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Abstract 14 

Networks of interspecific interactions drive community structure, dynamics and stability. The 15 

ability to infer interspecies interactions from observational field data would open possibilities to 16 

apply network models to manage real world ecosystems. Here, we show this is possible for a 17 

freshwater fish community in the Illinois River, United States, using long-term data collected 18 

through time and space. We solve the challenge of sparsely sampled field data using latent variable 19 

regression and constraints imposed by known trophic structure in the fish community. Network 20 

analysis indicates that the most abundant 9 fish coexisted thanks to equalizing mechanisms that 21 

reduced fitness differences between strong and weak competitors. Importantly, the network sheds 22 

light on the ongoing invasion by the exotic silver carp (Hypophthalmichthys molitrix), revealing 23 

that the invader outproduces native preys, replacing their contributions to the diets of native 24 

predators. Our work shows that field data and constrains imposed by known food webs can 25 

improve network inference and produce quantitative insights that could aid in conservation of 26 

freshwater ecosystems threatened by invasive species.  27 
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Introduction 28 

Ecological network theory seeks to understand how the many interactions between species affect dynamics 29 

and stability of the ecosystem. In 1972, Robert May questioned a paradigm established at the time by 30 

proving that networks with many, highly connected species tend to be less stable (May 1972). May’s 31 

pioneering work had immense influence and has led to ecological applications of random matrix theory, 32 

which assumes that interaction strengths and types are sampled from random distributions.  33 

Interactions in realistic food webs are far from random in both strength and type. For example, 34 

most links of plant-animal mutualistic food webs are weak and asymmetric (Bascompte and Jordano 2007). 35 

But to date, the measurement of interactions among species in natural communities has been mostly 36 

conducted through ecological field observations in controlled environments (Carrara et al. 2015). If the 37 

underlying premise of ecological network theory is correct—that the structure and strength of interactions 38 

drive the observed community dynamics—we should be able to infer interaction networks from time-series 39 

data of species’ abundance. Computational inference would require less labor than directly observing 40 

interactions through detailed and laborious fieldwork. It should also be more applicable to large 41 

communities with complex dynamic interdependencies between their member species, which are hard to 42 

study in isolation. Many tools to infer network structure from field data have been proposed before, ranging 43 

from parameter-free correlation-based algorithms to parameter-intensive mechanistic models. Some 44 

approaches have been successfully applied to microbial communities (Stein et al. 2013; Berry and Widder 45 

2014; Buffie et al. 2015; Steinway et al. 2015; Bucci et al. 2016; Cao et al. 2017; Venturelli et al. 2018), 46 

but inference of macroscopic ecosystems has lagged behind (Milns et al. 2010; Sander et al. 2017; Ushio 47 

et al. 2018). 48 

To analyze dynamics of ecological communities, multispecies pairwise models, particularly the 49 

Lotka-Volterra equations, have been extensively used in theoretical and computational ecology due to their 50 

simplicity, tractability, and transparent logic (Hofbauer and Sigmund 1998; Coyte et al. 2015). In the 51 

generalized form of Lotka-Volterra the underlying ecology is phenomenologically summarized with 52 

minimal parameterization: the fitness effect of each one-way interaction in a food web is quantified by a 53 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 28, 2019. ; https://doi.org/10.1101/686402doi: bioRxiv preprint 

https://doi.org/10.1101/686402
http://creativecommons.org/licenses/by-nc-nd/4.0/


 4 

single coefficient whose magnitude and sign represent the interaction strength and type, respectively. The 54 

signs of the interaction coefficients can be imposed when we know the relative trophic positions between 55 

species in the food web, resulting in a hybrid model (Cohen and Łuczak 1990) that infers population 56 

dynamics constrained by known structure. 57 

Here we apply a generalized Lotka-Volterra (GLV) network to study the species-species 58 

interactions within the Illinois River fish community. We use field data collected by the Long Term 59 

Resource Monitoring Program in the Upper Mississippi River System (Ratcliff et al. 2014), one of the very 60 

few long-term monitoring programs in large rivers in the United States (Ward et al. 2017), and we introduce 61 

a new latent variable regression approach to allow GLV inference from these noisy and infrequently 62 

(annually) sampled data. To improve parameter identifiability, we constrained the inference based on the 63 

reconstructed trophic structure of the fish community. The inferred network revealed new insights into the 64 

mechanism underlying species coexistence in the ecosystem and the keystone species that help maintain 65 

coexistence. Finally, we assessed the impact of the silver carp on the ecosystem, an invasive species with 66 

enormous impact that is damaging to the native fish network in the Mississippi and Illinois Rivers (Irons et 67 

al. 2007; Solomon et al. 2016), and may invade the Laurentian Great Lakes in the future (Jerde et al. 2013). 68 

Network analysis reveals that the silver carp invaded by outgrowing native prey, thus taking their niche in 69 

the trophic web.  70 
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Results 71 

Fish community varies in space and time 72 

The Illinois River is a major tributary of the Upper Mississippi River, where the long-term monitoring 73 

efforts of the fish community spread across six field stations since 1993 (Fig. 1a). To visualize how the fish 74 

community structure varied across time and space we first standardized catch-per-unit-effort data to 75 

combine fish numbers obtained from the different fishing gears employed (Supplementary Fig. 1 and see 76 

Methods). Then we carried out a principle component analysis (PCA) using data from the normalized 77 

abundances of 153 fish species for each year and site (Fig. 1b). The data from each site occupied distinct 78 

regions of the PCA plot, indicating distinct fish ecologies in space. Still, despite regional differences, the 79 

communities were most similar between proximal sites. The first component, which explains the most 80 

variance of the data, is strongly determined by variations in the common carp and bluegill, two species 81 

highly abundant in the Mississippi River upstream from the confluence with the Illinois River (Pool 4, Pool 82 

8, and Pool 13) but less abundant in the Illinois River (LG) and the Mississippi River downstream from the 83 

confluence (Pool 26 and OR). 84 

We conducted a detailed analysis of the fish community in La Grange pool, the only monitoring 85 

site along the Illinois River (Fig. 1a). We chose this site to study the ecological impacts of invasive silver 86 

carp on native fish population (Fig. 1c). The impact of the silver carp was detected in three sites (OR, Pool 87 

26, and LG) over the course of the invasion (Fig. 1b, inset). The Illinois River is known to have one of the 88 

highest silver carp densities worldwide (Sass et al. 2010). The large silver carp density is obvious in the 89 

PCA, which shows that the loading vector for the silver carp aligns well with the La Grange community 90 

data (Fig. 1b, in brown). In contrast, the Mississippi sites upstream of the confluence with the Illinois River 91 

(Pool 4, Pool 8, and Pool 13) where silver carp are barely found (Fig. 1b, inset) are misaligned with the 92 

silver carp vector. Fig. 1b and its inset also reveal the invasion path: silver carp entered the Illinois River at 93 

the confluence, rather than continuing to migrate up the Mississippi River. There is grave concern that the 94 

invader may enter Lake Michigan through the Illinois River, threatening the Great Lakes’ ecosystems and 95 

multi-billion-dollar fishing industry (Jerde et al. 2013). 96 
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 97 

