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Cryo-EM is a powerful method for determining protein structures.
But it requires computational assistance. Physics-based computa-
tions have the power to give low-free-energy structures and ensem-
bles of populations, but have been computationally limited to only
small soluble proteins. Here, we introduce CryoFold. By integrating
data of varying sparsity from electron density maps of 3–5 Å reso-
lution with coarse-grained physical knowledge of secondary and ter-
tiary interactions, CryoFold determines ensembles of protein struc-
tures directly from sequence. We give six examples showing its
broad capabilities, over proteins ranging from 72 to 2000 residues,
including membrane and multi-domain proteins, and including re-
sults from two EMDB competitions. The ensembles CryoFold pre-
dicts starting from the density data of a single known protein confor-
mation encompass multiple low-energy conformations, all of which
are experimentally validated and biologically relevant.
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Cryo-electron microscopy (cryo-EM) is a powerful tool for1

determining the structures of biomolecules. It serves a2

niche – such as large complexes or membrane proteins or3

molecules that are not easily crystallizable – that traditional4

methods, such as X-ray diffraction, electron or neutron scatter-5

ing, or NMR often cannot handle. Routine cryo-EM structure6

determination has a number of components: the experiment7

produces raw data in the form of single-particle images, cor-8

rection and processing of this data recovers an electron density9

map, and finally molecular modeling is required to determine10

structures from the map. Currently, there are two broad classes11

of methods for molecular modeling. First, established algo-12

rithms for refining X-ray crystallography or NMR structures,13

such as Phenix.realspacerefine or REFMAC (1), are often14

used, even for ensemble determination (2), but offer complete15

models with the highest-resolution density data. Cryo-EM16

studies commonly produce lower-resolution data. Second, in-17

tegrative approaches that leverage data from multiple types of18

experiments (3) to find structures compatible with the data.19

The challenge here is that cryo-EM data is often heteroge-20

neous, meaning that some parts of a protein structure are21

well-determined by the data while others are more poorly22

defined.23

For computational modeling, the changing resolution poses24

the need for extensive conformational sampling and the need25

to identify which conformations amongst all that fit the lower26

resolution regions are most biophyically relevant. The size of27

the search space is large and grows non-linearly with system 28

size (4). Physics-based modeling, such as molecular dynamics 29

(MD) simulations, can give proper thermodynamic weights 30

for choosing among the different conformational populations. 31

But, we need efficient ways of sampling using physics based 32

approaches. Most MD is used for exploring dynamics around 33

an experimental structure and for automated model refinement 34

(5, 6). Yet, large conformational changes, such as those relevant 35

in many biological processes, remain inaccessible to MD(7–9) 36

- it is computationally expensive. In structure determination, 37

the end structure is unknown, so collective variables to accel- 38

erate the process are not an option (10). Therefore, MD is 39

augmented with external information such as evolutionary co- 40

variance (11, 12) and homology-based starting models (13, 14), 41

or with advanced sampling methods based on Bayesian infer- 42

ence (15–17) and specialized hardware (18), which improve 43

the speed of structure prediction by 10 to 100-fold over brute- 44

force simulations. Notwithstanding this improvement, the 45

prediction of protein fragments beyond 115 residues remain a 46

bottleneck for physics-based methods (19). Fragment search 47

and fitting schemes are successful in resolving the EM map(20), 48

but they require at least 70% of the Cα atoms placed correctly 49

(21–23), and for membrane systems, such refinements also 50

leverage MD simulations (24). However, the bioinformatic 51

augmentations to MD introduce new discrepancies that are 52

often refractory to automated fixes (23, 25), warranting our 53

developments. 54

Here, we describe CryoFold, an integrative atomistic- 55

physical algorithm that derives ensemble of folded protein 56

structures from cryo-EM data. Illustrated in (Fig. 1), Cry- 57

oFold is a combination of three methods: (1) MAINMAST(26), 58

MAINchain Model trAcing from Spanning Tree – a method 59

that generates the trace of the connected peptide chain when 60

provided with EM data, (2) ReMDFF(27), Resolution ex- 61

change Molecular Dynamics Flexible Fitting – a MD method 62

for refining protein conformations from electron-density maps, 63

and (3) MELD(15, 28), Modeling Employing Limited Data – 64

a Bayesian folding and refolding engine that can work from 65

insufficient data to accelerate the MD sampling of rare events 66

such as those needed for protein folding. The guidance from 67

experimental data allows MD simulations to fold models with 68

well beyond 115 residues, including transmembrane systems 69
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and asymmetric multi-protein complexes. More importantly,70

