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Motivation: Data integration promises to be one of the main cat-
alysts in enabling new insights to be drawn from the wealth of
biological data available publicly. However, the heterogeneity of
the different data sources, both at the syntactic and the seman-
tic level, still poses significant challenges for achieving interop-
erability among biological databases.
Results: We introduce an ontology-based federated approach
for data integration. We applied this approach to three het-
erogeneous data stores that span different areas of biological
knowledge: 1) Bgee, a gene expression relational database; 2)
OMA, a Hierarchical Data Format 5 (HDF5) orthology data
store, and 3) UniProtKB, a Resource Description Framework
(RDF) store containing protein sequence and functional infor-
mation. To enable federated queries across these sources, we
first defined a new semantic model for gene expression called
GenEx. We then show how the relational data in Bgee can be
expressed as a virtual RDF graph, instantiating GenEx, through
dedicated relational-to-RDF mappings. By applying these map-
pings, Bgee data are now accessible through a public SPARQL
endpoint. Similarly, the materialised RDF data of OMA, ex-
pressed in terms of the Orthology ontology, is made available
in a public SPARQL endpoint. We identified and formally de-
scribed intersection points (i.e. virtual links) among the three
data sources. These allow performing joint queries across the
data stores. Finally, we lay the groundwork to enable non-
technical users to benefit from the integrated data, by providing
a natural language template-based search interface.
Project URL: http://biosoda.expasy.org, https://
github.com/biosoda/bioquery
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1. Introduction
One key promise of the postgenomic era is to gain new bi-
ological insights by integrating different types of data (e.g.
1, 2). For instance, by comparing disease phenotypes in hu-
mans with phenotypes produced by particular mutations in
model species, it is possible to infer which human genes are
involved in the disease (3).
A wealth of biological data is available in public data repos-
itories; over one hundred key resources are featured in the
yearly Nucleic Acids Research annual database issue (4).
However, these databases vary in the way they model their

data (e.g. relational, object-oriented, or graph database mod-
els), in the syntaxes used to represent or query the data (e.g.
markup or structured query languages), and in their seman-
tics. This heterogeneity poses challenges to integrating data
across different databases.
Ontologies have been widely used to achieve data integra-
tion and semantic data exchange (5–12). In this paper, by
ontology, we adopt the broadly accepted definition in data
and knowledge engineering of “a formal, explicit specifica-
tion of a shared conceptualization” (13). The relevance of
ontologies in life sciences can be illustrated by the fact that
repositories such as BioPortal (14) contain more than seven
hundred biomedical ontologies, and the OBO Foundry (15)
more than 170 ontologies. Moreover, major life-sciences
databases use ontologies to annotate and schematize data,
such as UniProt (16) or ChEBI (17). Ontologies are impor-
tant to enable knowledge sharing.
Currently, however, even when resources describe their data
with ontologies, aligning these ontologies and combining in-
formation from different databases remain largely manual
tasks, which require intimate knowledge of the way the data
is organised in each source. This is despite a plethora of ex-
isting literature on data integration approaches, in particular
in biological research (surveys of these approaches, as well
as the challenges involved, include (18–20)). Projects such
as KaBOB (21), Bio2RDF (22) and Linked Life Data (23)
link different life science resources using a common ontology
and data conventions. However, their centralised architecture
makes it difficult to remain up-to-date and to scale up. For ex-
ample, when querying the number of UniProt protein entries
over the outdated and centralised Linked Life Data approach,
we can only count around 10% of the 230 million entries that
are in the current UniProt release (see Supplementary Mate-
rial Section S1 for further explanations). To avoid this issue,
federated approaches have recently been proposed (24–27),
but to the best of our knowledge, none of them proposes a vo-
cabulary and patterns to extensively, explicitly and formally
describe how the data sources can be interlinked further than
only considering “same as”-like mappings; in effect, they put
the burden on the users to find out precisely how to write
a conjunctive federated query. An emerging research direc-
tion entails automatically discovering links between datasets
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using Word Embeddings (28). We did not pursue this ap-
proach, given that it is computationally expensive and that
for our study writing the relational-to-RDF mappings proved
more straightforward. However, Word Embeddings would
be important for the case of integrating more data sources
for which the connecting links (join points) are not clearly
known. Most of the existing federated approaches address the
problem of multiple database models by explicitly convert-
ing and storing the data into the same type of storage engine
in order to achieve data interoperability. This often implies
data duplication, which complicates maintenance. Among
the aforementioned federated approaches, we can highlight
the approach in (26), which requires less human interventions
to generate federated queries. Nonetheless, this approach was
mostly designed for chemical substance data based on prede-
fined “same as” mappings and handcrafted query patterns.
Moreover, when considering the generated SPARQL query
examples, they are mostly disjunctive queries (i.e. union)
rather than complex conjunctive queries (i.e. intersection) —
which are our main focus. As opposed to other federated sys-
tems, such as BioFed (24), we do not focus on benchmarking
or improving the performance of the underlying federation
engine. However, our experiments with federated queries on
the integrated data corroborate existing studies in showing
that federation engines exhibit significant performance degra-
dation when processing queries that involve large intermedi-
ate result sets (29).

