
 1 

Coding and non-coding drivers of mantle cell lymphoma identified through 

exome and genome sequencing 

Prasath Pararajalingam1, Krysta M. Coyle1, Sarah E. Arthur1, Nicole Thomas1, Miguel Alcaide1, 

Barbara Meissner2, Merrill Boyle2, Bruno M. Grande1, Graham Slack2, Andrew J. Mungall3, 

Randy D. Gascoyne2, Christian Steidl2, Joseph Connors2, Diego Villa2, Marco A. Marra2, 

Nathalie Johnson4, David W. Scott2, and Ryan D. Morin1 

 

1Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British 

Columbia, Canada 2BC Cancer Centre for Lymphoid Cancer and BC Cancer Research Centre, 

Vancouver, British Columbia, Canada 3Michael Smith Genome Sciences Centre, Vancouver, 

British Columbia, Canada 4Department of Medicine, Jewish General Hospital, Montreal, 

Quebec, Canada 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 8, 2019. ; https://doi.org/10.1101/686956doi: bioRxiv preprint 

https://doi.org/10.1101/686956


 2 

Key points 

• RNA-binding proteins with roles in regulating alternative splicing, DAZAP1, EWSR1, 

HNRNPH1, are frequently mutated in MCL 

• The majority of recurrent somatic HNRNPH1 mutations are intronic and HNRNPH1 

exhibits self-regulation through alternative splicing 
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Abstract 

Mantle cell lymphoma (MCL) is an uncommon B-cell non-Hodgkin lymphoma (NHL) that is 

incurable with standard therapies. The genetic drivers of this cancer have not been firmly 

established and the features known to contribute to differences in clinical course remain limited. 

To extend our understanding of the biological pathways involved in this malignancy, we 

performed a large-scale genomic analysis of MCL using data from 51 exomes alongside 

previously published exome cohorts. To confirm our findings, we re-sequenced the genes 

identified in the exome cohort in 212 MCL tumors, each having clinical follow-up data. We 

confirmed the prognostic association of TP53 and NOTCH1 mutations and further nominate two 

additional genes, EWSR1 and MEF2B, whose mutation respectively associated with poor and 

good outcome. Our sequencing revealed novel recurrent mutations including a unique missense 

hot spot in MEF2B and a pattern of non-coding mutations surrounding a single exon of the 

HNRNPH1 gene. We sequenced the whole genomes of 34 MCLs to confirm the focal nature of 

HNRNPH1 mutations. Using RNA-seq data from 110 of these cases, we identified a functional 

role for recurrent non-coding HNRNPH1 mutations in disrupting an auto-regulatory feedback 

mechanism. Overall, we identified three novel MCL-related genes with roles in RNA trafficking 

or splicing, namely DAZAP1, EWSR1, and HNRNPH1. Taken together, these data strongly 

implicate a role for aberrant regulation of splicing in MCL pathobiology. 
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Introduction 

Mantle cell lymphoma (MCL) is an uncommon B-cell lymphoma representing 4-9% of non-

Hodgkin lymphoma (NHL) diagnoses worldwide1. MCL can be broadly divided into two clinical 

subtypes: nodal and leukemic non-nodal disease, with each displaying distinct natural history, 

and clinical and genetic features2. MCL commonly follows an aggressive clinical course 

including non-sustained responses to frontline chemo-immunotherapy and frequent relapses, 

although a subset of cases, including the majority of patients with leukemic non-nodal variant, 

exhibits significantly longer survival3. Clinical prognostic metrics such as MCL International 

Prognostic Index (MIPI) have enabled patient stratification and improvements to frontline 

therapy such as the inclusion of active agents (rituximab, bendamustine, cytarabine) as well as 

consolidative strategies (autologous stem cell transplantation), have significantly improved 

outcomes over the past two decades1,4,5. 