the free energy description of folded and unfolded popula-71

tions accessible to MELD enables the exhaustive sampling72

of structures that are representative of different metastable73

states. Thus, starting with the structural data from a par-74

ticular protein conformation, CryoFold predicts on one hand,75

the energetically favorable ensemble of structures that are76

consistent with the data, while on the other hand, discovers77

multiple new low-energy protein states in the vicinity of the fit-78

ted model. Going beyond the determination of one stationary79

structure, CryoFold offers the opportunity to combine all the80

predicted structures into a model conformational transition81

pathway, where the new states are also validated and re-refined82

against orthogonal NMR, X-ray crystallography or cryo-EM83

data.84

Starting with density maps of resolution 5.0 Å and higher,85

first, MAINMAST is employed to derive a chain trace of Cα86

atoms. Then we use this trace as a template to iterate between87

MELD and ReMDFF. While MELD explores a large conforma-88

tional space, visiting multiple plausible secondary structures89

consistent with the MAINMAST template, ReMDFF simula-90

tions refine the protein backbone and sidechain conformations91

to fit to the density map for each one of the assumed secondary92

structures (6). Taken alone, ReMDFF fits models into electron93

density features, but fails to explore the variations in secondary94

structures(27). MELD addresses this issue by partial folding,95

unfolding and reformation of secondary structures(15, 28),96

using the coarse physical information (CPI) available on web-97

servers(15, 29); for example, based on their sequences, proteins98

prefer specific fractions of hydrophobic interactions, β-strand99

pairing and secondary structures to minimize frustration (Fig.100

2A). Consequently, a hybrid iterative MELD-ReMDFF ap-101

proach allows the determination of complete all-atom models102

from sequence information merged with available structural103

data of varying coarseness. For intermediate to low-resolution104

data (lesser than 5 Å) wherein C-alpha tracing is unreliable105

(30), the MAINMAST step can be avoided. Nonetheless, if106

successful, the search template derived from backbone tracing107

almost always accelerates convergence of CryoFold.108

We report data-guided structural ensembles for six different109

examples here, for proteins from 72 to 618 residues, extending110

to multi-protein complexes of up to 2000 residues, and across111

both soluble and membrane systems. CryoFold overcomes the112

sampling limitations of traditional MD predictions, producing113

high-quality structural models: it offers a high radius of con-114

vergence in the range of 50 Å, refining soluble and transmem-115

brane structures with consistently > 90% favored backbone116

and sidechain statistics, and high EMRinger scores (31). The117

results are independent of the initial estimated conformation118

and consistent with physics and stereochemistry, highlighted119

through results in 2016 and 2019 EMDB competitions. The120

hybrid protocol is available through a python-based graphical121

user interface with a video tutorial.122

Results123

We describe six systems, chosen to represent the different124

bottlenecks in the three component methods of the CryoFold125

pipeline. At any given resolution, the accuracy of CryoFold126

predictions depends on: (1) quality of C-α traces by MAIN-127

MAST, (2) variations in secondary structure within the MELD128

ensemble, and (3) convergence of ReMDFF. Three are soluble129

proteins, with varying degrees of local resolution in the density 130

maps. One is from the 2019 EMDB competition challenge, 131

in which the data was provided at three different resolutions. 132

One was a large asymmetric multi-protein complex that al- 133

lowed us to test how big a structure we could handle. And, 134

one was a transmembrane system, to see if MELD’s aqueous 135

implicit-solvent model would be sufficient for the membrane 136

environment. 137

A. Proof of principle on a small known protein. In this case, 138

we began with a synthetic map of ubiquitin, a small 72-residue 139

protein. Ubiquitin is a good test system because, on the one 140

hand, it is small enough to fold computationally, and yet on the 141

other hand its experimental folding time is in the millisecond 142

range, so it been hard to fold by brute force MD (32), and 143

even, to a lesser extent, by the MELD approach (15). From 144

the known X-ray crystal structure of ubiquitin, we generated a 145

synthetic electron density at 3.0 Å resolution (33), and asked 146

if CryoFold could correctly recover the X-ray structure. We 147

found that only two MELD-ReMDFF iterations (Fig. 2B) 148

were needed to give a model having an RMSD difference of 149

2.53 Å from the crystal structure (PDB id: 1UBQ, see Table 150

S1). 151

B. Test on a soluble lipoprotein with a uniformly high-resolu- 152

tion data. Francisella lipoprotein Flpp3 is a 108 amino acids 153

long membrane-interacting protein that serves as a target for 154

drug development against tularemia(34). In this case, we 155

had two datasets: one at high resolution (1.8 Å) from our 156

Serial Femtosecond X-ray (SFX) crystallography experiments 157

of Flpp3 (See Supplementary Information and (35), and a 158

synthetic one at low resolution (5.0 Å). The point of this 159

test was to see if we could use the low-resolution data to 160

achieve the high-resolution structure. For both sets, we used 161

MAINMAST (26) to introduce the Cα traces as constraints 162

for MELD (Fig. 3A,B). Convergent ensembles derived from 163

this MAINMAST-guided MELD step were then refined by 164

ReMDFF to improve the sidechains until the density was 165

resolved with models of reliable geometry. 166

We found that one iteration of the MELD-ReMDFF cy- 167

cle sufficed to resolve an all-atom model of Flpp3 from the 168

SFX density, with accurate sidechain conformations, secondary 169

and tertiary structure assignments (structural statistics sum- 170

marized in Table S2). At 5 Å resolution MAINMAST pro- 171

duced low quality backbone traces (Fig. 3B). Remarkably, 172

even these low quality Cα traces, were enough for MELD- 173

ReMDFF to successfully produced models comparable to our 174

high-resolution refinements. After two MELD-ReMDFF itera- 175

tions, the best structure obtained was within 2.29 Å RMSD 176

from the SFX model. The MELD-only predictions modelled 177

the β-sheets accurately, they failed to accurately converge 178

on all helices (SI Fig. S1). For example, a 4-turn helix was 179

underestimated to contain only 2-3 turns. However, guidance 180

by the density map in CryoFold recovered these turns in both 181

the high and low resolution cases (Tables S2 and S3). Thus, 182

the Flpp3 test shows that the CryoFold trio of methods gives 183

accurate structures for longer chains than is otherwise possible 184

with either one of these methods. 185

Here, we are also able to test an important aspect of physics- 186

based structure determination, namely whether we can gener- 187

ate proper conformational ensembles, not just single average 188

structures. The quality of the CryoFold ensembles is accessed 189
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against a set of 20 NMR models of Flpp3 (34) by looking at the190