To address the problem of semantic, syntactic and data model
heterogeneity, we propose an ontology-driven linked data in-
tegration architecture. We apply this architecture to build a
system that federates three bioinformatics databases contain-
ing: evolutionary relationships among genes across species
(OMA), curated gene expression data (Bgee), and biological
knowledge on proteins (UniProt). In Supplementary Mate-
rial, we summarise the key data provided by Bgee, OMA and
UniProt (Table S3). Each of the three databases uses a differ-
ent technical approach to store information: a Hierarchical
Data Format 5 (HDF5, http://www.hdfgroup.org/HDF5/)
data store for OMA (30); a relational database for Bgee
(31); and a Resource Description Framework (RDF) store
for UniProt (16). Our main contribution is to enable re-
searchers to jointly query (i.e. conjunctive queries) the three
heterogeneous databases using a common query language,
by introducing and leveraging “virtual links” between the
three sources. Furthermore, we show how relational data
can be made interoperable with RDF data without requir-
ing the original relational data to be duplicated into an RDF
storage engine. This can be achieved by constructing dedi-
cated relational-to-RDF mappings, allowing the unmodified
original data to be queried via the structured query language
SPARQL (32). In our proposed architecture, we illustrate this
through the example of the Bgee relational database.

Moreover, for the purpose of building the federated data
access system, we make the following additional contribu-
tions: (i) a semantic model for gene expression; (ii) an exten-
sion and adaptation of the Vocabulary of Interlinked Datasets
(VoID) (33); (iii) public SPARQL 1.1 (32) query endpoints

for OMA and Bgee; and (iv) a user-friendly search interface
based on an extensible catalogue of query templates in plain
English. The main purpose of (iv) is to demonstrate that
the different database models can be jointly queried based
on our approach, but our system supports any 1.1 SPARQL-
compliant general-purpose query builders, such as in (34–
39).
Our article is structured as follows. In Section 2, we describe
the individual databases, as well as a high-level introduction
to our approach and the semantic models used in this work.
In Section 3, we provide the implementation details of the
three layers of our proposed architecture (data store, struc-
tured query interface, and application). In Section 4, we eval-
uate the performance of the system on a catalogue of 12 rep-
resentative federated biological queries. Finally, we conclude
with a discussion and outlook.

2. System and Methods
To understand more concretely the problem of integrating
data from multiple sources, consider the following moti-
vating example: “What are the human genes which have
a known association to glioblastoma (a type of brain can-
cer) and which furthermore have an orthologous gene ex-
pressed in the rat’s brain?”. To answer this question, we
would need to integrate information currently found in dif-
ferent databases:

1. Human proteins associated with glioblastoma can be
obtained from UniProt Knowledge Base, a database
providing a comprehensive, high-quality sequence and
functional information on proteins (16). In the rest of
the paper, we will use the name “UniProt” for readabil-
ity.

2. The orthologs of these proteins in the rat can be ob-
tained from OMA (Orthologous Matrix), a database
of orthology inferences (30). Orthologs are genes in
different species that evolved from a common ances-
tral gene by speciation. The orthologs are normally
thought to retain the same function in the course of
evolution. Other homology information, such as one-
to-one orthology or paralogy, can be derived from the
Hierarchical Orthologous Groups (HOGs) data struc-
ture (11, 40).