Latent variable approach coupled with known interactions from the literature improves network 98 

inference 99 

In order to define the network of species’ interactions we seek to parameterize a GLV model. The most 100 

common technique is to discretize the model, transform the discretized version to a system of linear 101 

equations, and then fit a multilinear regression (see Methods). This method is gaining popularity to infer 102 

microbial ecological networks from gut microbiome time series data (Stein et al. 2013) and already served 103 

to find a native gut bacterial species that helps stymie invasion by a pathogenic species (Buffie et al. 2015). 104 

Compared to microbiome data, field data are often noisier and less frequently sampled (Harwood and 105 

Stokes 2003), which amplifies the discretization error in calculating log-derivatives and precludes the 106 

inference of a realistic network (Cao et al. 2017). Even a good fit to the transformed linear problem can 107 

produce a network that recreates the observed dynamics poorly (Cao et al. 2017). 108 

To circumvent this fundamental limitation, we introduce a new method where we optimize log-109 

derivatives rather than using numerical approximations (see Methods and Fig. 2a). This strategy comes 110 

from the family of latent variable regressions as the log-derivatives are treated as latent variables (their 111 

large uncertainty essentially makes them unobserved variables) and can be learned by minimizing model 112 

prediction error. In tests using synthetic data generated by a 3-species GLV model (Supplementary Fig. 2a), 113 

the new approach (Fig. 2b) outperformed the most commonly used algorithm based on linear regression 114 

(Fig. 2c) in recreating the oscillatory community dynamics. In addition, the inference converged much 115 

faster than the derivative-based nonlinear regression (Supplementary Fig. 2b and 3).  116 

We further tested the effectiveness of the latent variable regression using experimental data from 117 

two separate, independently published predator-prey microbial systems. In these laboratory systems the 118 

interspecific relationships are known, which means that finding the correct signs for the interaction network 119 

would constitute two independent tests to validate our inference algorithm. As expected, our GLV model 120 

inferred the correct network structure (Fig. 2d,f), and reproduced the community dynamics observed 121 

experimentally in both tests (Fig. 2e,g). In the first test, the Paramecium-Didinium system (Veilleux 1976), 122 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 28, 2019. ; https://doi.org/10.1101/686402doi: bioRxiv preprint 

https://doi.org/10.1101/686402
http://creativecommons.org/licenses/by-nc-nd/4.0/


 7 

the inferred network successfully captured the positive impact of the prey (Paramecium aurelia) on the 123 

predator (Didinium nasutum) and the negative impact in the reverse direction. In the second test, a three 124 

species rotifer-algae ecosystem (Kasada et al. 2014), the inferred network revealed that the two algal clones 125 

have evolved to possess different survival strategies (Fig. 2f): the second clone (Ch2) grows slower than 126 

the first clone (Ch1) but develops resistance to rotifer’s predation. The fitness trade-off between prey’s 127 

defense and growth agreed with experimental observations qualitatively. 128 

 129 

GLV parameterization from fish population data 130 

To infer a network of species interactions that captured the fish community dynamics in the La Grange pool 131 

we focused on the top 9 most abundant native fish species (Fig. 1c, Supplementary Fig. 4, and 132 

Supplementary Table 1), which account for 85.5% of the total abundance. We chose not to group the 133 

remaining low-abundance species because grouping can produce spurious links between the virtual group 134 

and the abundant species (Cao et al. 2017).  135 

Then, to constrain GLV inference, we reconstructed a summary food web consisting of all potential 136 

interactions among the 9 selected fish species based on Fishbase (http://www.fishbase.org) trophic level 137 

indices as well as experimentally observed trophic interactions (see Methods and Supplementary Fig. 5). We 138 

next converted these putative interactions to symbolic constraints of the GLV model parameters: a positive, 139 

neutral, or negative interaction requires its corresponding parameter to be positive, 0 or negative as well 140 

(see Methods and Supplementary Table 2). This approach—which combines latent variable regression with 141 

constraints based on known positions on the food web—outperformed the simple linear regression method 142 

(Fig. 3a, adjusted R2 values of 0.80 compared to 0.45). The relative growth rates inferred for each fish 143 

species (Supplementary Table 3) ordered the species by their trophic levels, with predators at the top to 144 

resource preys at the bottom (Fig. 3b). Hierarchical clustering of the inferred pairwise interactions 145 

(Supplementary Table 3) revealed that species occupying the same trophic level share similar interactions 146 

with the rest of the community members (Fig. 3c). The inferred network is dominated by weak interactions 147 

(Fig. 3d), a pattern thought to promote stability and often observed in natural ecosystems (Wootton and 148 

Emmerson 2005; Ushio et al. 2018).  149 
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  150 

Data from another pool validates the interactions inferred in the La Grange pool 151 

Data coming from a single source is often biased, which could make the inferred network unreliable. Here 152 

we used data from an additional pool to refine the network and improve model predictions. Pool 26—at the 153 

confluence of the Upper Mississippi and Illinois Rivers—is the closest pool and had the most similar 154 

community to the one in the La Grange pool (Fig. 1b and Supplementary Fig. 4). Therefore, we assumed 155 

that the two communities were similar enough that any pair of species interacting in La Grange pool may 156 

interact the same way in Pool 26, if they co-occur. 157 

 We applied the same latent variable approach to the time series of fish population in Pool 26 158 

(Supplementary Fig. 6) to infer an independent network (Supplementary Table 4). For both sites, we 159 

quantified the uncertainty associated with each interaction coefficient by assigning its own confidence score, 160 

defined as the minimum significance level above which the confidence interval does not contain 0, to 161 

indicate how likely the coefficient is significantly different than zero. The confidence scores were generally 162 

proportional to the absolute values of their corresponding GLV coefficients (Supplementary Fig. 7). With 163 

at least 50% confidence at both sites, we identified 11 negative and 3 positive interspecific interactions (Fig. 164 

4), all of which are consistent with empirical observations or ecologically interpretable (Supplementary 165 

Information). For example, the two most confident predictions are the positive interactions from emerald 166 

shiner and gizzard shad to channel catfish, suggesting that the two prey fish support channel catfish’s 167 

growth by serving as major food sources. 168 

 169 

Fitness equalization maintains species coexistence despite competition 170 

The network inferred prompted us to explore the stability of the fish community. The model predicted stable 171 

coexistence of all 9 fish species at steady state (Fig. 5a, right). Still, linear stability analysis (see Methods) 172 

revealed that 80% of all attainable steady states of the system are stable (Supplementary Fig. 8), suggesting 173 

that the community could stabilize in alternative compositions different than those observed so far. 174 

To understand the mechanism of species coexistence, we simulated the steady state of two 175 

subnetworks consisting of (1) only resource preys and (2) resources preys plus mesopredators. In the 176 
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absence of any predators, common carp (a strong competitor) is the most competitive resource prey that 177 

drives other preys (weak competitors) to extinction in the long run (Fig. 5a, left). This is expected from the 178 

competitive exclusion principle. The common carp was an invasive species first introduced to the United 179 

