












3.1.2 The variable importance

The Figure 3.6 shows summary results for 39 participants. On the y-axis we have
the values of the Mean Decrease Gini and on the x-axis we have the names of the
variables. Each boxplot contains information about values of importance measure for
participants. Their colors correspond to the accelerometer placement. The boxplots
were ordered by the values of medians. If we look at the first six most important

Figure 3.6: Comparison of variable importance for statistics obtained on the basis of signal from
different accelerometer placements.

variables we can see dominance of device placed on the hip. It is visible also that
the variance of radius associated with the hip is a particularly strong predictor. This
shows high importance of signal from a waist. There exist certain hierarchy in each
group of boxplots with the same color. The two types of variance are always the
strongest variables. Next best are the averaged values of the angles and the weakest
predictors are always the means of the radius. Furthermore one can notice that in
the group of the first eight strongest predictors, six of them are the different types of
variance and their medians are approximately on the same level or higher then the
upper quartiles of boxplots for rest of variables. This indicates the high importance of
two types of variances. We would like to point out one more observation. If we turn
our attention to boxplots corresponding to signal from right wrist (blue color) one
can notice that the mean decrease gini for spherical variance is higher than for the
variance of the radius. This probably explains relatively high classification accuracy
improvement for comparison of models from previous Section. This observation has
practical importance. Often in real life accelerometers are worn similarly to a watch.
Taking this into account one can see that limitation exclusively to radial part of
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signal have strong undesirable influence on data analysis.

3.1.3 Decision trees

In this Section we present observations about decision trees constructed on informa-
tion from three accelerometers. In a natural way models vary for different partici-
pants. However to a certain extent they exhibit similar behavior.

Figure 3.7: Example of decision tree from one of the participants.

In Figure 3.7 one can see a sample decision tree. At each level, points were divided
into two subsets with respect to a certain value of one of the variables. At the end
of each path we have a leaf informing about the label of activity group, numbers of
observations from training set that were assigned to a subset and the percentage of
all observations from training set that fall into a subset.

The models for different persons had from 3 to 6 levels. However most of the
decision trees had 4 or 5 levels (41.0% and 39%, respectively). In Table 4 one
can find information about the frequencies of variables appearance from different
placements of the accelerometers. It is again visible dominant role of signal from
the hip and certain advantage of the right wrist over the left. Table 5 presents
how often different variables appeared. Due to the dominance of signal from the
hip we decided to compare frequencies separately for each accelerometer placement.
It is noticeable that for the hip three variables with similar appearance frequency
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Table 4: Decision trees - placement of accelerometer

placement percentage
hip 56.1%

right wrist 24.5%
left wrist 19.4%

dominate. For the right wrist we observed particular importance of the spherical
variance followed by medium appearance frequencies of angles means and variance
of the radius. For the left wrist dominant role has µφ followed by σ2

sph, µθ, and σ2
r .

For all three accelerometer placements it is visible low importance of information
contained in µr. An interesting behavior is observed when comparing variances
versus means usage on different tree levels.

Table 5: Decision trees - frequencies of variables usage for different accelerometer placement

variable hip right wrist left wrist
µφ 31.7% 17.7% 30.6%
σ2
r 28.2% 22.6% 20.4%
µθ 27.5% 22.6% 22.4%
σ2
sph 7.7% 33.9% 26.5%
µr 4.9% 3.2% 0.0%

total 100% 100% 100%

Even though there are more mean variables (60% - means; 40% - variances) we
can notice the dominance of variances near the root of the trees (70% on first level).
This points again to particular significance of the variances (the decision tree method
chooses at each level the strongest variable).

3.2 Results for population model

In this Section we present results of classification accuracy on between-subject level.
In natural way classification accuracy of model for that case was lower. It is a conse-
quence of a fact that on within-subject level we didn’t have to deal with differences
between participants such as e.g. age, height, gender. To make our analysis more
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immune to entrants individual features we worked only with right-handed partici-
pants (34 out of 39 subjects). The Section is organized analogously to the previous
one. First, we explore the importance of angular information and compare clas-
sification accuracy for models combining information from different accelerometer
placements(3.2.1). Next we present results of variable importance (3.2.2) and finally
(3.2.3) we present decision tree constructed on signal from all 34 participants.