3. The genes expressed in the rat brain can be obtained
from Bgee, a database of curated gene expression pat-
terns in animals (31). Bgee version 14.0 includes gene
expression data for 29 species such as human, mouse,
or hedgehog. Currently, Bgee data are stored in a
MySQL relational database (41).

In the following, we first provide a high-level description of
our approach, then introduce the semantic models involved.

2.1. A federated, ontology-driven data integration ap-
proach

In order to achieve semantic interoperability between Bgee,
OMA and UniProt, we have chosen a federated approach
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2.2 Semantic models

based on ontologies (Figure 1). The advantage of a feder-
ated approach is to avoid imposing a common global schema
or meta-model on all data sources, and to facilitate the in-
tegration of further resources in the future. In doing so, we
avoid, for example, the fastidious and time-consuming task
of maintaining a centralised, integrated knowledge base. In-
stead, we provide a homogeneous data access layer to query
the heterogeneous data sources. This homogeneous layer is
part of a new generation of federated databases, such as poly-
stores (42), that provide seamless access to distinct data mod-
els of storage engines (e.g. MySQL and RDF stores). Unlike
that approach, we do not seek to optimise query performance
by transferring data on-the-fly between disparate storage en-
gines (42), but rather focus on solving syntactic and semantic
heterogeneities among data stores.

Fig. 1. Overview of the ontology-driven federated data integration architecture ap-
plied to Bgee, OMA, and UniProt.The application layer depicts a Web search in-
terface with editable templates to jointly query the data stores. Available online at
http://biosoda.expasy.org.

To solve the syntactic heterogeneity, we rely on a structured
query language—SPARQL—as the homogenous syntax to
query all the data (32). We favoured SPARQL 1.1 over al-
ternatives because it is World Wide Web Consortium (W3C)
compliant and the data to be integrated are on the web; be-
cause it supports federated queries; and because one of our
target data stores, UniProt, is already accessible through a
SPARQL 1.1 endpoint, alongside a growing number of other
biological databases (29). Indeed, although our initial proto-
type integrates data from Bgee, OMA and UniProt, we plan
to extend the system to include more data sources in the fu-
ture.
To reduce semantic heterogeneity among the databases, we
rely on ontologies further described in Subsection 2.2, which
are defined with the Web Ontology Language 2 (OWL 2),

and thus based on the RDF model and syntax (https://www.
w3.org/TR/owl2-overview/). RDF-based modelling deci-
sions were taken to mitigate this heterogeneity when adopt-
ing ontological terms and instances to structure and repre-
sent the non-RDF data — OMA HDF5 and Bgee relational
data. For example, by considering OMA, Bgee and UniProt
databases, UniProt covers all of others with regard to the tax-
onomic lineage information for an organism. Therefore, we
rely on UniProt classes and instance IRIs when represent-
ing and modelling taxonomy-related data in the OMA and
Bgee RDF serialisations. To further exemplify, we can also
mention the representation of genes among these three data
sources. OMA genes completely overlaps Bgee genes but
not all OMA genes has a corresponding one in UniProt, and
vice-versa. Because of this, we decided to model Bgee genes
the same way as in OMA, thereby easing interoperability be-
tween gene expression and orthology data. The next sections
describe in more details the semantic models and the feder-
ated architecture proposed.