States in 1800s that has caused damages to the fish community due to its rapid growth and high tolerance 180 

to poor water quality. However, the presence of mesopredators, particularly freshwater drum, can reverse 181 

the outcome of competition by preying on common carp (Fig. 5a, middle). The fitness inequality between 182 

the strong and weak competitors persists until the addition of top predators, which suppress population of 183 

mesopredators and reduce their predation pressure on resource preys (Fig. 5a, right). Our analysis thus 184 

supports the neutral theory (Hubbell 2001): the trophic structure of the inferred network tends to equalize 185 

the fitness of otherwise unequal competitors. 186 

 When the interactions in the network function simultaneously they give rise to many indirect 187 

interactions. This causes trophic cascade effects where some species will have greater impacts than the 188 

others on community structure. We therefore quantified the impacts of each species by computing a ‘total 189 

importance score’ based on the inferred network (see Methods). The analysis revealed that only the gizzard 190 

shad had a positive impact on the network as a whole (Fig. 5b), suggesting its facilitating role in 191 

compensating for the overall competitive environment of the fish community. Its important role in 192 

maintaining the community was confirmed by in silico experiments where we simulated removing a given 193 

species from the network: excluding gizzard shad caused the highest number of secondary extinctions (Fig. 194 

5c). The gizzard shad promotes diversity by reducing competition for less competitive preys and supporting 195 

the growth of predator fish that feed on them. In the absence of the gizzard shad, the common carp increased 196 

more than 10 folds and the channel catfish collapsed (Supplementary Fig. 9). 197 

 198 

Silver carp outgrows native prey and infiltrates predators’ diets 199 

To study the impact of silver carp, a present threat to the fisheries in the North America, we included this 200 

species into our model as a perturbation to the native food web (Supplementary Fig. 10) while the GLV 201 

model inferred for the native community remained unchanged. The silver carp only became detectable 202 

recently, and the number of data points in silver carp’s time series was insufficient for reliably estimating 203 
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 10 

new GLV coefficients introduced by silver carp. We solved this problem by using Markov Chain Monte 204 

Carlo (MCMC) to approximate the posterior distributions of these parameters (see Methods and 205 

Supplementary Table 5), which were later used to predict the long-term effects of silver carp on the native 206 

fish.  207 

The simulations indicated that the silver carp integrates stably into the native fish community 208 

without causing extinctions (Fig. 6a). Therefore, the invasion impacted the community composition by 209 

proportionally reducing the relative abundance of all native fish species. Examining the diet composition 210 

of native predators indicated that silver carp replaced the native preys and contributed about 10% of 211 

predators’ diets (Fig. 6b). This agreement with previous observations of stomach content of native predators 212 

in La Grange pool—including channel catfish, black crappie, and white bass—revealed that silver carp had 213 

indeed entered their diets (Anderson 2016). 214 

Importantly, our analysis suggested that the silver carp could only invaded when its growth rate 215 

exceeded a threshold of 3.33 1/year (Fig. 6c). The need to exceed a threshold growth rate is expected 216 

because all native fish species—preys and predators—had a negative impact on the silver carp 217 

(Supplementary Fig. 10); therefore, its population growth rate must be sufficiently high to counterbalance 218 

the negative pressure from the native fish network. The estimated population growth rate of silver carp is 219 

not only above the threshold but even greater than the growth rate of any other native fish, which possibly 220 

explains the ongoing invasion.  221 
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Discussion 222 

Here we demonstrate the feasibility of inferring ecological networks from field data to produce quantitative 223 

insights valuable for the management of real world ecosystems. Field data are invaluable for ecology, but 224 

noisy and infrequent sampling can hinder network inference—especially with algorithms such as 225 

generalized Lotka-Volterra which require the calculation of time derivatives (Stein et al. 2013). The 226 

problem could in principle be solved by measuring better data and at higher rates, but this is often too costly 227 

or simply impractical. The inference method we propose here offers a practical solution to obtain realistic 228 

networks, based on a latent variable approach combined with constraints from known trophic interactions 229 

obtained from the literature. 230 

Applying the inference method to a fluvial fish community revealed the importance of using 231 

realistic networks to analyze real world systems. The system shows the coexistence of resource preys 232 

despite interspecific competition for shared niche; this is historically intriguing because obtaining stable 233 

coexistence of a large community in Lotka-Volterra-type models is extremely improbable (Serván et al. 234 

2018). Using random matrix theory, it has been repeatedly shown that the probability of a feasible solution 235 

with strict positive abundances for all species is 1/2N for a N-species community and the chance of stable 236 

coexistence is even lower (Serván et al. 2018). However, the low likelihood is inconsistent with the 237 

immense diversity observed within natural populations, spurring countless studies to identify possible 238 

mechanisms underlying species coexistence (Levine et al. 2017). One such coexistence mechanism, as we 239 

revealed here, is the fitness-equalizing effect where predators suppress the population of the most 240 

competitive species and thereby dampen the intensity of interspecific competitions. Our study suggests that 241 

inferring interaction patterns from time series data may be an effective strategy to advance our mechanistic 242 

understanding of species coexistence.  243 

The parameterized network provided intriguing results that help interpret the ongoing invasion by 244 

the exotic silver carp. First, silver carp were predicted to be sufficiently integrated into the local fish 245 

community, which suggests they may become “native” eventually. This is not surprising, given that 246 

common carp, another invasive carp introduced to United States in the 1800s, have become members of the 247 
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Illinois River fish community after so many years of establishment and naturalization. Second, the invasion 248 

did not seem to cause extinctions and the effects of the prey preference on the population structure of native 249 

fish were apparently not drastic. These results could be naïvely interpreted as suggesting that the impact of 250 

the silver carp is not detrimental; but the moderate impact may be due to the high productivity and species 251 

richness in the Illinois River, which mitigates the effects of interspecific competition for food sources. 252 

Indeed, the native predators could even benefit from supplemental prey that they do catch. But caution is 253 

still needed when interpreting these results: The overall decrease in native fish abundance caused a 254 

measurable shift in the ratio of predator-to-prey which may increase the likelihood of stochastic extinctions 255 

with unforeseen—and potentially irreversible—consequences. Our model makes predictions that could be 256 

used to reverse the invasion: reducing silver carp’s net growth below the critical threshold of 3.33 1/year, 257 

for example by targeted harvest, would dramatically curb the invasion. 258 

We have adopted the simple GLV model to increase the generality of our inference approach and 259 

to reveal the core interactions driving population dynamics, but our algorithm can be extended in multiple 260 

ways. For example, nonlinear functional responses (predation rate as a function of prey density), high-order 261 

interactions and environmental factors that encapsulate greater realistic details can be included. Future 262 

applications of the algorithm include identification of core interactions from time series collected from 263 

different geographical locations with varying ecological and environmental conditions (e.g., other rivers 264 

with long-term resource monitoring data). Along with other inference approaches such as dynamic 265 