3.2.1 The classification accuracy comparison

In Figure 3.8, we present the comparison of classification accuracy for models con-
structed on the basis of signal from different accelerometer placement. The figure is
organized in a similar way to the Figure 3.4, which presents the same quantities for
within-subject case.

Figure 3.8: Results of classification accuracy for models on between-subject level.

On the y-axis we have classification accuracy and the x-axis contains information
about accelerometer placements (capital letters H, L and R for respectively hip,
right and left wrist) associated with variables used in model construction (’all’ - all
variables; ’inv’ - variables rotationally independent µr, σ

2
r , σ

2
sph; ’rad’ - variables

constructed on the radius µr, σ
2
r). The figure is divided by two vertical lines into

three parts. First part shows the results for models constructed on each accelerometer
separately. Second part contains information about models utilizing signal from
two device placements and the third part displays the results for trees build on all
three accelerometers simultaneously. At the beginning let us turn our attention
to the first part. Similarly to the within-subject case it is noticeable that signal
from a hip has the highest classification accuracy (76%). The strongest models for
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right and left wrist are on approximately the same level (70%). It is visible also
that additional usage of the angular variables increases classification accuracy. The
strongest influence is observed for the left wrist where spherical variance increases
classification accuracy by 7% and angles’ means provide further improvement of
5.5%. Strong effect is also noticeable for the right wrist. Spherical variance in this
case gives 6% increase in classification accuracy. The influence of the angles’ means
is also positive however it is rather small (1%). For a hip, effect of angular variables
is also small (overall gain 3%).

In the case of the second and third area where we have results for models con-
structed on information from more than one accelerometer, we can notice that classi-
fication accuracies are higher than in the first part. Furthermore, it is visible that the
best classification models are obtained when we use all three devices simultaneously
(84%). This shows that on between-subject level it is important to use information
from different accelerometer placements. On the other hand it is noticeable that sig-
nificance of angular variables for this case is negligible and that it is sufficient to use
only statistics build on the radius. In the case when we have only two accelerometers
the best results are obtained for a hip and a right wrist (dominant hand) combination
(80 - 82%). There is also noticeable positive influence of the angular variables for the
combinations of two devices. The effect is small when models contain information
from a hip (’HL’, ’HR’ - overall 2%) and considerable for models constructed on a
left and right wrist (’LR’). For this case the spherical variances increase classification
accuracy by 4.5% and the angles means do not give further improvement.

3.2.2 The variable importance

In Figure 3.9 we present results of variable importance analysis for currently consid-
ered model. The figure is organized in an analogous way to previous case.

One can notice that figure resembles results from first part of analysis. Again
different types of variances have dominant role. The mean values of the radius have
the smallest effectiveness and in the middle are the angles means. In consequence the
structure within each color group is also preserved. One can notice that if we would
look at the same statistics from different accelerometers always the signal from a hip
is on first place. This again points to crucial role of signal from a waist.

3.2.3 Decision trees

In Figure 3.10 we present the decision tree containing information from all three
accelerometers and constructed on the basis of signal from 34 participants. It is
easy to notice the dominance of different variance types (only ones the mean of θ
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Figure 3.9: Comparison of variable importance on between-subject level.

was used). This suggest that importance of means has subject-specific character and
that it is better to use rotationally independent variables on between-subject level.

Figure 3.10: Decision tree containing information from all three accelerometers and constructed on
the basis of signal from 34 right-handed participants.

On first two levels of tree, model separates totally resting and lower body group
from others. The resting activities are isolated by very low values of spherical variance
from right wrist. This behavior suggest quiescence of dominant hand and seems to
be consistent with intuition (quiescence of dominant hand imply resting nature of
activity). On the other hand lower body group is separated from others by high

24

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 28, 2019. ; https://doi.org/10.1101/686519doi: bioRxiv preprint 

https://doi.org/10.1101/686519


variance of radius from a hip. This is also quite intuitive behavior. High values
of variance from a hip suggest vigorous movement of waist (e.g. walking or chair
stand). The hardest to separate are upper body activities and as one can notice the
structure of decision tree complicates for this two groups.