2.2. Semantic models

Ontology-based data integration requires as a preliminary
step that each of the individual resources composing the
federated system provide an explicit ontological descrip-
tion of their data. To minimise the need for semantic
reconciliation—i.e. the process of identifying and resolving
semantic conflicts (43), for example, by matching concepts
from heterogeneous data sources (44)—we sought to rely as
much as possible on existing ontologies when defining new
semantic models.
Prior to our current work, among the three databases consid-
ered in this article, only UniProt provided an RDF represen-
tation of its data, as well as a SPARQL endpoint. The current
UniProt RDF release comprises over 44 billion triples, and is
based on the OWL 2 Full UniProt core ontology described in
Redaschi et al. (45).
For the orthology data in OMA, we adopted the Orthol-
ogy (ORTH) ontology (46), which was recently devised by
the Quest for Orthologs Consortium (47) as a common data
schema for integrating Orthology databases, such as OMA.
We use ORTH to structure the OMA data, which is primar-
ily stored in an HDF5 data store. Furthermore, during the
conception of a second version of ORTH, design decisions
such as the adoption of taxon-related terms from the UniProt
ontology were made in order to enhance interoperability, en-
abling us to establish links among the data stores (Subsec-
tion 3.2.2). Therefore, the work presented in this article also
contributed towards a new, improved version of the ORTH
ontology, which is described in de Farias et al. (11).
In the case of Bgee, representing the original data in RDF
proved to be a challenge, due to a general lack of a com-
prehensive ontology to serve as a data schema for describing
knowledge in the field of gene expression. This may seem
surprising considering the ubiquity of gene expression anal-
yses in molecular biology and the existence of multiple well-
established resources for gene expression—not only Bgee,
but also Expression Atlas (EA) (48), Genevestigator (49), or
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the Tissue Expression database (50). We note here that dif-
ferent gene expression databases often use distinct criteria to
assert expressed in or absent in relations.
To the best of our knowledge, two semantic models currently
exist as initial attempts to structure gene expression related
data: the Relation Ontology (51) and the Expression Atlas
model (52). The Relation Ontology (RO) defines only a few
terms within the domain of gene expression and is not specif-
ically designed for this knowledge domain. Notably, it con-
tains expressed in and expresses relations. The Expression
Atlas defines a semantic model related to gene expression
that mainly focuses on modelling the Expression Atlas (EA)
data itself and not the domain of gene expression generally.
In this EA model, additional data interpretations (i.e. seman-
tics) are not explicitly represented, such as a given gene is
expressed or lowly expressed in some sample relative to oth-
ers. Although it would be possible to obtain this informa-
tion through a more complex query on the Expression Atlas
SPARQL endpoint, we lack an explicit representation, which
would allow us to compare gene expression data from these
different databases.
To provide a first step toward a general-purpose gene ex-
pression ontology, we drafted a new semantic model called
GenEx. GenEx is aligned with the Relation Ontology and
Expression Atlas models to facilitate interoperability with
existing RDF stores. We also included semantic rules and
terms to address (i) the representation of additional infor-
mation related to gene expression, such as developmental
stages, as well as absent in and highly expressed relations;
and (ii) the trade-off between virtualisation and materiali-
sation for the sake of query execution time and data stor-
age. Furthermore, we reuse parts of the data schemas of the
ORTH and UniProt core ontologies to provide (iii) the ca-
pacity to interoperate with other biological databases from
different knowledge domains which are still relevant to the
gene expression domain. For example, integrating orthol-
ogy and gene expression data is relevant since we might
want to predict gene expression conservation for orthologous
genes. The draft GenEx is available online and documented
in https://biosoda.github.io/genex/.
We stress that GenEx is currently in draft state. To become
a standard, it needs to be endorsed and supported by mul-
tiple key stakeholders. We plan to initiate discussions with
representatives of Bgee, Expression Atlas, Genevestigator,
and Tissue database teams, and intend to solicit involvement
from others, for example, the Model Organisms Databases
(http://www.alliancegenome.org).

3. Implementation
Our federated data integration architecture comprises three
layers: the data store (DS) layer, the structured query inter-
face (SQI) layer, and the application layer (Figure 1). The DS
layer contains all data stores to be integrated, including on-
tologies and methods to solve semantic and data model het-
erogeneities, such as relational-to-RDF mappings (Section
3.1). The SQI layer provides a homogeneous query language
syntax and exploits common instances and literals (i.e. vir-

tual links) to retrieve data from the DS layer (Section 3.2).
The application layer includes any software tools that ac-
cess the data stores through the SQI layer, for example a web
search interface (Section 3.3). Figure 1 illustrates this archi-
tecture applied to our use case: the Bgee, OMA and UniProt
databases.
The three layers are described in the next subsections, and
source code is available at https://github.com/biosoda/
bioquery.