conformation of key residues (Y83,K35 and D4) responsible191

for binding tularemia drugs (Fig. S2A). Upon projecting the192

ensemble of 50 lowest-energy CryoFold structures onto a space193

defined by the distance between Y83-K35 & Y83-D4, where194

closed Flpp3 is represented by (Y83-K35 <5.00 Å & Y83-D4195

> 10.00 Å), and open Flpp3 implies (Y83-K35 >10.00 Å &196

Y83-D4 < 5.00 Å), all the major conformational states seen197

in the NMR experiments have been recovered (Fig. S2B).198

Thus, extending beyond the prediction of a single stationary199

structure, the cluster of low-energy conformations predicted200

by CryoFold captures both the open and closed conformations,201

starting only with data from the closed state. The classifi-202

cation of structural ensembles based on projections onto the203

distance space requires a priori knowledge of the structural204

features of all the major states in the ensemble. In an alternate205

scheme that does not require such knowledge, the models were206

classified based on their Rosetta-energy and RMSD relative to207

the crystal structure (36). Rosetta is chosen as a benchmark208

due to its use of energy functions analogous to the CHARMM209

or AMBER force fields (37, 38) in MELD and MDFF (39).210

In this energy space, the ensemble of structures derived from211

Rosetta-EM visited almost all the states of Flpp3 observed212

in NMR, while CryoFold recovered only a minimum number213

of these states at 1.8 Å resolution (Fig. S3). In contrast, for214

the (5.00 Å) regime, CryoFold shows a markedly better perfor-215

mance with predictions overlapping with the majority of NMR216

intermediates, as well as consistently determining lower energy217

structures than Rosetta-EM. Thus, extended sampling benefits218

of CryoFold is apparent in fuzzier data sets. Here, a broader219

segment of the protein folding funnel is accessed by MELD,220

recovering models from the poor initial guesses generated by221

MAINMAST(Fig. S4). Taken together, the ubiquitin and222

Flpp3 examples establish CryoFold as an enhanced sampling223

tool for resolving multiple metastable states of proteins with224

> 100 residues, guided only by a single experimental data set225

at 3-5 Å226

C. Test on soluble domains of a membrane protein with het-227

erogeneous-resolution data. We look at the cytoplasmic do-228

main of a large trans-membrane protein, TRPV1, a heat-229

sensing ion channel (592 amino acids long). The point of230

this test is that the data is highly heterogeneous, with ex-231

perimental electron densities ranging between 3.8 to 6.0 Å232

(40, 41), as determined by Resmap (42). Furthermore, TRPV1233

has two apo-structures deposited in the RCSB database, one234

with moderately resolved transmembrane helices and cytoplas-235

mic domains(41) (pdb id:3J5P, EMDataBank: EMD-5778),236

and another with highly-resolved transmembrane helices (pdb237

id:5IRZ, EMDataBank: EMD-8118) but with the cytoplasmic238

regions, particularly the β-sheets, less resolved than in 3J5P.239

CryoFold was employed to regenerate these unresolved240

segments of the cytoplasmic domain from the heterogeneous241

lower-resolution data of 5IRZ. We compare the CryoFold model242

to the reported 3J5P structure (Fig. 4), where these domains243

are much better resolved showing clear patterns of β-strands.244

The final model was observed to be at an RMSD of 3.41 Å245

with a CC of 0.74 relative to 5IRZ. The same model with some246

loops removed for consistency with the EMD-5778 density247

produced an RMSD of 2.49 Å and CC of 0.73 with respect248

to 3J5P. Taken together, models derived from the CryoFold249

refinement of 5IRZ capture in atomistic details the highly250

resolved features of this density, yet without compromising 251

with the mid-resolution cytoplasmic areas where it performs 252