4 Discussion

We proposed and evaluated a novel classification method for different human activity
types. Our method is based on a spherical representation of the raw accelerometry
signal. The procedure enables accurate classification of short-term activities which is
crucial for free-living physical activity assessments. The transformation to a spheri-
cal coordinate system enabled introduction of the spherical variance; a summary not
used before in the accelerometry data context to the best of our knowledge. Spher-
ical variance is rotationally invariant which is an important feature in comparative
analysis of signals from more than one device. Moreover, the results of the analyses
indicate high importance of this variable in classification context. Our analyses show
that variables characterizing angular changes in accelerometry data significantly im-
prove classification accuracy of the models constructed based only on the information
from the radial part of a signal. This property was observed on both within- and
between-subject level.

The variable importance analysis (see Figure 3.6 and 3.9) revealed specific hierar-
chical structure among the extracted features. For both within- and between-subject
level as well as each accelerometer placement, the most important features were the
variance of the radius and the spherical variance. Next best were the means of the
angular coordinates, whereas the radius means had the weakest influence on the clas-
sification accuracy. On between-subject level variable importance summarized above
is even stronger than for the within-subject level.

The analysis revealed that from the classification accuracy perspective for within-
subject level, it is sufficient to use signal from one accelerometer placed on a hip (90%,
see Figure 3.4 and 3.5). However, this model uses angle means and in consequence
it is important to attach the device each time in exactly the same position, since the
angle means are rotationally dependent and hence incomparable for different spatial
accelerometer placements. To obtain rotationally independent model with similar
classification accuracy we had to use data from two accelerometers placed on a hip
and a right wrist. Often, people find it more convenient to wear the device on a
wrist (similarly to a watch) rather than on a hip requiring an attachment to a belt.
When only one device is worn on a wrist, higher classification accuracy is achieved
for the accelerometer placed on a right hand (84%). However, such device placement

25

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 28, 2019. ; https://doi.org/10.1101/686519doi: bioRxiv preprint 

https://doi.org/10.1101/686519


and modeling strategy uses angle means and hence it is important to pay special
attention to the device placement.

For the model at the population level, the best classification accuracy is achieved
when data from all three accelerometers is used simultaneously (84%, see Figure
3.8). In this case, the most important predictors were rotationally independent. The
best placement combination for two devices is a hip and a right wrist (82%). In this
case classification accuracy for full model and rotationally independent predictors is
also very close and in consequence it is sufficient to use a model with rotationally
independent predictors. When only one device is worn, the best accuracy is obtained
for the accelerometer placed on a hip (76%) and next best for the device worn on
a dominant hand. However, both models use rotationally dependent predictors,
therefore the accelerometer should be attached each time in exactly the same way.

An analysis of decision trees constructed using data from all three accelerometers
for within-subject case show certain similarities among them. Optimal trees have
very few branches, with majority of them having 4 or 5 levels (80%). Most often the
variables extracted from the hip-worn accelerometer are chosen (56%, see Table 4).
This again points to a particular importance of the signal from a hip. In a group
of variables associated with the device attached to a hip we observed that variables
chosen most often were variance of radius and two angle means (see Table 5). In
the case of a right wrist the spherical variance was dominant and other important
variables included variance of radius and two angle means. For the left wrist, the
importance of angle means and spherical variance as well as radius variance was
similar. For all accelerometer placements the mean radius was rarely used. This
analysis also revealed that decision trees mostly used different spherical variance and
variance of the radius near the tree roots. This points again to strong importance of
variances. For between-subject level classifiers (see Fig.: 3.10), we observed strong
dominance of spherical variances and variance of the radius. Our analysis also showed
that resting and lower body groups are quite easily separated from other activities.
On the other hand two groups of upper body activities are hard to differentiate which
is confirmed by an increase in the tree complexity.

In future work we will proceed in two directions: (1) we will explore the influence
of higher moments (e.g. skewness and kurtosis) on the classification accuracy of
the models and (2) we will apply other interpretable classification methods on the
extracted features.
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5 Appendix