3.1. Data store layer
The UniProt data were already available in an RDF model
and accessible through a SPARQL endpoint at the start of
our project. Therefore, we could use UniProt data as is.
The core of our work on the data store layer consisted in
exposing data from Bgee and OMA as RDF, with the goal
of solving data model heterogeneity. We focused our ef-
forts on including the domain-specific, most “value-added”
aspects of Bgee and OMA to the data store layer—leaving
out information already available in UniProt. As a result, the
Bgee and OMA data accessible through our system are sub-
sets of their original contents. We provide an overview of the
types of information available in the original sources versus
in their RDF representation in the Supplementary Material
(Table S3). This reduced the development work and data du-
plication among the databases, without loss of information
considering that our federated approach enables directly re-
trieving this data from its original source (i.e. UniProt).
The Bgee data are stored in a relational database, meaning
that integration between RDF stores and relational databases
would still require substantial effort. There are two main
methods to overcome this issue. First, the existing data could
be represented entirely as RDF, which consequently would
replace the relational model. A second approach would be to
express the existing relational data as a virtual RDF graph,
defined over ontological concepts and relations. We have
chosen the latter approach, also referred to as ontology based
data access (OBDA) (53). Our choice is justified by the
fact that changing the Bgee data store into an RDF model
would either lead to data duplication or would require sig-
nificant changes in the current Bgee analysis pipeline (see
31). This is because Bgee is now adapted to the relational
model for storing raw and preprocessed data from multiple
data sources such as Ensembl, GEO, ArrayExpress and oth-
ers (https://bgee.org/?page=source).
To implement OBDA over the Bgee relational database, we
used the Ontop platform (53) version 3.0-beta-2. We de-
fined several relational-to-RDF model mappings, which dy-
namically instantiate the gene expression semantic model de-
scribed in Subsection 3.1. Figure 2 shows a simplified exam-
ple of OBDA mappings that serve to express data from the
relational model in the RDF model. Namespace prefixes such
as up: shown in Figure 2 and used in the rest of this article are
defined in Supplementary Table S1. While some of the map-
pings can be simple 1-to-1 correspondences—for example, a
gene name (shown in red color on the right) can directly be
used as a label of a orth:Gene class instance. Other mappings

4 A. C. Sima, T. Mendes de Farias et al. | Enabling Semantic Queries Across Federated Bioinformatics Databases

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 28, 2019. ; https://doi.org/10.1101/686600doi: bioRxiv preprint 

https://biosoda.github.io/genex/
http://www.alliancegenome.org
https://github.com/biosoda/bioquery
https://github.com/biosoda/bioquery
https://bgee.org/?page=source
https://doi.org/10.1101/686600
http://creativecommons.org/licenses/by/4.0/


3.2 Structured query interface layer

Fig. 2. An illustration of relational-to-RDF mappings on a sample of the Bgee
database. These mappings address both schema-level heterogeneity (an example
is shown in blue), as well as data-level heterogeneity (shown in green). A map-
ping can also be a simple 1-to-1 correspondence between a relational attribute
(e.g. geneName, shown in red) and its equivalent RDF property (in this case, an
rdfs:label of an orth:Gene instance). Namespace prefixes are defined in Supple-
mentary Table S1.

require transforming the original attributes in the relational
data for interoperability – for example, replacing “:” with
“_” in the case of anatomical entity identifiers from Bgee to
be compliant with the existing UBERON ontology IRI (In-
ternationalized resource identifier) terms (54), as shown in
green color with the example of UBERON:0000955 in Fig-
ure 2. Another type of transformation can be even combining
multiple columns to instantiate a concept, as in the case of
expressing species data from Bgee in terms of instances of
up:Taxon. In this case, the OBDA mapping serves to con-
catenate the genus and species columns from Bgee in order
to form the scientific name in compliance with the UniProt
taxonomy. The scientific names of species in UniProt are
denominated through the up:scientificName property, com-
posed of both genus and species. This is illustrated in the
left-most set of mappings (in blue color) in Figure 2. For
further details of this OBDA mapping, see the Supplemen-
tary Material (Section S4). The full set of OBDA mappings
used to expose Bgee relational data as virtual RDF triples are
provided in https://github.com/biosoda/bioquery.
The code fragment in Listing 1 illustrates a mapping ex-
pressed with the Ontop relational-to-RDF mapping syntax,
where the source is a SQL SELECT statement and the tar-
get consists of the corresponding RDF-based properties and
classes. While direct and simple mappings (around 80% of
the total) could in principle be automatically generated, com-
plex ones such as the isExpressedIn relationship shown in
Listing 1 can only be manually defined. Further explanations
about this are available in Supplementary Material (Section
S4).