Bayesian network (Sander et al. 2017) and convergent cross mapping (Ushio et al. 2018), such applications 266 

will undoubtedly advance our ability to describe and predict ecosystem structure, dynamics and stability, 267 

and shed light on disruptive threats posed by invasive species.  268 
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Methods 269 

Long term resource monitoring data 270 

The time series data of the Upper Mississippi and Illinois River fish community were collected from the 271 

annual reports of the Long Term Resource Monitoring Program (Ratcliff et al. 2014). The program used a 272 

multigear and multihabitat sampling design protocol (refer to the program report for details) to collect data 273 

from 6 observation sites (Lake City, Minnesota, Pool 4; La Crosse, Wisconsin, Pool 8; Bellevue, Iowa, 274 

Pool 13; Alton, Illinois, Pool 26; Havana, Illinois, La Grange Pool; and Cape Girardeau, Missouri, Open 275 

River). To standardize the catch per unit effort (CPUE) from multiple gears to the same relative scale, the 276 

raw CPUE data during the time period between 1993 and 2015 were converted to relative abundance among 277 

species within the same site and summed over all 6 fishing gears (electrofishing, fyke net, mini fyke net, 278 

large hoop net, small hoop net, trawling). Parameters of the GLV model were estimated with the 279 

standardized CPUE indices since the absolute abundances are not available.  280 

The standardized data was first smoothed using empirical mode decomposition (EMD) and then 281 

used as inputs for parameter estimation. The details of the classical EMD algorithm has been extensively 282 

reviewed elsewhere (Wang et al. 2014). Briefly, EMD decomposes the input data into several intrinsic 283 

mode functions (IMF), which represent the natural oscillation modes of the input time-series data. The 284 

trended curve of each original time-series was reconstructed by summed up all IMFs with Hurst exponent 285 

no smaller than 0.5. 286 

 287 

Reconstruction of summary food web 288 

The trophic structure of the modelled fish community was reconstructed by classifying all species as 289 

resource prey, mesopredator, or top predator in a three-tier trophic food web. The classification was 290 

determined by requiring (1) the FishBase (https://www.fishbase.de) trophic level index (a floating-point 291 

number that equals one plus weighted mean trophic level index of the food items) of any fish species in 292 

higher trophic levels is no smaller than that of any fish species in lower levels; (2) the predator of any 293 

known predator-prey relationship from prior knowledge occupies a higher trophic level than the level 294 
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occupied by the prey. We collected 14 predator-prey pairs from literature (Supplementary Fig. 5b and 295 

Supplementary Fig. 10) and assume that each pair observed to interact in other freshwater ecosystems has 296 

the potential to interact the same way in the Upper Mississippi and Illinois Rivers. 297 

With the reconstructed trophic structure, all potential interactions besides the known predator-prey 298 

relationships can be identified based on three hypothetical rules: (1) fish species on higher trophic levels 299 

feed on fish species on the immediate lower level (common prey relationships); (2) the same fish species 300 

compete for limited resources within its own population (intraspecific competitions); (3) fish species on the 301 

same trophic level compete with each other for limited resources (interspecific competitions). Any pair of 302 

fish species whose trophic relationship does not fall into the three categories is assumed to be non-303 

interacting. 304 

 305 

GLV model parameterization: Linear Regression 306 

The generalized Lotka-Volterra model is a system of ordinary differential equations with birth-death 307 

processes describing how species numbers change in time 308 

 
!"#(%)
!%

= ()#,+ +-)#,.".(%)
/

.01

2 "#(%) (1) 

where "#(%) is the abundance of species 3 at time t and 4 is the total number of species.	)#,+ is referred to 309 

as the net population growth rate (birth minus death) of the species	3 while )#,., known as the pairwise 310 

interaction coefficient, represents the population influence of species 6 on species 3. 311 

 The most commonly used technique to infer GLV parameters is to discretize Eq. (1) and solve the 312 

following linear regression (Stein et al. 2013)  313 

 789: = argmin(||7 ∙ C − EF||GG) (2) 

where 7 (= [7I 7J]), C, EF are the matrixes of the GLV parameters, the time-series data, and the log-314 

derivatives of the time-series data respectively (%1, %G, … , %M are discrete time points) 315 
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 7I = (
)1,1 ⋯ )1,/
⋮ ⋱ ⋮

)/,1 ⋯ )/,1
2 

 

(3) 

 7J = [)1,+ ⋯ )/,+]Q (4) 

 

C = R

"1(%1) ⋯ "1(%M)
⋮ ⋱ ⋮

"/(%1) ⋯ "/(%M)
1 					…						 1

T 
 

(5) 

 
EF = (

(UV("1)):0:W
X ⋯ (UV("1)):0:Y

X

⋮ ⋱ ⋮
(UV("/)):0:W

X ⋯ (UV("/)):0:Y
X

2 
 

(6) 

The log-derivatives (! ln["#(%)\ /!%) in Eq. (6) can be numerically approximated from data using the 316 

Euler’s method 317 

 
! ln["#(%)\

!% |:0:^
≈
ln["#(%`I1)\ − ln["#(%`)\

%`I1 − %`
 (7) 

or high-order approaches such as the Runge-Kutta methods or spline interpolation. 318 

GLV parameters may be constrained during the linear regression. Symbolic constraints (i.e., 319 

constraints on the signs) can be derived based on potential interactions between species: (1) )#,. < 0 and 320 

).,# > 0 for predator (species 6)-prey (species 3) relationships; (2) )#,# < 0 for intraspecific competitions 321 

within population of species 3; (3) )#,. < 0 and ).,# < 0 for interspecific competitions between species 6 322 

and species 3; (4) )#,. = 0 and ).,# = 0 for non-interacting species pairs. Population growth rates of species 323 

on the lowest trophic level are positive and the rates of species on all higher trophic levels are negative. 324 

This makes intuitive sense: predators should decline in the absence of prey. 325 

 326 

GLV model parameterization: Latent variable regression 327 

The flowchart of the latent variable regression is shown in Fig. 2a. Conceptually, the method alternates 328 

between updating the GLV parameters (7) and the log-derivatives (EF) until convergence is reached. Given 329 