5.1 Procedure of spherical coordinates system selection

Let us introduce the following notation for a vector of acceleration represented in
Cartesian coordinates associated with accelerometer:

aijt = (xijt , y
ij
t , z

ij
t )T

where: index i ∈ {1, ..., 47} corresponds to a participants number, index j ∈ {1, 2, 3}
correspond to a placement of an accelerometer (1 - hip, 2 - left wrist, 3 - right wrist),
index t ∈ {1, 2, ..., Ti} is the time index (Ti is the duration of an experiment for i-th
participant). As was mentioned earlier the data from each accelerometer are mea-
sured in Cartesian system associated with device. In order to determine a spherical
coordinate system, we rotated the Cartesian system associated with accelerometer
so that the x, y and z axes coincide with (from participants point of view) forward,
left and up directions, respectively (see Figure 2.2). The idea of such regularization
largely borrows from Xiao et al. (2015). In second step we transformed the data
to spherical coordinate system for which the zenith and azimuth directions corre-
sponded to y and z axes of rotated Cartesian system, respectively. To establish the
rotated Cartesian system we took few seconds of a signal for two activities: ”standing
still” and ”lying still”. During this activities only the gravitational acceleration was
detected by device. Therefore we assumed that the mean vector for activity ”stand-
ing still” coincide with participants down direction and that the mean vector for
second activity is close to backward direction. Let’s introduce the following notation
for the mean vectors

āij(k) =
1

n

n∑
t=1

aijtk k = 1, 2

associated with ”standing still” (1) and ”lying still” (2) activities, respectively. Using
above assumptions, we can set three basic directions (up, forward, left) according to
the following equations:

Dij
up = −

āij(1)

‖āij(1)‖

Dij
left = Dij

up ×

(
−

āij(2)

‖āij(2)‖

)
Dij
forw = Dij

left ×D
ij
up
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where b×c is a vector product of b and c. The relationship between rotated Cartesian
system and associated with accelerometer has following form:

ãijt = Dijaijt

where Dij =
(
Dij
up, D

ij
forw, D

ij
left

)T
is the rotation matrix. After transformation of

the data to a rotated Cartesian system we establish the spherical coordinates system
according to the classical relationships:

rijt =

√
(x̃ijt )2 + (ỹijt )2 + (z̃ijt )2

θijt = arccos

 z̃ijt√
(x̃ijt )2 + (ỹijt )2 + (z̃ijt )2


φijt = arctan

(
ỹijt

x̃ijt

)
This procedure yields a representation of a vector of acceleration in a spherical sys-
tem:

sijt = (rijt , φ
ij
t , θ

ij
t )T

5.2 Derivation of expression for the spherical variance and
a proof of its rotational insusceptibility

Let’s recall the definition of the spherical variance:

σ2
sph :=

1

n

n∑
i=1

‖ vi − v̄0 ‖2
2

The following sequence of transformations proves presented in a paper expression for
the spherical variance:

1

n

n∑
i=1

‖ vi − v̄0 ‖2
2=

1

n

n∑
i=1

‖ vi ‖2
2︸ ︷︷ ︸

1

+
1

n

n∑
i=1

‖ v̄0 ‖2
2︸ ︷︷ ︸

1

− 2v̄T0
1

n

n∑
i=1

vi︸ ︷︷ ︸
2v̄T0 v̄

=

= 2
(
1−Rv̄T0 v̄0

)
= 2 (1−R)
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First equation is a consequence of bilinearity of the scalar product and its relation-
ship with the norm. In second we use the assumption that the vectors v1, ..., vn, v̄0

are normalized and a formula v̄ = Rv̄0. The last equation is again a consequence of a
fact that ‖ v̄0 ‖2

2= 1. From above it is clear that in order to prove the rotational inde-
pendence of the spherical variance it is sufficient to show rotational insusceptibility
of R. Let’s recall that:

R2 =‖ v̄ ‖2=‖ 1

n

n∑
n=1

vi ‖2

where vi = (xi, yi, zi)
T was a Cartesian representation of i-th point on a sphere.

Let’s denote the same set of points in a fixed, arbitrarily chosen, rotated system in a
following way {ṽi}ni=1. From linear algebra we know that there exist unique matrix
of rotation S connecting points from both sets:

ṽi = Svi

Now let’s consider the (R̃)2 in rotated system:

(R̃)2 =‖ 1

n

n∑
n=1

ṽi ‖2=‖ 1

n

n∑
n=1

Svi ‖2

=‖ S

(
1

n

n∑
n=1

vi

)
‖2=‖ Sv̄ ‖2=‖ v̄ ‖2= R2

From above sequence of equations one can see that the choice of spherical coordinate
system has no influence on the values of the spherical variance.
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