The unifying genetic feature of MCL is a chromosomal translocation event that places cyclin D1 

(CCND1) downstream of the immunoglobulin heavy chain enhancer, causing constitutive 

CCND1 expression2,6. The translocated CCND1 allele can also accrue secondary mutations 

including non-coding mutations in the 3′ untranslated region (UTR), thereby enhancing CCND1 

mRNA stability and further elevating CCND1 protein abundance7,8. Through exome and targeted 

sequencing efforts, largely focused on non-nodal leukemic subtype, several genes have been 

identified as commonly mutated in MCL, including those involved in DNA damage response 

(ATM, TP53), epigenetic regulation (KMT2D, WHSC1), Notch signaling (NOTCH1, NOTCH2), 

NFκB signaling (CARD11, BIRC3, SYK), and ubiquitin mediated proteolysis (UBR5)9–11. The 

genomics of MCL have proven to be heterogeneous and diverse, and therefore larger 

comprehensive explorations are necessary to further understand its biology. 
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A limited number of recurrent mutations have been associated with prognosis in MCL treated 

with standard therapy. The most firmly established of these include non-silent mutations 

affecting TP53, NOTCH1, and CCND112–15, as well as amplifications of 3q or deletions in 

17p13,16. With the ongoing evaluation of new therapeutics for MCL, mutations associated with 

acquired treatment resistance are beginning to be identified17. Despite a broad collection of 

MCL-related genes and mutations, stratification of patients by proliferation, whereby patients are 

separated into low-, intermediate- and high-risk categories, remains more robust than any 

individual driver mutation14,18. Genetic features that underlie differences in proliferation have yet 

to be identified. 

This study identifies novel recurrent mutations in three RNA-binding proteins HNRNPH1, 

DAZAP1, and EWSR1, including intronic mutations affecting the splicing of exon 4 in 

HNRNPH1. Our functional characterization in MCL patient samples and cell lines showed 

HNRNPH1 splicing is regulated by the HNRNPH1 protein itself via a negative feedback loop 

leading to alternative inclusion of exon 4 in the mature transcript. By further characterizing the 

mutational landscape of MCL, we implicate perturbed mRNA processing as an important 

mechanism in MCL biology. 
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Methods 

Study design 

We assembled a discovery cohort comprising 51 fresh-frozen diagnostic biopsies from MCL 

cases collected in British Columbia, Quebec (Montreal), and Ontario and subjected each of these 

to paired tumor/normal exome sequencing. We included available paired exome data from 

previous publications to yield a larger discovery cohort of 87 cases. We assembled a validation 

cohort from FFPE material representing 212 diagnostic tumor samples from BC for targeted 

sequencing. Only 23 patients overlap between these two cohorts with 189 unique cases in the 

validation cohort. We also subjected 16 cases from the validation cohort and 18 additional fresh 

frozen biopsies from BC, along with constitutional DNA, to whole genome sequencing (34 

total). We performed RNA-seq on cases spanning all cohorts plus an additional 12 cases from a 

combination of FFPE and frozen material (110 total). Details for the samples and assays applied 

to each are included in Supplemental Data and Supplemental Figure 1. This study was 

approved by the BC Cancer REB and all participants were recruited with informed consent. 

 

Exome data analysis 

For in-house exomes, we used the Agilent SureSelect Human All Exon kits for library 

preparation and HiSeq2000 instruments (Illumina) for sequencing. We separately obtained 

exome data from 29 patients described in Bea et al., which we downloaded from European 

Genome-Phenome Archive (EGAS00001000510) in BAM format, extracted to FASTQ and 

validated for data integrity using BamHash (v1.1)9,19. FASTQ files for tumor and matched 

normal exomes (7 patients) described in Wu et al. were kindly provided by the authors11. 

External cases qualified for inclusion if a matching normal sample was available. For cases with 
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sequence data from more than one tumor biopsy, we only included the earliest sample in our 

analysis. We used default settings for all software unless otherwise stated. We used BWA 

(v0.7.6a) to map reads to the GRCh38 human reference lacking alternate contigs20 and subjected 

these BAM files to soft-clipping of overlapping read pairs using bamUtils clipoverlap 

(v1.0.13)21. For each BAM file, we applied GATK mark duplicates (v3.4.0), and adjusted 

alignments for putative indels using GATK indel realigner (v3.4.0)22. We used Strelka 

(v1.0.14)23 to detect SSMs and indels and annotated these variants using Variant Effect Predictor 

(Ensembl release 83)24 and vcf2maf. 

Recurrence analysis 

As genes important for lymphomagenesis can exhibit a variety of mutational patterns, we 

employed a voting strategy involving four separate algorithms to identify recurrently mutated 

genes and hot spots. Several algorithms to infer genes that are recurrently mutated in cancer 

cohorts have been described and each of these relies on a variety of features such as predicted 

functional impact25,26, spatial clustering27, and mutation rates28. We identified significantly 

mutated genes using a combination of MutSigCV28, OncodriveFM25, OncodriveFML26 and 

OncodriveCLUST27 using a false discovery rate threshold of 0.1 for each algorithm. We 

promoted genes identified by two or more methods for further sequencing in the validation 

cohort. Additionally, NOTCH1, CARD11, NFKBIE were included due to their importance in 

MCL and other B-cell NHL11,12,29. 