as well as the 3J5P model (Table S4). 253

TRPV1 was part of the 2016 Cryo-EM modeling challenge 254

where only ReMDFF was used(43). Presented in Table S5, our 255

updated CryoFold model of TRPV1 (model no. 4), represents 256

the the top - 20% of the submissions with > 90% Ramachan- 257

dran favored statistics, and an EMRinger score of 2.54. This 258

model is vastly refined over the originally reported structure 259

with a score of 1.75, and our previous submission at 2.25. The 260

improvement is attributed solely to the higher-quality β-sheet 261

models that is now derived from the enhanced sampling ob- 262

tained by running MELD and ReMDFF in tandem. Starting 263

with a random coil as search model (Fig. 4B), the recovery of 264

these β-sheets is highly improbable with the limited conforma- 265

tional space that MDFF visits. Addressing this issue, MELD 266

invokes a multi-replica temperature exchange scheme, wherein 267

at high replica indices it samples many distinct structures that 268

have short lifetimes (44). At the lower-temperature replica a 269

stronger coupling with the data is achieved, and these struc- 270

tures are folded into a smaller number of long-lived clusters, 271

each with varying degrees of native contacts and secondary 272

structure (Fig.S5). Thus, unlike MDFF, MELD allows for a 273

search of structural motifs constrained by features in the data. 274

When these methods are combined within CryoFold, both the 275

backbone and sidechain geometries are refined to capture rare 276

secondary structural changes, enabling the determination of 277

TRPV1’s labile β-sheets. 278

An analysis of the CryoFold ensembles reveal partial un- 279

folding of the beta-sheets in the soluble domains of TRPV1 280

with around 3-4% of the structures presenting incomplete 281

beta-sheets, akin to the model originally submitted with 3J5P 282

(Fig.S5C). Partial unfolding of these regions have not been 283

been attributed to any functional implications in TRPV1, 284

though some peripheral evidence of functional advantages 285

from unfolding exist in TRPV3 channels (45). The β-sheets 286

and loops from the soluble domains form the inter-protomer 287

interface within the tertrameric channel. Secondary structural 288

changes at these interfaces, triggers coupling between cyto- 289

plasmic and transmembrane domains, priming the channel 290

for opening. Such changes, though rare, are indeed appar- 291

ent in our MELD assignments. Therefore, the ensemble of 292

structures and not merely a single model that CryoFold offers, 293

opens the door to analyzing a number of distinct folded and 294

unfolded conformations, all of which contribute to the same 295

density map (46–48). Also evident from the TRPV1 case 296

study, we can generate such atomistic ensembles with data 297

of low local-resolution, yet with accuracy commensurate to 298

structures derived from higher resolution density maps. 299

D. Tests on apoferritin at three different resolutions from the 300

2019 EMDB modeling challenge. The EMDB competition is a 301

community-wide effort to assess the limits of structure predic- 302

tion using cryo-EM data. Here we were tasked to determine the 303

structure of an apoferritin monomer using data at 1.8, 2.3 and 304

3.1 Å resolution. Following an initial tracing by MAINMAST 305

on the monomeric map, it took two iterations for CryoFold to 306

arrive at the final model for the first two resolutions, and three 307

iterations for the third map. In total 17 teams participated 308

in the 2019 competition that focused primarily on ab-initio 309

structure determination, and all the results are reported on 310

the EMDB website (49). CryoFold (team 73) models were 311
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independently assessed to be high accuracy (Fig. S6 (scale312