EF(`) from a previous iteration d, we optimized 7(`I1) by solving the linear regression given in Eq. (2) in 330 

the current iteration d + 1 . EF(`)  is then updated to EF(`I1)  according to the Levenberg-Marquardt 331 
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optimization algorithm (Moré 1978), which adaptively updates parameter values based on a blend of 332 

gradient descent and Gauss-Newton update rules. The objective function to be minimized is the sum of 333 

squared errors (SSE) of prediction plus two penalty terms 334 

 Objective	function = ||C − Co||GG + p+||7J||GG + pI||7I||GG (8) 

where C is the observed data, Co is the simulated time series using 7(`I1)�and p+ and pI are the penalty 335 

coefficients for the growth rate vectors and the interaction matrix respectively. The iterations continue until 336 

the convergence criteria for the Levenberg-Marquardt algorithm is met. 337 

 To maximize the performance of prediction, p+ and pI in Eq. (8) were chosen as the combination 338 

that minimizes the averaged prediction error over 10 random runs of 3-fold cross validation. The time series 339 

data was first partitioned into 3 subsets of equal size; two training subsets (Cqrstu) were used to infer the 340 

parameters and the remaining test subset (Cqvoq) was used to evaluate the corresponding prediction error, 341 

i.e., ||Cqvoq − Co||GG . The GLV parameters were determined by running the iterative method described 342 

above with the optimized penalty coefficients and the complete dataset. The optimal penalty parameters 343 

obtained from 3-fold cross validation are p+ = 10wx and pI = 10wG. 344 

 Coexistence of competing species has been observed in many natural ecosystems (Bode et al. 2011; 345 

Hart et al. 2017) and was also assumed for the fish communities we studied. However, the optimal set of 346 

GLV parameters obtained from the above procedure does not guarantee this property at steady state. To 347 

search for alternative sets that would fit the observed data equally well but predict stable coexistence, we 348 

added a perturbation step by randomly sampling the parameter space in the neighborhood of the optimal 349 

set and ran nonlinear optimization algorithm using these samples as initial guesses. To sample an initial 350 

guess, we modified the optimal set of GLV parameters by only changing the self-regulation coefficients: 351 

their values were uniformly sampled between the negative of the maximum absolute value of all interaction 352 

coefficients in the optimal set and 0. The perturbation steps were repeatedly applied to the complete dataset 353 

until 100 alternative sets of GLV parameters that give rise to stable coexistence of species were found. 354 

Among the 100 alternative solutions, the one that has the minimum SSE was chosen to finally parameterize 355 

the GLV model. 356 
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 357 

Linear stability analysis 358 

Linear stability analysis of the GLV model concerns the stability of dynamic system at steady state (i.e., 359 

fixed point) under small perturbations. The steady state solutions (yzz = ["1zz, "Gzz, … , "/zz])	of Eq. (1) can 360 

be determined by solving "#zz[)#,+ + ∑ )#,.".zz/
.01 \ = 0 where 3 ranges between 1 and 4. In principle, Eq. 361 

(1) can have at most 2/ steady states, including no more than one coexistence state. A stable steady state 362 

requires that the real part of all eigenvalues of the Jacobian matrix is negative. 363 

 364 

Total importance score 365 

The total importance of species 3 (}~#) in a directed network is quantified by the sum of effects originated 366 

from this species to all other species in the network 367 

 
}~# = - 		 - 		 �

)9,Ä
∑ |)Å,Ä|Å	∈	z8ÉÅÑÖ	Ü8áÖz	8à	âää	á#ÅÖÑ:	ä#Ü`z	Å→Ä9,Ä	∈	z8ÉÅÑÖ,:âÅåÖ:

Ü8áÖz	8à	âää	á#ÅÖÑ:
ä#Ü`z	8à	9â:ç	`	

`	∈	âää	9â:çz
àÅ8é	#	:8	.

/

.01,.è#

 
(8) 

where the impact of species 3 on species 6 is the sum of indirect chain effects over all paths from species 3 368 

to species 6. We assume the indirect chain effect is multiplicative: the effect of indirect interaction along 369 

each path is calculated by multiplying the normalized weight of each direct link along the path. For any 370 

direct link ê → ë (the one-way interaction from species ê to specie ë), its normalized weight is equal to its 371 

corresponding interaction coefficient of the GLV model ()9,Ä) divided by the sum of absolute values of 372 

interaction coefficients that are associated with all incoming links of node ë. 373 

 374 

MCMC simulation 375 

MCMC is a class of algorithms that use a sequence of random samples (i.e., Markov chain) to approximate 376 

the posterior distribution of model parameters. At each iteration, the algorithm makes a tentative move in 377 

the parameter space based on the current parameter values and accepts the move with some probability. 378 

Advanced techniques such as adaptive Metropolis samplers and delaying rejection were adopted to enhance 379 
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the basic Metropolis-Hastings algorithm (Haario et al. 2006). We simulated 1,000,000 steps of a Markov 380 

chain for each parameter in Supplementary Table 5 under the constraints of parameter values between -5 381 

and 0 (for negative interactions) or 0 and 5 (for positive interactions). During MCMC simulation, the 382 

population growth rates of native fish species as well as their pairwise interaction coefficients remained 383 

unchanged. 384 

 385 

Software 386 

The total importance scores for all species in the network were calculated in Python using NetworkX. All 387 

other simulations and analysis were performed in MATLAB R2018 (The MathWorks, Inc., Natick, MA, 388 

USA). The Levenberg-Marquardt algorithm is implemented in the MATLAB optimization toolbox function 389 

lsqnonlin. The parameter confidence intervals of nonlinear regression were calculated using the MATLAB 390 

statistics and machine learning toolbox function nlparci. The MATLAB codes of EMD and Hurst exponent 391 

estimation can be accessed from  392 

https://www.mathworks.com/matlabcentral/fileexchange/52502-denoising-signals-using-393 

empirical-mode-decomposition-and-hurst-analysis. The MCMC toolbox used for this study is available 394 

from https://github.com/mjlaine/mcmcstat.   395 
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Figure Legends 479 

 480 

Figure 1: The freshwater fish community varies spatially and temporally in the La Grange pool and nearby 481 

water bodies. a, Geographical locations of the six stations monitored by the Long Term Resource 482 

Monitoring Program along the Upper Mississippi and Illinois Rivers. b, Biplot of principle component 483 

analysis (PCA). Each circle (“score”) represents the species abundance distribution of fish community 484 

associated with a site and year combination. The color brightness of circles indicates the passage of time: 485 
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lighter colors represent earlier data. Each line (“loading vector”) represents contribution of an explanatory 486 

variable (fish species) to the variance of first two principle components. For all loading vectors, the top 9 487 

dominant fish species in La Grange pool plus silver carp are colored in black while all others are colored 488 

in light gray. The inset is the same PCA score plot, but the circle size is scaled to be proportional to the 489 

abundance of invasive silver carp (samples missing silver carp are represented with crosses). c, Common 490 

names, abbreviations, and species names of the 10 fish species selected to investigate in our study. Fish 491 

images were obtained through public domain resources except for silver carp licensed by CC BY 3.0 and 492 

gizzard shad provided by Chad Thomas pf Texas State University.  493 
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 494 

Figure 2: Latent variable regression improves network inference substantially compared to simple linear 495 

regression. a, A flowchart showing how linear regression (LR; shaded in light yellow) is expanded by the 496 

latent variable regression (LVR; shaded in light blue). í(%): observed time series; íz(t): simulated time 497 

series; ): parameters of the generalized Lotka-Volterra model; !ì: time-derivatives of ln(í(%)). The key 498 

difference between LR and LVR is that !ì in LVR are iteratively learned, while they are numerically 499 

approximated and fixed in LR. LM: Levenberg-Marquardt. b,c, Comparison between LVR (b) and LR (c) 500 

in fitting synthetic time series generated by a 3-species predator-prey Lotka-Volterra model. d-g, 501 