Targeted sequencing, whole genome sequencing and data consolidation 

DNA extracted from 212 formalin-fixed paraffin-embedded (FFPE) diagnostic MCL tumor 

biopsies were used to generate libraries that were enriched for exons corresponding to a set of 

putative MCL-related genes using a hybridization-based capture approach involving 
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complementary DNA oligonucleotides30. These were pooled and sequenced using a MiSeq 

(Illumina). Paired 150-nt reads were generated, demultiplexed, and mapped to the GRCh38 

human reference using Geneious (v9.1.5). Variants with minor allele frequencies greater than 

0.0001 in any gnomAD population were considered germline variants and removed31. We also 

performed whole genome sequencing on FF tumor and matched normal samples from 34 MCL 

cases. Variants from the genome data were identified using Strelka232, which we found to be 

more robust for identifying variants with low read support or low-level contamination of blood 

DNA with tumor cells (a feature of some MCLs). We consolidated variants from cases 

sequenced by more than one method using a tiered approach. Variants found in exomes and 

genomes were combined per patient. In targeted sequenced tumours for which a normal exome 

or genome data was available, we considered variants with more than one read support in the 

normal to be germline variants and removed from analysis. Variants from targeted sequencing 

cases that did not overlap with exome or genome cases were included in the final variant set. We 

compared the mutation patterns to diffuse large B-cell lymphoma (DLBCL) using targeted and 

exome sequencing data from 1616 unique patients30,33,34 and removed variants with minor allele 

frequencies greater than 0.0001 in any gnomAD population31. 

RNA-seq analysis of MCL 

We performed RNA-sequencing on 110 MCL cases (Supplemental Methods). The majority of 

cases had previously undergone DNA-sequencing, while 12 cases did not. We aligned RNA-seq 

reads to GRCh38 human reference genome using STAR (version 2.5.3a) followed by Picard 

MarkDuplicates (version 2.14.1)22,35. We used FeatureCounts (version 1.6.0) to separately 

quantify the reads mapping to the relevant HNRNPH1 splice junctions using the following 

parameters: juncCounts, countSplit, ignoreDup, requireBothEndsMapped, and minimum 
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mapping quality ≥ 10. We defined the HNRNPH1 exon skipping ratio as the ratio of reads 

spanning the exon 4-6 junction to the sum of reads spanning the exon 4-5 junction and 5-6 

junction. RNA-seq samples were designated HNRNPH1 exon 4 mutated or unmutated based on 

variants discovered in the matching DNA-sequencing sample. In cases where DNA-sequencing 

data was not available, we determined HNRNPH1 exon 4 mutation status by examining the exon 

4 region in the RNA-sequencing data in IGV. 

Protein-RNA interactions of HNRNPH1 

RNA-seq and iCLIP (individual nucleotide resolution cross-linking and immunoprecipitation) 

data from HeLa cells was provided by authors36. Using STAR, we aligned RNA-seq reads from 

untreated cells transfected with control siRNA (seq8 in Uren data) as described above. Here, we 

assigned counts using featureCounts with a flattened GTF file containing collapsed transcripts. 

For HNRNPH iCLIP reads, we pooled reads from two replicates and aligned each pool to 

GRCh38 with STAR. Peaks in iCLIP data were called by Piranha37 in 50 bp bins, accounting for 

RNA abundance with log-converted RNA-seq counts used as a covariate. 

Cell-based experiments 

REC-1 cells were grown as previously described12,30. We reconstituted cycloheximide (Sigma) in 

DMSO and added either cycloheximide or DMSO alone to cells for up to 6 hours. We then 

extracted RNA or protein, as appropriate, from pellets of 2 x 10# cells using the RNeasy mini kit 

(Qiagen) or RIPA buffer, respectively, and quantified protein using the Pierce BCA kit 

(ThermoFisher). Equal amounts of protein were used for SDS-PAGE, and we used Western 

blotting to observe HNRNPH1 protein levels (abcam ab10374, 1/10 000) and histone H3 protein 

levels (Cell Signaling Technologies #9715, 1/1 000). 
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Digital PCR 

For droplet digital PCR (ddPCR), we extracted RNA from FFPE-preserved samples as 

previously described18 and performed reverse transcription with random hexamers (iScript, 

