eq. (4) and Eq. (6).

B. Estimating the Epoch Sampling Intensities

We now explicitly define our epochal sampling model, characterise
the power the ESP provides for estimating sampling intensities, and
present algorithms for computing these estimates. We assume a total
of p′ epochs, spanning the period from the first (most recent) to last
(most ancient) observed sample (time is into the past). This is also the
period over which the epoch sampling skyline is valid. Outside of that
period, there are only coalescent events, and our method reduces to
a standard skyline approach (Drummond et al., 2005). Within each
epoch the sampling intensities of each interval are the same, and
epoch times are assumed to coincide with sample event times. This
model results in a piecewise-constant, time delimited, longitudinal
sampling intensity.

For generality, we start with the most flexible, naive epochal model,
in which each interval is treated as a new epoch. For the j th segment,
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this means there are k sampling unknowns, {βi}. The MLE, β̂i is
the solution to ∇βiLj = 0. The Fisher information that T contains
about βi is I(βi) := −E

[
∇2
βi
Lj
]
. Computing these with Eq. (1)

gives Eq. (8). Two key observations emerge: (i) {β̂i} depends on
N̂j , and (ii) we only have power to estimate sampling intensities in
intervals that contain sampling events (I(βi) = 0 | i ∈ C). Point (ii)
suggests that if i′ ∈ S and i′ + 1 ∈ C then we should theoretically
assume either βi′+1 = 0 or βi′+1 = βi′ , to ensure identifiability.

We can practically resolve (ii) by grouping our sampling intensities
(similar to how we group over Nj) so that there are only p′ distinct
epochs. Within these epochs there is only one sampling intensity
parameter, and we always have at least one sampling event, guaran-
teeing identifiability. This grouping reflects realistic data collection
protocols as sampling often occurs in bursts over fixed time periods,
and within each burst we would always take at least 1 sample. The
minimum variance around these estimated epochal intensities is then
related to the sum of the I(βi) comprising the epoch. For example,
if there is 1 epoch over the j th segment, with unknown intensity βj ,
then I(βj) = sβ−2

j .
Thus, our skyline offers power to estimate (sensibly) flexible

sampling intensity changes through time. Actually finding these
estimates, and hence resolving (i), requires joint population size, and
sampling intensity inference. We achieve this with a simple iterative
algorithm. Let β and N be the p′ and p element vectors of unknowns
that we want to estimate. We draw an initial β̂(1) from a wide
uniform distribution and then compute the estimate N̂(1) | β̂(1) using
Eq. (2). We substitute this into Eq. (8) to get β̂(2) | N̂(1). Iterating
this process yields the desired joint MLEs, β̂ and N̂ , usually within
100 steps. Note that while this algorithm, and the aforementioned
MLE solutions are all directly implemented in our accompanying
MLE code set (available on GitHub), our more extensive Bayesian
package in BEAST2 makes a few further generalisations. We detail
these in the subsequent section.

C. The Bayesian Epoch Sampling Skyline Plot

Here we extend the Bayesian Skyline Plot (BSP) (Drummond
et al., 2005) to incorporate the epochal sampling model de-
fined above. Given a genealogy, T , a set of p segment sizes,
K = {k1, k2, . . . , kp}, defining the numbers of events (coales-
cent/sampling events) in each piecewise population size segment,
and a set of p′ epoch sizes, K′ = {k′1, k′2, . . . , k′p′}, counting
the sampling events in each epoch, we can compute the likelihood
f(T |N, K, β, K′) from Eq. (1). Applying Bayes’ theorem yields
the joint posterior distribution of N , β and K as in Eq. (14).

f(N, K, β | T , K′) ∝ f(T |N, K, β, K′)
× f(N)f(K)f(β) (14)

We obtain the Bayesian ESP (BESP) by sampling from this posterior
using standard MCMC proposal distributions. Eq. (14) features priors
on the population size vector, N , its grouping parameter (the number
of events in each population size segment), K, and the sampling
intensity vector, β. In this work we assumed that p, p′ and the
epoch grouping parameter, K′, are all known a priori, to reflect
our belief that one would generally have a reasonable idea of when
sampling efforts were ramped up or decreased. Should the reality
prove contrary, it is straightforward to also sample epoch sizes (K′)
within BEAST2.

Further, we impose the same smoothing prior on N as in the BSP.
This assumes that neighbouring effective populations size segments
are autocorrelated, and implements this via the exponentially dis-
tributed relation Nj ∼ exp(Nj−1) for 2 ≤ j ≤ p, with a Jeffreys
prior on N1 (Drummond et al., 2005). Since we expect sampling

efforts to change discontinuously we do not assume that neighbour-
ing sampling intensities are autocorrelated, and subsequently place
independent and identical priors on each βi. It is trivial to relax
this assumption and place different priors on each βi, e.g. if a priori
information is available about varying levels of sampling effort across
seasons. This is analogous to the approach followed in Karcher et al.
(2019), which incorporates time-varying external covariates in the
sampling process.

Our BESP implementation also contains a few practical tweaks.
Specifically, we constrain the minimum segment duration for both
population size segments and sampling epochs, such that tj −
tj−1 > ε. This guards against zero-length segments or epochs,
which can result when many sampling events coincide in time or
when phylogenies have large, unresolved polytomies. The former
is likely to occur in real datasets, when sampling times are not
fully resolved, or during targeted sampling campaigns, where the
intensity is expected to be very high. The latter is often observed
in phylogenies of infectious disease outbreaks, which tend to be
star-like with unresolved polytomies close to the root of the tree. In
addition, to ensure identifiability we constrain segments and epochs
to contain at least two informative events each. BESP is available as
a BEAST2.5 (Bouckaert et al., 2019) package [URLs to be included].
This allows the probability of the tree, f(T |N(t), β(t)), to be used
as a tree-prior in Bayesian phylogenetic analysis, in conjunction
with existing substitution and clock models, to infer changes in
the effective population size and sampling intensity directly from
sequence data, while incorporating phylogenetic uncertainty.
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