target oma:GENE_{geneId} genex:isExpressedIn uberon:{

anatEntityIdSPARQL} .

source SELECT g.geneId,

REPLACE(gc.anatEntityId,":","_") AS anatEntityIdSPARQL

FROM globalExpression AS ge

JOIN globalCond AS gc

ON ge.globalConditionId = gc.globalConditionId

JOIN gene AS g ON g.bgeeGeneId = ge.bgeeGeneId

Listing 1. Ontop mapping to infer the “is expressed in” GenEx relation (i.e. target
schema) based on the Bgee relational database (i.e. data source). Prefixes are
defined in Supplementary Table S1.

Once relational-to-RDF mappings have been defined with
Ontop between the Bgee MySQL database and GenEx, the
original data can be queried with SPARQL, through the Bgee
RDF virtual model. At query time, Ontop will translate
SPARQL queries into SQL on-the-fly, using the mappings,
and execute these over the Bgee relational database. On-
top has the advantage of supporting federated queries as
part of SPARQL 1.1 and of being open source. In or-
der to enable researchers to directly use the RDF represen-
tation of Bgee, we made available a public SPARQL 1.1
endpoint at http://biosoda.expasy.org/rdf4j-server/

repositories/bgeelight as a query service (without any
webpage associated to it). Nonetheless, the OBDA solution
with Ontop has some limitations – we discuss some of these
in Section S4 in the Supplementary Material.
The OMA data are internally stored in an Hierarchical Data
Format 5 (HDF5) file. This is not a database management
system (DBMS) such as MySQL, but rather a data model
and file format along with an API, libraries, and tools. Sim-
ilarly to Bgee, we have to homogenise the OMA database
model and syntax in order to enable integration with other bi-
ological RDF data stores (either virtual or materialised). For
OMA, we chose to materialise the key parts of OMA data
as an RDF graph, by implementing a hybrid approach, that
combines materialisation and a possible RDF graph virtuali-
sation for the sake of semantic enrichment and knowledge ex-
traction, as described in detail in https://qfo.github.io/

OrthologyOntology. The OMA RDF data and ORTH ontol-
ogy are stored in a Virtuoso 7.2 triple store and a SPARQL
endpoint is available at https://sparql.omabrowser.org/
sparql. Further explanations regarding the OMA RDF data
materialisation are available in Supplementary Material Sec-
tion S5.

3.2. Structured query interface layer
Once the data stores are accessible through SPARQL end-
points, as depicted in Subsection 3.1, we can exploit means
to link them at the data level. To do so, we identify common
class instances and literals (e.g. strings) in order to establish
“virtual links”. We define a virtual link as an intersection
data point between two data stores. The links are required
in order to enable performing federated queries, given that
they act as join points between the federated sources. Figure
3 illustrates virtual links among UniProt, Bgee and OMA.
For example, OMA and Bgee describe complementary in-
formation about common genes (instances of the orth:Gene
class), as well as taxa (instances of the up:Taxon class), both
of which can serve as virtual links to connect the two sources.
A federated SPARQL query written based on the virtual links
is described in Supplementary Material Section S3. To for-
mally and explicitly describe virtual links, we adapted and
extended the VoID RDF schema vocabulary (33) to include
the concept of virtual links. We call this vocabulary Extended
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Fig. 3. Example of virtual links among UniProt, OMA and Bgee data stores.