labeled in green)), specifically for three different categories of313

scores: Reference-free, EM-map and target-structure scores.314

The results were robust over the narrow range of resolutions315

tested, earning us the top rank for multiple entries (48). Com-316

parability with respect to the target structures is almost always317

very high, as also reflected in commensurately high Fourier318

Shell Coefficient (FSC = 0.5) and cross correlations with the319

experimental map. Another noticeable strength is the strong320

EMRinger scores of the MD-based refinement, very similar321

to MDFF’s performance in the 2016 competition (43). A322

relatively new measure to evaluate mainchain geometry and323

to identify areas of probable secondary structure based on324

C-Alpha geometry, called CaBLAM (50) also found the Cry-325

oFold models to be favorable. One limitation however, is the326

increased number of Ramachandran outliers observed in the327

CryoFold and MDFF determined structures, which implicates328

the assumptions of classical CHARMM-type force fields(43).329

Our recently developed neural network potentials have already330

been useful to circumvent this issue (43, 46).331

E. Test on a large multi-chain protein complex with mid-res-332

olution data. A grand challenge for cryo-EM is to determine333

structures of multi-chain complexes. Symmetry is used wher-334

ever possible, e.g., in viruses or homo-oligomeric membrane335

proteins (45, 51). However, most protein-protein or protein-336

nucleic acid complexes are asymmetric. Our test here is337

whether CryoFold could obtain the structure in an asym-338

metric complex. We focused on ATP synthase. It contains 31339

chains. Recently Murphy et al. reported 30 distinct confor-340

mations of this motor at 2.7-4.3 Å resolution (52). Similar to341

the Flpp3 and TRPV1 cases, here the ensemble computed by342

CryoFold correctly captured the low-lying states of the multi-343

chain system in addition to the target 6RET conformation.344

For simplicity, we have removed the transmembrane c-ring of345

this system; the transmembrane challenge will be addressed346

in the next section.347

Seven of the reported thirty models by Murphy et al. in-348

cluded overall deformations of the system without rotation of349

the c-ring. Using RMSD matrices (Fig. S7A), these structures350

were clustered in 4 distinct states (States I: 6RET; II: 6RDQ,351

6RDR; III: 6RDK, 6RDL; and IV: 6RDW, 6RDX). Remark-352

ably, all these four states are identifiable in an RMSD matrix353

of 220 MELD structures within CryoFold (Fig. 5B). States354

II, III and IV from MELD are initially at RMSD 7.6, 12.0355

and 8.4 Å from 6RET respectively (Fig: S7B). After MDFF356

refinements, structures are consistent with experimental mod-357

els from Murphy et al. listed for states II, III and IV were358

refined to RMSD values of 2.1, 2.8, and 1.8 Å relative to359

the target models (Fig. 5C, S7C and S8C). Beyond sampling360

the rare secondary structural changes, seen in the first four361

examples, here MELD visits states separated by variations in362

tertiary structure at the protein-protein interfaces (Fig. S9).363

Therefore, starting with an ensemble of structures generated364

to resolve 6RET, the inter-state hoping promoted by MELD’s365

enhanced sampling of the interface contacts (53), and refine-366

ment by ReMDFF allowed for the resolution of three more367

conformations of ATP synthase consistent with 6RDQ, 6RDK368

and 6RDW (Tables: S6 and S7).369

A key biophysical outcome that we make from the CryoFold370

ensembles of ATP synthase is the flexibility of this motor’s371

peripheral stalk domains. Specifically, the OSCP hinge (chain372

P) assumes a number of distinct open and closed conforma- 373

tions with an RMSD of 3.3-6.4 Å (Fig. 5D) relative to the 374

hinge from 6RET. The elastic coupling in ATP synthase has re- 375

mained a topic of contention in the bioenergy community with 376

crystallographers claiming minimum flexibility of the stalk 377

regions (54), in sharp contrast to single-molecule observations 378

of “power-strokes” that originate from deformations of the 379

stalk (55). Within the CryoFold ensembles incorporating all 380

the states I-IV, we see that the central stalk is in fact less flex- 381

ible than the peripheral stalk with an RMSD ranging between 382

2.4-3.8 Å relative to 6RET. So, our results show that most of 383

the elastic coupling in polytomella ATP synthase comes from 384

the peripheral stalk, rather than the central stalk. 385

F. Tests on soluble and membrane domains of a large ion 386

channel with mid-resolution data. A second major challenge 387

in de novo structure determination arises from the modeling of 388

complete transmembrane protein systems, including structure 389

of both the soluble and TM domains. The refinement becomes 390

particularly daunting for CryoFold, as MELD simulations fail 391

to capture structural changes from explicit protein-membrane 392

interactions (44). Consequently, the accuracy of the model 393

will depend on the structural information available from the 394

map, and less on the fidelity of the physical interactions that 395

underscore MELD. 396

Addressing this challenge, CryoFold was employed to model 397

a monomer from the pentameric Magnesium channel CorA, 398

containing 349 residues, at 3.80 Å resolution(56) (pdb id: 399

3JCF, EMDataBank: EMD-6551) (Figs. 6) and S10. An 400

initial topological prediction of the channel was obtained by 401

flexibly fitting of a linear polypeptide onto the Cα trace ob- 402

tained from the cryo-EM density using MAINMAST. These 403

traces were already within 6.0 Å of the target Cα conformation 404

in 3JCF, providing high-confidence coarse-grained information 405

for MELD to operate. Leveraging the MAINMAST trace, 406

MELD was used to perform local conformational sampling, 407

regenerating most of the secondary structures. The model 408

with the highest cross-correlation to the map was then refined 409

using ReMDFF, finally resulting in models which were at 410

2.90 Å RMSD to the native state. Even though this model 411

possessed high secondary structure content of 76%, substantial 412

unstructured regions remained both in the cytoplasmic and 413

the transmembrane regions, warranting a further round of 414

refinement. In the subsequent MELD-ReMDFF iteration, the 415

resulting models were 2.60 Å to the native state and agreed 416

well with the map with a CC of 0.84. Moreover, the CryoFold 417

models were comparable in geometry to that deposited in the 418

database (Fig. 6). 419

Discussion 420

The systems presented here have been chosen as challenging 421

problems to the methods that constitute CryoFold. We have 422

not over-optimized any aspect of the protocol to fit one prob- 423

lem, rather complemented the uncertainties and weakness of 424

one method with the strengths of another. This approach is 425

akin to the consensus methods that are known to improve 426

performance over single methods in blind prediction challenges 427

(57). A selected combination of methods within CryoFold’s 428

plug-and-play protocol will enable the prediction of completely 429

unseen data sets (Fig. S11), where the individual methods 430

will potentially fail. 431
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While CryoFold appears promising for obtaining biomolecu-432