BioRad) according to manufacturer’s instructions. We pre-amplified cDNA using SsoAdvanced 

PreAmp SuperMix (BioRad) for 15 cycles with primers targeting HNRNPH1 (all), HNRNPH1 

(canonical only), HNRNPH1 (alternative only), TBP, YWHAZ, and UBC (Supplemental 

Methods) as directed. Following a 1 in 5 dilution of pre-amplified cDNA, we performed ddPCR 

on each on the QX200 system (BioRad) using the primers and probes described in 

Supplemental Table 1. In each sample, we calculated the normalized expression relative to the 

geometric mean of the expression of three reference genes (TBP, YWHAZ, and UBC). Equal 

amounts of cell-line RNA were reverse transcribed with random hexamers as above. With 

diluted cDNA (1 in 10), we performed ddPCR (Supplemental Table 1). We normalized 

expression relative to the geometric mean of three reference genes (ACTB, YWHAZ, and UBC). 

Statistical analysis 

All associations between gene mutation status and binary clinical characteristics were assessed 

using Fisher’s exact test. Association between mutations and overall survival (OS) was 

determined in the subset of MCL cases that were nodal and treated (n = 175) using the Kaplan-

Meier method and log-rank test. We annotated MCL tumours as low-, intermediate- and high-

risk based on proliferation gene expression signature using the established Nanostring nCounter-

based MCL35 assay18. Because the high and intermediate risk cases did not exhibit significantly 

different overall survival, the intermediate and high proliferation groups were combined into a 

single group that was defined here as high risk. 
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Results 

Somatic Mutation Landscape and Recurrently Mutated Genes 

Several genes have previously been implicated as recurrent targets of SSM in MCL9–11,38 though 

many of these candidate drivers have been inconsistent between individual studies39. This can be 

attributed to a combination of genetic heterogeneity and limited cohort sizes. To address this, we 

sequenced paired tumor/normal exomes from 51 MCLs diagnosed in Canada and analyzed these 

data alongscide published paired exome data. Three samples exhibited significantly higher 

mutation burden (median 1761; range 602-8780) and were excluded due to the effect of 

hypermutation on the detection of drivers, leading to a discovery cohort comprising of 84 cases. 

In total, 2122 genes were mutated in at least one tumor and tumors, on average, harbored non-

silent SSMs in 38 genes (range 11-102). 

Through our analysis of this cohort, we found that 16 genes were recurrently mutated as 

identified by two or more algorithms used to identify driver genes. Three of the algorthims 

deemed each of ATM, BIRC3, TP53, S1PR1, and B2M to be significantly mutated, and each of 

MEF2B and WHSC1 were identified by two methods (Supplemental Table 2). Notably, 

CCND1, known to be affected by somatic hypermutation, was identified by OncodriveCLUST, 

which relies on spatial clustering of mutations. Of the candidate MCL genes, those frequently 

mutated were ATM (44%; n = 37), CCND1 (18%; n = 15), TP53 (11%; n = 9), WHSC1 (15%; n 

= 13), and KMT2D (12%; n = 10), each gene having been previously nominated by other studies 

(Supplemental Figure 2). Three genes not previously attributed to MCL were also identified by 

at least two methods, including HNRNPH1 (3.6%; n = 3), DAZAP1 (3.6%; n = 3), and EWSR1 

(3.6%; n = 3) (Supplemental Figure 2). These each encode RNA-binding proteins that play a 

role in regulating RNA metabolism and alternative splicing of pre-mRNA40,41. 
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Confirmation of mutation pattern and prevalence 

Based on the results and prior studies, we performed targeted sequencing of 18 genes in 

additional MCLs and used WGS to broadly resolve the exonic and intronic mutation patterns. 

We applied a combination of targeted sequencing (n = 212) and paired WGS (n = 34) to 

comprehensively explore the genetic and gene expression landscape of MCL. We consolidated 

variants across all samples and used the resulting non-duplicated variants for all analyses. 

Mutation patterns and prevalence in established MCL genes were largely consistent with prior 

reports (Figure 1A; Supplemental Table 3). Each of NOTCH1, MEF2B and CCND1 have been 

shown to have mutation hot spots in MCL and other cancers7,12,42,43. In MEF2B, K23R was the 

predominant mutation observed in MCL (Supplemental Figure 3) whereas this mutation was 

only observed in a single diffuse large B-cell lymphoma (DLBCL) case (n = 1616; P = 4.3 x 

10$%&, Fisher’s exact test). The K23R mutation has been shown to reduce the DNA-binding 

ability of MEF2B, thus affecting regulation of its transcriptional targets44. The majority of 

MEF2B mutations found in DLBCL and follicular lymphomas (FL) affect three hot spots which 

are absent from MCL, namely K4, D69, and D8343,45. These mutations have been described to 

alter DNA or co-repressor binding by MEF2B, resulting in constitutive expression of MEF2B 

target genes46–48. The distinct hot spot at K23 and paucity of DLBCL/FL-related mutations 

implies a different role of MEF2B mutations in MCL. 