Effectiveness of the LVR method to infer known interactions. d,e, The protozoan predator (Didinium 502 

nasutum)-prey (Paramecium aurelia) ecosystem. f,g, The ecosystem of a rotifer predator (Brachionus 503 

calyciflorus) and two algae preys (Chlorella vulgaris). Lotka-Volterra networks obtained using LVR for 504 

the two ecosystems are shown in d and f, where solid links represent interactions (point end for positive 505 

effect and blunt end for negative effect) and dashed links represent population growth (incoming links for 506 

positive growth rate and outgoing links for negative growth rate). Interaction strengths and population 507 
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growth rates are indicated along the network links. e and g show good agreements between observed 508 

population dynamics (dots) and model predictions (lines). The first 13 data points of Didinium nasutum-509 

Paramecium Aurelia dynamics were removed to eliminate the initial transient period. Unit for the y-axis: 510 

individuals/mL (e); 10 individual females/mL for the rotifer and 10î cells/mL for the algae (g).  511 
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 512 

Figure 3: Ecological network inferred for the freshwater fish community of the La Grange pool of the 513 

Illinois River. a, Comparison of model predictions (lines) with fish population data (gray dots) for the 9 514 

dominant native fish species in La Grange pool. Dashed lines: linear regression; solid lines: latent variable 515 

regression. b, Inferred population growth rates. c, Clustering of inferred pairwise interaction coefficient 516 

matrix. Each coefficient in row 3  and column 6  represents the effect of fish species 	6  on species 3 . 517 

Coefficients that are greater, equal to, or smaller than zero stand for positive, neutral, or negative effects, 518 

respectively. In a-c, fish species are colored based on their trophic levels (green for resource preys, blue for 519 

mesopredators, red for top predators). d, Distribution of interaction strengths shown in c.  520 
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 521 

Figure 4: Core subnetwork of interspecific interactions. Point arrows represent positive effects and blunt 522 

arrows represent negative effects. The black percentage of each link corresponds to the interval that the 523 

smaller confidence score of the link inferred among La Grange pool and Pool 26 falls. The darker the links, 524 

the more significant the interactions.  525 
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 526 

Figure 5: The gizzard shad is a keystone species essential for coexistence. a, Coexistence relies on a fitness-527 

equalizing mechanism. The stacked bars show steady state relative abundance of fish species in 528 

subnetworks consisting of only resource preys (upper left) and resource preys plus mesopredators (upper 529 

middle) as well as the full network (upper right). The schematic diagrams at the bottom illustrate how 530 

fitness between strong and weak competitors among the resource preys are equalized by incorporating 531 

predators. b, Topological importance of fish species. The importance score of a species reflects its total 532 

impacts on the fitness of all other species in the network. Species with positive scores play overall 533 

facilitating roles that stabilize species coexistence. In contrast, species with negative scores tend to exclude 534 

other competitors. c, Assessment of effects of single species removal (extinction) on coexistence of others 535 

in the community. A species is more important if its removal causes higher number of secondary extinctions.   536 
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 537 

Figure 6: The silver carp invades native fish community by outgrowing other prey. a, Steady state relative 538 

abundance of fish species in the absence (gray bars) and presence (blue bars) of silver carp. b, Silver carp 539 

as supplemental food sources to native predators. The percentage contribution of a prey to its predator’s 540 

diet is proportional to the pairwise interaction term describing the positive influence of this prey on the 541 

predator. c, Linear-threshold dependence of silver carp’s invasion success on its population growth rate.  542 

 543 
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1. Ecological interpretations of inferred fish interaction network 

 

• The positive interaction from ERSN to CNCF; the negative interaction from CNCF to ERSN; the 

positive interaction from GZSD to CNCF. Emerald shiner is a small fish species feeding on a variety 

of zooplankton, protozoans and diatoms. Gizzard shad is also small, and its diet consist of 

phytoplankton, zooplankton and detritus1. In contrast, channel catfish is an omnivore: although young 

catfish feed on vegetation and insects, adult channel catfish begin to use other fish as part of the diet2. 

So abundant gizzard shads and emerald shiners may provide a forage base to support growth of channel 

catfish3. 

 

• The positive interaction from ERSN to WTBS; the negative interaction from CNCF to WTBS. 

Similar to channel catfish, young white bass feed on zooplankton and small invertebrates but its adults 

are piscivorous. Since both white bass and channel catfish consume small fish such as emerald shiner 

and gizzard shad4,5, the two species may have niche overlap and negative impact each other due to 

competition. 

 

• The negative interaction from BLGL to GZSD. Bluegill is an omnivore and its diet consist of insect 

larvae, crayfish, leeches, snails and other very small fish. Similar to gizzard shad and emerald shiner, 

bluegill is prey to many larger predator fish. Gizzard shad is known to compete with bluegill for food 

resources6,7.  

 

• The negative interaction from ERSN to BLGL. The interaction between emerald shiner and bluegill 

remains to be found. Given that gizzard shad compete with both fish species for food6–8, it is very likely 

that emerald shiner and bluegill have niche overlap and compete for similar resources. 
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• The negative interaction from FWDM to CARP. Freshwater drum generally eat zooplankton when 

they are young but start to feed on inserts and fish in adult ages9. It is very interesting that some people 

confuse drum with common carp because the drum's underslung mouth makes many people believe it 

is a bottom feeder, just like the common carp. Although freshwater drum also chase prey in open water, 

it is likely that both bottom feeders compete for food and space near the bottom of water. 

 

• The negative interaction from FWDM to BKCP. Black crappies mainly eat plankton and crustaceans 

when they are young and larger individuals are basically piscivorous and primarily feed on small fish. 

Since adult black crappie and freshwater drum share common preys such as gizzard shad10,11, their 

competitions for food resources seem to be unavoidable. 

 

• The negative interaction from BKCP to ERSN. Adult black crappies prefer forage fish and minnows 

such as gizzard shad and emerald shiner. In fact, they can feed on anything that fits into their mouths. 

Emerald shiner is a small fish with a typical length of 8.6 cm and the small size makes it a bait used by 

anglers for fishing crappie. 

 

• The negative interaction from SMBF to GZSD; the negative interaction from ERSN to SMBF. 

Smallmouth buffalo is a detritivore and uses its ventral sucker mouth to eat vegetation, insets and other 

organisms from the bottom of a body of water. The diet of adult smallmouth buffalo contains 55% of 

zooplankton and 31% phytoplankton12.  Since gizzard shad and emerald shiner also feed on plankton, 

they may compete with smallmouth buffalo for diet and habitat due to the diet overlap. It was observed 

that the diet between smallmouth buffalo and gizzard shad do have certain overlaps, despite the relative 

proportions of detritus and zooplankton differ13.  