lar structures from cryo-EM, we are aware of some limitations.433

First, its success depends upon the correctness of the initial434

trace generated by MAINMAST. It is not clear when and435

whether the MD tools can recover from a wrong chain trace,436

particularly for resolving the transmembrane systems. Unlike437

Flpp3, repeating the CorA refinement with a poor-quality438

MAINMAST trace resulted in unreliable models. We do not439

have a good implicit membrane model to use in the MELD440

simulations and the use of explicit solvent would require many441

replicas, seeking more resources than currently available. Thus,442

by relying solely on the information coming from the density443

map we impose positional restraints and focus sampling on444

the transmembrane domains. Second, as with any MD sim-445

ulation of biomolecules, the force fields are still not perfect446

and larger structures will be a challenge for the searching and447

sampling, even with an accelerator such as MELD. Finally,448

in our current approach, MELD is the most computationally449

limiting, requiring between one and ten days of sampling with450

30 GPUs for the systems studied. This computational expense451

is not prohibitive using supercomputing resources available to452

academic researchers.453

Despite the aforementioned limitations, CryoFold has been454

compared to the popular Rosetta protocols for TRPV1, ATP455

synthase and CorA. While for TRPV1 and CorA, Rosetta456

converged to models with unphysical overlap between the457

β-sheets (Fig. S5 and S12 ), a multi-protein refinement for458

ATP synthase could not be reproduced in ROSETTA-ES using459

standard resources, though individual chain refinements were460

achieved and are reported in Fig. S13. Thus, barring the Flpp3461

case at 1.8 Å, CryoFold was always found to offer higher quality462

models, but more importantly a diverse range of structures463

consistent with the expected biophysics.464

A key benefit of this work is the ability to capture ensem-465

bles rather than single structures. Consequently, we identify466

conformations that are close to the native structure but also467

some alternative meta-stable states that are favored by the468

combination of force field and data. An important question469

follows – are these structures really relevant or just spurious?470

To this end, we have now validated using NMR and cryo-EM471

experiments that in addition to the narrow set of models con-472

sistent with one electron density map, there exists orthogonal473

states that are observed both in the experiments in CryoFold474

refinements. These orthogonal structures sampled by MELD475

are indeed leveraged in biological functions, as we shown by476

the open→close transition in Flpp3 or flexibility of the periph-477

eral stalks in elastic coupling of the ATP synthase example,478

yet behooves resolution by the limited sampling capacity of479

brute-force MD or MC sampling used in stationary structure480

determination.481

Finally, evident from the 2016 and 2019 EMDB competition482

results, heterogeneous map resolutions affect the completeness483

of all the ensuing models. While a significant number of484

modelers prefer to truncate the more dynamic regions, MDFF485

offers a way to quantify uncertainty of the dynamic regions486

with root mean square deviations from an average model487

(27), and to correlate the inherent flexibility of proteins with488

the local resolution of density maps. Now, inside CryoFold,489

the fluid-like regions are even more thoroughly sampled by490

MELD offering the possibility of seeking hidden states in these491

fuzzy regions. Altogether, we present the first MD based492

methodology for data-guided protein folding and ensemble 493

refinement, bridging the strengths from two distinct areas 494

of Biophysics. The implementation is semi-automated, and 495

manual fitting is completely avoided. However, the user will 496

require to control the I/O between the three methods, and 497

optimize the default parameters as required. We have provided 498

a GUI to facilitate this stage. 499

Conclusions 500

Structures, dynamics and function are interlinked. We often 501

concentrate on a set of tools to determine structures from data 502

and then use alternate computational techniques to determine 503

dynamics between these metastable structures to ultimately 504

elucidate biological functions. By leveraging the parallel algo- 505

rithms with techniques such as CryoEM that capture multiple 506

states (but an unknown number of them) tools that can go be- 507

yond single structures to establish molecular dynamics directly 508

from data. CryoFold is a first step in that direction. 509

Methods 510

The data-guided fold and fitting paradigm presented herein 511

combines three real-space refinement methodologies, namely 512

MELD, MAINMAST and ReMDFF. In what follows, these 513

three formulations are articulated individually and the readers 514

are referred to the original publications for details. Then, 515

we outline the hybridization of the methods to provide a 516

molecular dynamics-based de novo structure determination 517

tool, CryoFold. Details of the setup for each individual system 518

is outlined in Supplementary Information to showcase the 519

different contexts in which CryoFold can operate. 520

MELD:. Modeling Employing Limited Data (MELD) employs 521

a Bayesian inference approach (eq. Eq. (1)) to incorporate em- 522

pirical data into MD simulations(15, 28). The bayesian prior 523

p(~x) comes from an atomistic force field (ff14SB sidechain, 524

ff99SB backbone) and an implicit solvent model (Generalized 525

born with neck correction, gb-neck2) (37, 38). The likelihood 526

p( ~D|~x), representing a bias towards known information, de- 527

termines how well do the sampled conformations agree with 528

known data, D. p( ~D) refers to the likelihood of the data, 529

which we take as a normalization term that can typically be 530

ignored. Taken together, 531

posterior︷ ︸︸ ︷
p(~x| ~D) = p( ~D|~x)p(~x)