Unsurprisingly, the incidence of non-silent mutations in newly identified genes was generally 

lower than those of established MCL genes. EWSR1 was mutated in 9 cases (3.1%) and 

DAZAP1, in 13 cases (4.5%) (Figure 1A). EWSR1 predominantly harbored frameshift or 

nonsense mutations in MCL (n = 8; 2.7%) and exhibited a similar pattern at a lower prevalance 

in a larger compendium of DLBCLs (n = 5; 0.3%) (Figure 1B). This suggests that EWSR1 has 
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an unappreciated tumor suppressor function in both MCL and DLBCL. DAZAP1 had a 

distinctive mutation pattern where mutations were clustered near the C-terminus in a region 

containing a nuclear localization signal (p.G383-R407)49 and proline-rich protein-binding 

domain50,51 (Figure 1C). Nine cases harbored putative truncating mutations with each predicted 

to remove or disrupt the nuclear localization signal while leaving most of the open reading frame 

intact. Non-synonymous mutations in this region mainly affected highly conserved residues (i.e., 

p.F402, p.R406, p.R407). Substitution of these residues has been shown to cause cytoplasmic 

accumulation of DAZAP1 in human kidney epithelial (293T) cells and simian (COS7) cells49. 

HNRNPH1 splice site mutations disrupt HNRNPH1 binding motifs 

HNRNPH1 was mutated in 10% when we considered both coding and non-coding mutations, 

placing it as the eighth most commonly mutated gene in the cohort (Supplemental Figure 4). 

Despite limited coverage of introns by our sequencing assay, intronic variants were the most 

common SSM type in this gene, particularly in the regions surrounding exon 4 (Figure 2A). 

Data from paired sequencing confirmed that these were somatic and the WGS data showed they 

wer largely restricted to this exon and the immediate flanking regions (Figures 2A and 2B), 

HNRNP proteins are widely involved in regulating splicing by binding to pre-mRNA at specific 

motifs and either promoting or inhibiting usage of nearby splice sites. Distinct from other 

hnRNPs, HNRNPH1 (and its paralog HNRNPH2) preferentially binds RNA at poly-G motifs36. 

Strikingly, 65% (20/31) of patients with HNRNPH1 mutations had mutations affecting a poly-G 

motif within or near this exon. Among the available WGS data from Burkitt lymphoma52 (n = 

106), DLBCL (n = 153), chronic lymphocytic leukemia (CLL; n = 144) and follicular lymphoma 

(n = 110), we only identified two DLBCL patients with HNRNPH1 mutations in this region 

(1.3%)30. 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 8, 2019. ; https://doi.org/10.1101/686956doi: bioRxiv preprint 

https://doi.org/10.1101/686956


 14 

The highly specific mutation pattern led us to speculate that HNRNPH1 protein regulates its 

expression by modulating the splicing of the HNRNPH1 mRNA transcript. We re-analyzed 

HNRNPH1 iCLIP-seq data from Uren et al.36 and confirmed multiple sites of interaction 

between HNRNPH1 and its pre-mRNA including exon 4 (Figure 2C), supporting a model of 

direct association at these poly-G motifs. HNRNPH1 has multiple alternative splicing events 

annotated including the skipping of exon 4. As annotated, isoforms with this event would be 

subjected to nonsense-mediated decay (NMD) due to disruption of the reading frame. Using a 

custom ddPCR assay which separately quantifies canonical and alternative HNRNPH1 

transcripts, we demonstrate that inhibition of the NMD process by cycloheximide causes a 

significant increase in alternative transcript compared to the canonical transcript (Figure 3A). 

This was consistent with a model wherein this gene regulates its own splicing by a negative 

feedback mechanism to limit HNRNPH1 protein abundance (Supplemental Figure 5). Although 

they do not directly affect canonical splice signals, we hypothesized that the mutations in the 

poly-G motifs impact the splicing of exon 4. 