VoID (VoIDext). VoIDext is fully specified and exempli-
fied in https://biosoda.github.io/voidext/. The entire
metadata of virtual links among UniProt, Bgee, and OMA
RDF stores for the work depicted in this article are available
at http://purl.org/query/bioquery. In VoIDext specifi-
cation, we also depict the SPARQL queries to retrieve the
virtual links among OMA, Bgee and UniProt that support the
writing of joint federated SPARQL queries. These queries
can be executed on the federated SPARQL endpoint illus-
trated in Fig. 1 http://biosoda.expasy.org:8890/sparql.
To leverage virtual links between Bgee and the other
databases, we took advantage of the flexibility provided by
Ontop when defining the Bgee OBDA mappings. We aimed
at mapping Bgee data into corresponding instance IRIs and
literals that already exist in OMA and UniProt RDF graphs.
For example, species-related instance IRIs in the Bgee virtual
graph are indeed exact matches of up:Taxon instance IRIs
that are stored in the UniProt database.
Likewise, the code fragment in Listing 1 asserts the (re)use of
OMA gene instances as part of the Bgee virtual RDF graph
rather than creating new Bgee ones. In this way, we avoid
additional owl:sameAs assertions to state that the two in-
stances are actually the same. Thus, orth:Gene instances are
intersection nodes (i.e. virtual links) between the Bgee and
OMA graphs. Figure 3 (left-hand side) illustrates a shared
orth:Gene instance between OMA and Bgee graphs. Fur-
ther information about the virtual links depicted in Figure 3
is available in Section S6 in the Supplementary Material.
Overall, we provide a federated SPARQL query endpoint
along with an RDF store that exclusively contains metadata
about the virtual links, and the SPARQL endpoints of the
Uniprot, OMA and Bgee data stores. These metadata based
on the VoIDext schema precisely define and document how
the distributed datasets can be interlinked. Therefore, they
may significantly facilitate the manual or automatic writing
of a SPARQL 1.1 federated query, given that users are no
longer required to discover the interlinks between the queried
datasets on their own. In (55), we detail the drawbacks of the
current VoID link sets to represent virtual links, and the de-
scription of the novel VoIDext specification.

3.3. Application layer

The main goal of the application layer in our work is to en-
able users, even with no prior technical training, easy ac-
cess to the integrated information from the three biologi-
cal databases. We developed a user-friendly interface (il-
lustrated in the top part of Figure 1), which is accessible
at http://biosoda.expasy.org/. The interface presents a
catalogue of representative query templates drafted together
with domain experts. The queries are provided in natural lan-
guage, with editable fields, and grouped in a tree structure
according to the target knowledge domain(s) and informa-
tion retrieved for each query. A search bar is also provided,
which enables filtering the templates by keywords of interest
(e.g. “disease”).
For users with more advanced technical expertise, we also
provide the option to show and modify the equivalent
SPARQL queries. In doing so, our approach has the potential
to increase the productivity of domain scientists in exploring
the three heterogeneous data sets jointly. Additionally, the
catalogue of questions is destined to grow according to user
needs and feedback.
Moreover, because of the federated architecture of our sys-
tem, its performance depends on that of the underlying data
sources, e.g. UniProt. The availability of the underlying data
stores is indicated by green labels in the top right corner of
the webpage. For unavailable sources, the corresponding la-
bel is shown in yellow, as illustrated in the application layer
in Figure 1.
By default, our system limits the total number of results re-
turned, which allows for a faster response – the estimated
response time is shown as a tag next to each query. However,
the user can turn the limit option off, in order to obtain the full
set of results. In this case, the response time may be signifi-
cantly higher, which can largely be attributed to the SPARQL
query execution time on the underlying sources. This has al-
ready been noted in similar previous systems (56). In terms of
scalability, the UniProt SPARQL endpoint is a good example,
having already an active user base of more than one thousand
users per month. As we directly rely on the infrastructure
of the underlying sources, we can therefore expect our sys-
tem to exhibit reasonable performance for approximately the
same number of users.

4. Results

In this section, we first revisit our motivating example for in-
tegrated data access to the three databases (UniProt, OMA
and Bgee) and then present experimental results based on
a catalogue of 12 federated queries. All results are repro-
ducible through our public interface described in Subsection
3.3.
Recall our motivating example from the start of Section 2:
“What are the human genes which have a known association
to glioblastoma (a type of brain cancer) and which further-
more have an orthologous gene expressed in the rat’s brain”.
Answering the question requires solving the following three
subqueries:
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3.3 Application layer