 

• The negative interaction from CARP to ERSN; the negative interaction from CARP to SMBF. 

Common carp was first introduced to the United States since 1800s and became an invasive species. 
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The invasion of common carp has caused damages to native fish population due to competition for food 

and space14.  Common carp eat nearly anything, including aquatic plants, mollusks, insects and debris15. 

They also reproduce rapidly and can survive in poor water quality16. The inhibitions of common carp 

on emerald shiner and smallmouth buffalo are expected because invasive common carp are more 

competitive than native consumers.  
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2. Supplementary Figures 

 

 

Supplementary Figure 1 Relative abundance (normalized among species) from multiple fishing gears for the 

dominant fish species in La Grange pool. Different fishing gears are selective for certain types of fish and no 

gear can catch all of them, suggesting the need to combine fish samples from different gears.  
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Supplementary Figure 2 a, 3-species predator-prey Lotka-Volterra model used to generate synthetic data in 

Fig. 2b,c in the main text. Solid links represent interactions (point end for positive effect and blunt end for 

negative effect) and dashed links represent population growth (incoming links for positive growth rate and 

outgoing links for negative growth rate). Interaction strengths and population growth rates are indicated along 

the network links. b, Comparison between latent variable regression and nonlinear regression for their 

convergence rates. Each symbol (diamond and cross) marks the time of completion of one optimization iteration.  
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Supplementary Figure 3 Flow chart of nonlinear regression. !(#): observed time series; !%(t): simulated 

time series; ': parameters of the GLV model; (): time-derivatives of ln(!(#)). Nonlinear regression takes 

the output of linear regression as initial guesses of ' and adaptively update ' until the difference between 

observed and simulated time series is minimized. LM: Levenberg-Marquardt.  
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Supplementary Figure 4 Cumulative percentage of the averaged abundance index between 1993 and 2015. The 

top 12 dominant fish species at both La Grange pool and Pool 26 are shown in order of most to least abundant, 

where fish species common to both sites are made bold.   
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Supplementary Figure 5 a, Schematic diagrams showing steps to identify symbolic constraints of interactions 

from literature data. First, a summary food web consisting of all potential interactions is reconstructed based on 

Fishbase (http://www.fishbase.org) trophic level indices as well as experimentally observed trophic interactions. 

Second, negative, neutral and positive interactions in the food web are converted to symbolic constraints of the 

interaction coefficients in the generalized Lotka-Volterra (GLV) model. For example, a positive interaction 

requires its corresponding GLV interaction coefficient to be positive as well. See Methods in the main text for 

details. b, Reconstructed summary food web for the 9 dominant fish species in La Grange pool. Point arrows 

represent positive effects and blunt arrows represent negative effects. The fish name abbreviations are colored 

according to their trophic levels: green for resource preys, blue for mesopredators, and red for top predators. The 

literature reported predator-prey relationships used to identify potential interactions include: BKCP-BLGL17, 
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CNCF-BLGL18, CNCF-ERSN3, CNCF-GZSD3, FWDM-GZSD19, WTBS-BKCP20, WTBS-BLGL20, WTBS-

FWDM20, WTBS-ERSN21, WTBS-GZSD21, WTBS-CARP22 (the former species is a predator and the latter 

species is a prey).  
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Supplementary Figure 6 Comparison of model predictions (lines) with experimentally observed abundance 

indices (gray dots) for the 12 dominant fish species in Pool 26.  
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Supplementary Figure 7 General proportionality between the absolute values of the Generalized Lotka-

Volterra (GLV) model parameters and their corresponding confidence scores, which were calculated as the 

minimum significance levels above which the confidence intervals of the GLV parameters do not contain 0. The 

use of confidence score allows for fair comparisons of significance levels of GLV inferences among different 

geographical locations.  
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Supplementary Figure 8 Dynamic stability of alternative steady states for fish communities in La Grange pool 

and Pool 26. The histograms represent distribution of the largest real eigenvalues of all alternative steady states. 

A ,-species system has at most 2. (marginally) steady states, which correspond to all possible permutations of 

species removals, including one state for total extinction, one state for total coexistence, and the other 2. − 2 

states for partial coexistence with various numbers of extinct species. For a steady state to be stable, its largest 

real eigenvalue must be negative.   
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Supplementary Figure 9 Fold change of fish abundance indices in the absence of gizzard shad to those when 

gizzard shad is present. Black arrow indicates the time point gizzard shad is removed from the network. Dashed 

lines represent time courses of fish species that go extinction after gizzard shad’s removal.  
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Supplementary Figure 10 Potential interactions between silver carp and native fish species in La Grange pool 

(black links). The fish name abbreviations are colored according to their trophic levels: green for resource preys, 

blue for mesopredators, and red for top predators. The literature reported predator-prey relationships used to 

identify potential interactions include: CNCF-SVCP23, WTBS-SVCP21, BKCP-SVCP23 (the former species is a 

predator and the latter species is a prey). Gray links represent interactions among/within native fish species.  
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3. Supplementary Tables 

 

Scientific name Common name Abbr. 
Fishbase 
trophic level 
index 

Trophic level 
Species in 
La Grange 
model? 

Species in 
Pool 26 
model? 

Hypophthalmichthys molitrix Silver Carp SVCP 2.0 ± 0.00 Resource prey Yes No 
Dorosoma cepedianum Gizzard Shad GZSD 2.4 ± 0.21 Resource prey Yes Yes 
Notropis atherinoides Emerald Shiner ERSN 2.8 ± 0.29 Resource prey Yes Yes 

Notropis wickliffi Channel Shiner CNSN 2.9 ± 0.3 Resource prey Yes Yes 

Ictiobus bubalus Smallmouth 
Buffalo SMBF 3.0 ± 0.39 Resource prey Yes Yes 

Cyprinus carpio Common Carp CARP 3.1 ± 0.0 Resource prey Yes Yes 
Lepomis macrochirus Blue Gill BLGL 3.2 ± 0.2 Resource prey No Yes 
Ictalurus furcatus Blue Catfish BLCF 3.4 ± 0.44 Mesopredator Yes Yes 
Aplodinotus grunniens Freshwater Drum FWDM 3.4 ± 0.43 Mesopredator Yes Yes 
Pomoxis nigromaculatus Black Crappie BKCP 3.8 ± 0.62 Mesopredator No Yes 
Lepisosteus platostomus Shortnose Gar SNGR 3.9 ± 0.7 Mesopredator No Yes 
Morone chrysops White Bass WTBS 4.0 ± 0.68 Top predator Yes Yes 
Ictalurus punctatus Channel Catfish CNCF 4.2 ± 0.3 Top predator Yes Yes 

 

Supplementary Table 1 Summary of fish species included in our study. Fishbase is a global database that covers 

more than 32, 000 fish species (http://www.fishbase.org). Fish species are classified as resource prey, 

mesopredator, or top predator based on their Fishabse trophic level indices as well as interaction data about how 

they interact with each other (see Methods in the main text for details).   
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Supplementary Table 2 Symbolic constraints used to parameterize generalized Lotka-Volterra model for fish 

community in La Grange pool. The shaded matrix was used to constrain pairwise interaction coefficients and 

the last column was used to constrain population growth rates. For species interaction coefficients, -1, 0, 1 

represent negative, neutral, and positive interaction from the column species to the row species respectively. For 

population growth rates (the last column), -1 means negative growth rate and 1 means positive growth rate.  