We analyzed RNA-seq data from 110 cases with known HNRNPH1 mutation status to evaluate 

splicing differences between mutated (n = 13) and unmutated (n = 97) tumors. The mutated cases 

exhibited significantly greater inclusion of exon 4 than the unmutated cases (P = 2.3 x 10$'; 

Figure 3B), consistent with our model (Supplemental Figure 5). These findings were 

corroborated by ddPCR of selected cases (P < 0.001; Figure 3C), which strongly correlated (R = 

0.66, P < 0.01) with splicing ratios identified from RNA-seq data (Supplemental Figure 5). 

These results support the notion that HNRNPH1 mutations promote the inclusion of exon 4 and 

the production of mature transcripts by reducing feedback inhibition, most likely by disrupting 

HNRNPH1 binding motifs surrounding exon 4. 
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Association of recurrent mutations with OS 

We next explored the relationship between mutation the individual genes and OS in nodal and 

treated MCL cases that also underwent DNA sequencing. The clinical characteristics of the 

patients used for survival analysis were largely similar to previous MCL cohorts (Table 1). 

Consistent with previous reports, mutations in TP53 (Figure 4A) and NOTCH1 (Figure 4B) 

were associated with shorter OS (P = 5.2 x 10$( and P = 4.0 x 10$), respectively). MEF2B 

K23R mutated cases (n = 9) exhibited significantly longer overall median OS (Figure 4C, 

median not reached; P = 0.04). Among the RNA-binding proteins, we found a novel association 

between EWSR1 mutations and worse OS (P = 1.8 x 10$'). Given the robust association between 

proliferation and prognosis, we next examined whether these prognostic mutations were 

unequally distributed between MCLs with high or low proliferation after combining intermediate 

risk cases with high risk cases (Supplemental Figure 6A). Mutations in either TP53 (P = 4.3 x 

10$*) or MEF2B (P = 1.4 x 10$+) were associated with high- or low-proliferation tumors, 

respectively (Supplemental Figure 6B), while mutations in RNA-processing genes were equally 

distributed between high- and low-proliferation tumors. Through multivariate analysis we found 

that only MCL35-derived risk status (P = 1.1 x 10$+) and TP53 mutations (P = 9.6 x 10$*) were 

independently prognostic of OS (Supplemental Table 5). 

Discussion 

This study represents the largest profiling of mutations in MCL to date. Using 291 MCL cases, 

we validated the recurrence of mutations in genes with known relevance to MCL, including 

ATM, KMT2D, TP53, CCND1, and NOTCH1. Using clinical data available for the bulk of these 

cases, we confirmed the prognostic association of mutations in both TP53 and NOTCH1. 

NOTCH1 was not independently prognostic when considering TP53 mutations and MCL35-
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derived risk categories. We also found that WHSC1 mutations were not associated with OS as 

was previously discovered53, which may be due to the limited sample size of that study. We 

observed prognostic associations for EWSR1 mutations and MEF2B K23R mutations although 

neither were significant in the multivariate analysis. Confirmation of prognostic association of 

these genes will require substantially larger cohort sizes. Although the role of MEF2B mutations 

in prognosis remains to be clarified, the high frequency and specificity of K23R mutations in 

MCL highlights the need for functional characterization of this hot spot as has been done for hot 

spots common in DLBCL46,48. 

Althoughly less frequently mutated in MCL, EWSR1 is an established cancer gene that is 

typically discussed in the context of the EWSR1-FLI1 fusion oncoprotein that drives Ewing 

sarcoma54. The pattern of mutations observed here implies a separate tumor suppressor role of 

this gene in MCL and DLBCL. FET family proteins, including EWSR1, each comprise N-

terminal transcriptional activating domains and RNA-binding domains near the C-terminus. One 

of the physiologic functions of EWSR1 entails the coupling of transcription and splicing through 

its interactions with RNA Polymerase II and recruitment of splicing factors through its C-

terminal domain55–57. Depletion can induce alternative splicing of EWSR1 targets including 

genes involved in DNA repair and genotoxic stress signaling58. Notably, EWSR1 has been 

implicated in regulating CCND1 by promoting formation of the less oncogenic CCND1a isoform 

relative to the shorter CCND1b isoform59. Although the targets of EWSR1 have not been 

established in MCL, our data are consistent with the notion that loss of EWSR1 activity alters 

RNA metabolism and splicing of genes relevant to MCL. 