1. Retrieve human proteins with a disease description re-
lated to glioblastoma from UniProt.

2. Retrieve orthologs of these proteins in the rat from
OMA.

3. Only keep those orthologs for which there exists evi-
dence of expression in the rat’s brain from Bgee.

The above steps translate to the federated SPARQL query
in Supplementary Listing S2. The query produces a set of
15 human-rat orthologous pairs and can be executed in any
SPARQL 1.1 endpoint. The full query, as well as a detailed
list of results is available in the Supplementary Material in
Section S3.
We further evaluated the performance, in terms of runtime,
of 12 federated queries that illustrate real use cases requir-
ing information across the three databases (see Table 1). The
results are reproducible through our public template-based
search interface. A detailed analysis of the queries, includ-
ing their natural language description, the equivalent feder-
ated SPARQL queries, as well as an explanation of the com-
plexity for each query, can be found at https://github.com/
biosoda/bioquery.
Table 2 shows that most of the queries can be executed in a
few seconds – up to 6 seconds for 9 out of 12 queries, with
less than half a second for 3 out of these. This holds even for
queries with higher complexity (number of triple patterns).
A triple pattern is similar to a regular RDF triple, except that
any part of the triple can be replaced by a variable (32). Al-
though preliminary, the results in Table 2 are encouraging for
the use of SPARQL queries in data exploration tasks or in an
interactive environment.
The outlier Q10 calls for discussion. By comparing the natu-
ral language description of Q10 against Q11 (see correspond-
ing entries in Table 1), we can intuitively deduce that the
complexity stems from the high degree of generality of the
sub-query that targets orthology information (OMA). In the
case of Q10, retrieving an answer will require scanning the
entire available orthology data and retrieving a large inter-
mediate result set (orthologs found in any species, a total of
2269 results). By contrast, Q11 restricts the search space
to the “primates” taxon only, which in practice results in a
much lower query execution time (and a total of only 81 re-
sults). An important lesson derived from this example is that
queries should always be as specific as possible, in order to
limit both the search space and the size of intermediate re-
sults to the minimum necessary to obtain a relevant answer.
Although this query illustrates a worst-case scenario, the re-
sults are still returned in less than 6 minutes—a latency which
is tolerable for investigations in a biological research context.

5. Discussion and outlook
Data integration across heterogeneous biological databases
promises to be one of the catalysts for gaining new biolog-
ical insights in the postgenomic era. Here, we introduced
an ontology-driven approach to bioinformatic resource inte-
gration. This approach enables complex federated queries

across multiple domains of biological knowledge, such as
gene expression and orthology, without requiring data dupli-
cation. The integration of the three sources promises to open
the path for novel comparative studies across species, for ex-
ample through the analysis of orthologs (OMA) of human
disease-causing genes (UniProt) and their expression patterns
in model organisms (Bgee). Thanks to modelling decisions
made at the semantic (ontology) and data (assertions) levels,
we established various virtual links among Bgee, OMA and
UniProt data stores. Moreover, making these virtual links
available in VoidExt facilitates the task of writing federated
SPARQL queries, since users have an explicit representa-
tion of the connections (join points) between the three data
sources. We furthermore lay the groundwork for bringing
the benefits of integrated data to domain specialists through
a template-based search engine available online, which does
not require users to know SPARQL in order to pose questions
on the integrated data.
The catalogue of federated queries across the three data
sources can serve as a starting point towards answering new
biological questions that span across the domains of evolu-
tionary relationships and gene expression. The results pre-
sented in this study can be easily reproduced through our
template search interface. We furthermore make available
all source code, including the template search interface code,
relational-to-RDF mappings and the catalogue of queries,
with the goal of facilitating reuse of these components for
further research. All resources are available in our GitHub
repository.
Our experiments show that most queries in our catalogue can
be answered within seconds. And although the more com-
plex queries take several minutes to complete, we expect this
turnaround time to be tolerable for most interested users—
particularly considering the alternative of manually query-
ing the resources and combining the results. In the future,
we plan to add a federated query optimiser to our system
to further improve the response time. We also note here
that the application interface directly queries the underlying
databases without performing additional tasks, such as con-
sidering all gene name synonyms to get broader results. We
plan to support such features as part of future work. To sup-
port virtual link evolution, we aim to develop a tool to au-
tomatically detect broken virtual links because of either data
schema changes or radical modifications of instances’ IRIs
and property assertions. Meanwhile, we encourage contribu-
tions to the current query catalogue, which will serve in the
study of a natural language search interface for the integrated
biological data as part of future work.
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