 
CNCF GZSD FWDM SMBF CARP ERSN WTBS BLCF BLGL SNGR CNSN BKCP Growth 

CNCF -1 1 1 0 0 1 -1 1 1 1 0 1 -1 

GZSD -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 

FWDM -1 1 -1 1 1 1 -1 -1 1 -1 1 -1 -1 

SMBF 0 -1 -1 -1 -1 -1 0 -1 -1 -1 -1 -1 1 

CARP 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 

ERSN -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 

WTBS -1 1 1 0 1 1 -1 1 1 1 0 1 -1 

BLCF -1 1 -1 1 1 1 -1 -1 1 -1 1 -1 -1 

BLGL -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 

SNGR -1 1 -1 1 1 1 -1 -1 1 -1 1 -1 -1 

CNSN 0 -1 -1 -1 -1 -1 0 -1 -1 -1 -1 -1 1 

BKCP -1 1 -1 1 1 1 -1 -1 1 -1 1 -1 -1 
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CNCF GZSD CARP FWDM SMBF ERSN BLGL WTBS BKCP Growth 

CNCF -0.489 1.075 0.000 0.150 0.000 1.885 0.744 -0.287 0.092 -1.500 

GZSD -0.104 -0.440 -0.003 -0.001 -0.892 -0.358 -0.750 -0.376 0.000 1.489 

CARP 0.000 -0.746 0.000 -0.853 -0.001 -1.237 -0.866 0.000 -0.394 2.113 

FWDM -0.290 0.163 0.229 -0.554 0.188 0.157 0.839 -0.224 -0.107 -0.001 

SMBF 0.000 -0.043 -0.420 -0.001 -0.460 -0.992 -0.100 0.000 -0.022 0.947 

ERSN -0.329 -0.171 -0.558 -0.001 -0.047 -1.014 -1.127 -0.836 -0.503 2.170 

BLGL -0.043 -0.062 -0.007 -0.420 -1.499 -0.568 -0.847 -0.931 -0.003 1.832 

WTBS -0.331 0.145 0.000 0.065 0.000 0.774 0.664 -0.621 0.009 -0.188 

BKCP -0.057 0.196 0.293 -0.809 0.003 0.094 0.610 0.000 -0.584 -0.003 
 

Supplementary Table 3 Optimized coefficients of the generalized Lotka-Volterra model for fish community in 

La Grange pool. The shaded area gives pairwise interaction coefficients (each cell represents the interaction from 

column species to row species) and the last column gives population growth rates.  
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 CNCF GZSD FWDM SMBF CARP ERSN WTBS BLCF BLGL SNGR CNSN BKCP Growth 

CNCF -0.487 0.617 0.713 0.000 0.000 0.757 -0.244 0.241 0.262 0.294 0.000 0.199 -0.623 

GZSD -0.016 -0.737 -0.311 -0.484 -0.354 -0.213 0.000 -0.524 -1.521 -0.062 -0.546 -0.642 1.923 

FWDM -0.023 0.193 -1.761 0.926 1.296 1.509 -0.065 -0.989 0.457 -0.051 0.271 -0.971 -0.086 

SMBF 0.000 -0.677 -0.001 -1.514 -0.581 -0.901 0.000 -1.400 -0.791 -0.243 0.000 -0.933 2.510 

CARP 0.000 -0.186 -0.471 -0.856 -0.657 -0.204 -0.005 -1.139 -0.625 -1.025 -1.022 -0.064 2.039 

ERSN -0.960 -0.598 -0.733 -0.552 -0.827 -0.689 -0.165 -0.541 -0.523 -0.085 -0.172 -1.906 3.779 

WTBS -0.583 0.418 0.234 0.000 0.678 0.936 -1.119 0.868 0.597 0.315 0.000 0.074 -0.408 

BLCF -0.091 1.209 -0.056 1.960 0.221 0.250 -1.701 -0.498 0.014 -0.001 0.241 -1.380 -0.949 

BLGL -0.003 -0.355 -0.237 -0.160 -0.645 -0.664 -0.636 -0.654 -1.539 -0.078 -0.004 -0.214 1.777 

SNGR -0.131 0.504 0.000 0.449 0.102 0.084 -0.164 -0.271 0.264 -0.151 0.481 -0.100 -0.451 

CNSN 0.000 -0.091 -0.027 -0.394 -0.367 -0.080 0.000 -0.056 -0.168 -0.054 -1.704 -0.026 0.986 

BKCP -0.005 1.509 -1.072 0.463 0.009 0.429 -0.283 -0.353 0.000 -0.008 0.562 -0.910 -0.636 

 

Supplementary Table 4 Optimized coefficients of the generalized Lotka-Volterra model for fish community in 

Pool 26. Note that Pool 26 model has 12 fish species, including the 9 dominant species in La Grange pool. 

The shaded area gives pairwise interaction coefficients (each cell represents the interaction from column species 

to row species) and the last column gives population growth rates.  
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 CNCF GZSD CARP FWDM SMBF ERSN BLGL WTBS BKCP 
Impacts of SVCP on 
native fish species 

0.360 ± 
0.198 

-0.120 ± 
0.079 

-0.206 ± 
0.135 

0.142   ± 
0.095 

-0.201 ± 
0.115 

-0.210 ± 
0.149 

-0.147 ± 
0.100 

0.176 ± 
0.130 

0.140 ± 
0.121 

Impacts of native fish 
species on SVCP 

-0.474 
± 0.304 

-0.683 ± 
0.539 

-0.728 ± 
0.731 

-0.267 ± 
0.338 

-0.409 ± 
0.513 

-0.439 ± 
0.539 

-1.966 ± 
0.732 

-0.788 ± 
0.963 

-0.936 ± 
1.051 

Growth rate of SVCP 4.703 ± 0.377 
Self-interaction 
within SVCP -2.507 ± 1.125 

 
Supplementary Table 5 Estimated median and standard deviation of Lotka-Volterra model parameters related 

to silver carp using Markov Chain Monte Carlo (MCMC) simulation. These parameters include 9 coefficients 

for impacts of silver carp on native fish species (second row), 9 coefficients for impacts of native fish species on 

silver carp (third row), one coefficient corresponding to population growth rate (fourth row), and one coefficient 

corresponding to intraspecific interaction (last row). However, there are only 16 data points in the time series of 

silver carp after 2000, when its population started to increase exponentially24. Due to insufficient data, the 

model parameters estimated for the silver carp invasion have high uncertainty: the variances of some 

parameters are as large as their median values. Nonetheless, we could obtain best guesses by sampling their 

posterior distributions using MCMC.  
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