The DAZAP1 protein contains two N-terminal, highly conserved RNA recognition motif (RRM) 

domains60, which allow it to interact with the pre-mRNA transcripts of its targets and regulate 
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alternative splicing51,61,62. Its C-terminal proline-rich domain63 is responsible for interactions 

with other splicing factors61. The protein primarily localizes in the nucleus but can also be found 

in the cytoplasm and within mitochondria49. There have been conflicting reports of nuclear 

localization signals (NLS) in either the N- and C-terminus of this gene49,64. A truncated protein 

lacking the C-terminus or with mutations at highly conserved residues, R393, F402, and F406, 

has been shown to accumulate in the cytoplasm49. In addition to mutations in MCL affecting 

each of F402 and F406, we observed multiple cases with C-terminal truncating mutations, which 

would each remove the C-terminal NLS while leaving most of the protein intact. Furthermore, 

we and others have demonstrated a similar pattern of mutations in a subset of DLBCLs30,34. The 

existence of recurrent EWSR1 and DAZAP1 mutations in both malignancies add to the limited 

genetic features shared between DLBCL and MCL, along with inactivating mutations in KMT2D 

and TP53. Based on the effect of mutagenesis experiments49, we hypothesize that the commonly 

observed mutations cause reduced nuclear occupancy of DAZAP1 and affect interactions with 

other proteins. This could disrupt several processes, including transcription, alternative splicing, 

mRNA transport and translation40,51,61. 

HNRNPH1 is a member of the HNRNPH/F family of heterogeneous nuclear 

ribonucleoproteins65. HNRNPH1 binds to various cis-regulatory elements, and depending on the 

sequence context and interacting proteins, can promote or suppress the use of nearby splice 

sites66. Our data support a model wherein HNRNPH1 protein normally limits its own 

accumulation by suppressing the inclusion of exon 4 and directing its mRNA for degradation by 

NMD. In this model, the observed intronic mutations would destroy motifs surrounding exon 4 

thereby favoring exon inclusion and enhancing the production of the mature transcript, an 

observation that is supported by RNA-seq (110 cases) and ddPCR (34 cases) analysis. The 
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possibility that exon 4 inclusion is correlated with HNRNPH1 levels, and the paucity of 

mutations in this region in other B-cell NHL may indicate a differential role for HNRNPH1 in B-

cell development or lymphomagenesis and are consistent with a more important role of 

HNRNPH1 in MCL biology. Similar to the predicted effects of other RNA binding proteins with 

a multiplicity of targets, enhanced activity of HNRNPH1 is expected to have widespread effects 

on the splicing landscape in MCL36. 

Mutations in these novel MCL-related genes (EWSR1, DAZAP1, and HNRNPH1) are compelling 

as they implicate mRNA maturation, splicing and/or trafficking in lymphomagenesis. Evidence 

is accumulating which relates alterations in RNA-binding proteins and splice factors in numerous 

cancers to various aspects of cancer cell biology. Specifically, small changes in RNA-binding 

proteins can have large downstream effects on gene expression and can thus impact multiple 

hallmarks of cancer67. For example, the splicing factor SF3B1 was identified as recurrently 

mutated in CLL68–70 and further detailed investigations have identified widespread alternative 

splicing affecting multiple cellular pathways71,72. The identification of pleiotropic downstream 

effects including DNA damage response, apoptosis, and Notch signaling71,73, indicate that 

widespread disruptions to RNA processing can enhance cancer cell survival by multiple 

pathways. The evidence for alterations affecting multiple splicing factors in the literature74,75, 

including those observed in this study, suggest an emerging role of RNA metabolism and 

splicing in B-cell lymphomas. 

In summary, through genomic analysis of 303 MCL tumors, we identified novel recurrently 

mutated genes with a range of mutation incidences. We implicate an important role for RNA-

binding proteins and RNA processing in MCL as compared to other B-cell lymphomas, 

suggesting that RNA metabolism and splicing have a specific role in MCL pathology, although 
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the downstream targets of these genes in MCL have yet to be characterized. Further work which 

links these mutations to dysregulation of specific RNA molecules will highlight the relevance of 

RNA processing in MCL. 
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Tables 

Table 1. Characteristics of patient samples gathered in British Columbia. MCL tumor 

samples from 232 patients were obtained from patients living in British Columbia. Of the 232 

tumors, 175 were nodal and initially treated and were used in survival analysis. 