p( ~D)
∼

likelihood︷ ︸︸ ︷
p( ~D|~x)

prior︷︸︸︷
p(~x) . [1] 532

MELD is designed to handle data with one or more of these 533

features: sparsity, noise and ambiguity. Brute-force use of 534

such data leads to incorrect models(58) as not all the data 535

is compatible with the native state. MELD addresses the 536

refinement of low-resolution data by enforcing only a fraction 537

(x%) of this data at every step of the MD simulation. Although 538

x is kept fixed, the subset of data chosen to bias the simulation 539

keeps changing with the simulation steps in a deterministic 540

way. For a give nstructure all the data is evaluated, sorted 541

according to their energy penalty and the x% with lowest 542

energy guide the simulation until the next step. The data 543

is incorporated as flat-bottom harmonic restraints E(rij) for 544
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evaluating the likelihood (p( ~D|~x)).545

E(rij) =



1
2k(r1 − r2)(2rij − r1 − r2) if rij < r1
1
2k(rij − r2)2 if r1 ≤ rij < r2

0 if r2 ≤ rij < r3
1
2k(rij − r3)2 if r3 ≤ rij < r4
1
2k(r4 − r3)(2rij − r4 − r3) if r4 ≤ rij ,

[2]546

When these restraints are satisfied they do not contribute to547

the energy or forces, contributing for flat bottom region of eq.548

2 and (Fig. S12). When the restraints are not satisfied they549

add energy penalties and force biases to the system – guiding it550

to regions that satisfy a subset of the data, or conformational551

envelopes. Details of MELD implementation are provided in552

Supplementary methods: Description of MELD.553

MAINMAST:. MAINchain Model trAcing from Spanning Tree554

(MAINMAST) is a de novo modeling program that directly555

builds protein main-chain structures from an EM map of556

around 4-5 Å or better resolutions(26). MAINMAST auto-557

matically recognized main-chain positions in a map as dense558

regions and does not use any known structures or structural559

fragments.The procedure of MAINMAST consists of mainly560

four steps (Fig. S14). In the first step, MAINMAST identifies561

local dense points (LDPs) in an EM map by mean shifting562

algorithm. All grid points in the map are iteratively shifted563

by a gaussian kernel function and then merged to the clusters.564

The representative points in the clusters are called LDPs. In565

the second step, all the LDPs are connected by constructing a566

minimum spanning tree (MST). It is found that the most edges567

in the MST covers the main-chain of the protein structure568

in EM map(26). In the third step, the initial tree structure569

(MST) is refined iteratively by the so-called tabu search algo-570

rithm. This algorithm attempts to explore a large search space571

by using a list of moves that are recently considered and then572

forbidden. In the final step, the longest path of the refined573

tree is aligned with the amino acid sequence of the target pro-574

tein. This process assigns optimal Cα positions of the target575

protein on the path and evaluates the fit of the amino acid576

sequence to the longest path in a tree. Details of MAINMAST577

implementation are provided in Supplementary methods:578

Description of MAINMAST.579

Traditional MDFF:. The protocol for molecular dynamics flex-580

ible fitting (MDFF) has been described in detail(6). Briefly,581

a potential map VEM is generated from the cryo-EM density582

map, given by583

VEM(r) =

{
ζ
(

1− Φ(r)−Φthr
Φmax−Φthr

)
if Φ(r) ≥ Φthr ,

ζ if Φ(r) < Φthr .
[3]584

where Φ(r) is the biasing potential of the EM map at a point585

r, ζ is a scaling factor that controls the strength of the cou-586

pling of atoms to the MDFF potential, Φthr is a threshold for587

disregarding noise, and Φmax = max(Φ(r)).588

A search model is refined employing MD, where the tra-589

ditional potential energy surface is modified by VEM. The590

density-weighted MD potential conforms the model to the591

EM map, while simultaneously following constraints from592

the traditional force fields. The output structure offers a593

real-space solution, resolving the density with atomistically594

detailed structures.595

ReMDFF:. While traditional MDFF works well with low- 596

resolution density maps, recent high-resolution EM maps have 597

proven to be more challenging. This is because high-resolution 598

maps run the risk of trapping the search model in a local 599

minimum of the density features. To overcome this unphysical 600

entrapment, resolution exchange MDFF (ReMDFF) employs 601

a series of MD simulations. Starting with i = 1, the ith map 602

in the series is obtained by applying a Gaussian blur of width 603

σi to the original density map. Each successive map in the 604

sequence i = 1, 2, . . . L has a lower σi (higher resolution), 605

where L is the total number of maps in the series (σL = 0 Å). 606

The fitting protocol assumes a replica-exchange approach 607

described in details(27) and illustrated in Fig. S15. At regular 608

simulation intervals, replicas i and j, of coordinates xi and 609

xj and fitting maps of blur widths σi and σj , are compared 610

energetically and exchanged with Metropolis acceptance 611

probability 612

613

p(xi, σi,xj , σj) =
min

(
1 , exp

(
−U(xi,σj)−U(xj ,σi)+U(xi,σi)+U(xj ,σj)