		 Nodal, treated (n=175) Others (n=57)* Total (n=232) 
Median age (Range) 63 (31-85) 70 (39-90) 64 (31-90) 
Male (%) 153 (77) 38 (67) 173 (75) 
Performance status >1 (%) 37/166 (22) 8/53 (15) 45/219 (20) 
Elevated LDH (%) 54/169 (32) 4/53 (15) 58/222 (26) 
Blastoid (%) 21 (12) 1 (2) 22 (10) 
Bulky (mass >= 10cm) (%) 21 (18) 5 (9) 36 (16) 
Ann Arbor Stage (%)   

1 8/174 (5) 5/55 (7) 12/229 (5) 
2 9/174 (5) 3/55 (6) 12/229 (5) 
3 14/174 (9) 7/55 (13) 22/229 (10) 
4 142/174 (82) 41/55 (74) 183/229 (80) 

Bone marrow involvement (%) 122 (70) 33 (58) 155 (67) 
GI tract involvement (%) 15 (9) 12 (21) 27 (12) 
B symptoms (%) 52/174 (30) 5/55 (9) 57/229 (25) 
MIPI (%)    

High 28/174 (16) 2/56 (4) 30/230 (13) 
Intermediate 39/174 (22) 20/56 (36) 59/230 (26) 

Low 107/174 (62) 34/56 (61) 141/230 (61) 
Treatment    

Splenectomy 2 1 3 
Palliative chemotherapy 2 0 2 

CVPR 3 1 4 
R-CHOP 153 4 157 

BR 15 1 15 
Observation 0 51 51 

* Samples not used in survival analysis: Nodal observed, 47; Non-nodal, 10 
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Figure 1. MCL mutation pattern. (A) Mutations observed across 291 MCL samples in 18 

candidate MCL genes. Mutations shown here are limited to non-silent mutations for all genes 

with the exception of HNRNPH1, for which intronic and silent mutations were also included. 

Spatial distribution of mutations observed in (B) EWSR1, and (C) DAZAP1 in MCL (top) 

compared to DLBCL (bottom). 
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Figure 2. HNRNPH1 mutations in MCL cluster near exon 4 in poly-G motifs. (A) Somatic 

mutations found in genomic sequencing cases and targeted sequencing coverage of a 

representative sample. The prevalence and pattern of mutations in HNRNPH1 is compared 

between DLBCL (above) and MCL (below). (B) Splice site and intronic mutations were 

observed both upstream and downstream of exon 4 affecting poly-G motifs. Paired mutations 

(orange triangles) are mutations found to be somatic by sequencing matched constitutional DNA 

(n = 7). Unpaired mutations (blue triangles) are mutations found in tumor-only DNA sequencing 

(n = 12). (C) HNRNPH1 iCLIP binding peaks show that HNRNPH1 binds near exon 4 of the 

transcript (shown is Refseq isoform NM_001257293). 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 8, 2019. ; https://doi.org/10.1101/686956doi: bioRxiv preprint 

https://doi.org/10.1101/686956


 25 

 

Figure 3. HNRNPH1 mutations impact RNA splicing. (A) We separately quantified canonical 

and alternative HNRNPH1 transcripts by digital PCR in REC-1 cells cultured with 

cycloheximide (an inhibitor of NMD). This revealed an increasing proportion of the alternative 

transcript (skipped exon 4) with high concentrations. This increase was not associated with 

increased HNRNPH protein as determined by immunoblot. (B) Mutated HNRNPH1 cases 

showed significantly lower exon skipping ratios compared to unmutated cases, as measured by 

RNA-seq. (C) Digital PCR was used to separately quantify alternative and canonical HNRNPH1 

transcripts in mutant (n = 6) and wildtype (n = 30) cases. Mutant cases exhibit lower rate of exon 

skipping and higher overall abundance of HNRNPH1 mRNA. 
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Figure 4. TP53, NOTCH1, MEF2B, and EWSR1 mutations are associated with overall 

survival in nodal MCL. Survival analysis on the nodal MCL cases revealed four genes with 

mutations significantly associated with outcome. (A) TP53 mutated cases (n = 34) had shorter 

overall survival (P = 5.2 x 10$(). (B) NOTCH1 mutated cases (n = 21) had shorter overall 
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survival (P = 4.0 x 10$)). (C) In contrast, MEF2B K23R cases (n = 9) exhibited longer overall 

survival (P = 3.5 x 10$+). (D) EWSR1 mutated cases (n = 4) exhibited shorted overall survival (P 

= 1.8 x 10$'). TP53, NOTCH1, and EWSR1 remained significant after correcting for multiple 

hypothesis testing (FDR < 0.1). 
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