kBT

))
[4]

where kB is the Boltzmann constant, U(x, σ) is the instan- 614

taneous total energy of the configuration x within a fitting 615

potential map of blur width σ. Thus, ReMDFF fits the search 616

model to an initially large and ergodic conformational space 617

that is shrinking over the course of the simulation towards the 618

highly corrugated space described by the original MDFF poten- 619

tial map. Details of ReMDFF implementation are provided in 620

Supplementary methods: Description of Resolution 621

exchange MDFF. 622

CryoFold (MELD-MAINMAST-ReMDFF) protocol. Illustrated in 623

Fig. 1, the CryoFold protocol begins with MELD compu- 624

tations, which guided by backbone traces from MAINMAST 625

yields folded models. These models are flexibly fitted into 626

the EM density by ReMDFF to generate refined atomistic 627

structures. 628

1. First, information for the construction of Bayesian like- 629

lihood is derived from secondary structure predictions 630

(PSIPRED), which were enforced with a 70% confidence. 631

This percentage of confidence offers an optimal condition 632

for MELD to recover from the uncertainties in secondary 633

structure predictions(29). For membrane proteins, this 634

number can be increased to 80% when the transmembrane 635

motifs are well-defined helices. MELD extracts additional 636

prior information from the MD force field and the implicit 637

solvent model (see eq.1). 638

2. In the second step, any region determined with high 639

accuracy will be kept in place with cartesian restraints 640

imposed on the Cα during the MELD simulations. This 641

way, the already resolved residues can fluctuate about 642

their initial position. 643

3. In the third step, distance restraints (e.g. from the Cα 644

traces of MAINMAST) are derived. The application of 645

MAINMAST allows construction of pairwise interactions 646

as MELD-restraints directly from the EM density fea- 647

tures. Together with the cartesian restraints of step 2, 648

these MAINMAST-guided distance restraints are enforced 649

via flat-bottom harmonic potentials (see eq. 2) to guide 650

the sampling of a search model; notably, the search model 651
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is either a random coil or manifests some topological fea-652

tures when created by fitting the coil to the Cα trace653

with targeted MD. Depending upon the stage of CryoFold654

refinements, only a percent of the cartesian and distance655

restraints need be satisfied. The cartesian restraints are656

often localized on the structured regions, while the dis-657

tance restraints typically involve regions that are more658

uncertain (e.g loop residues).659

4. Fourth, a Temperature and Hamiltonian replica exchange660

protocol (H,T-REMD) is employed to accelerate the sam-661

pling of low-energy conformations in MELD(15, 28), re-662

fining the secondary-structure content of the model. The663

Hamiltonian is changed by changing the force constant664

applied to the restraints. Simulations at higher replica665

indexes have higher temperatures and lower (vanishing)666

force constants so sampling is improved. At low replica667

index, temperatures are low and the force constants are668

enforced at their maximum value (but only a certain per669

cent of the restraints, the ones with lower energy, are670

enforced). See SI for details for individual applications.671

5. Fifth, cross-correlation of the H,T-REMD-generated struc-672

tures with the EM-density is employed as a metric to select673

the best model for subsequent refinement by ReMDFF674

(Fig. S16). Resolution exchange across 5 to 11 maps with675

successively increasing Gaussian blur of 0.5 Å (σ in eq.676

4) sufficed to improve the cross-correlation and structural677

statistics. The model with the highest EMringer score678

forms the starting point of the next round of MELD sim-679

ulations. Thereafter, another round ReMDFF is initiated,680

and this iterative MELD-ReMDFF protocol continues681

until the δ CC between two consecutive iterations is <0.1.682

Throughout different rounds of iterative refinement, the struc-683

tures from ReMDFF are used as seeds in new MELD simula-684

tions. At the same time, distance restraints from the ReMDFF685

model are updated and the pairs of residues present in those686

interactions are enforced at different accuracy levels. As ex-687

pected, the more rounds of refinement we do, the higher the688

accuracy levels for the contacts is achieved in CryoFold. In689

going through this procedure, the ensembles produced get690

progressively narrower as we increase the amount of restraints691

enforced. A video tutorial and the description of this implemen-692

tation is provided in Supplementary methods: Graphical693

User Interface.694
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Refined 
model

ReMDFF

MAINMAST Search
model

Targeted
MD

MELD-MDFF
Iterations

Sequence

Low to mid 
resolution

cryo-EM density

High resolution
cryo-EM density

MELD

Fig. 1. An overview of the CryoFold protocol. For a high-resolution density map (data-rich case), backbone tracing is
performed using MAINMAST to determine Cα positions, and a random coil is fitted to these positions using targeted MD.
This fitted protein model is subjected to the next MELD-ReMDFF cycles as a search model. For a low or medium resolution
density map (data-poor case), a search model is constructed from primary sequence using MELD. This search model is
fitted into the electron density using ReMDFF. The ReMDFF output is fed back to MELD for the next iteration, and the cycle
continues until convergence.
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A)

B)

Undirected Refinement Data Driven Refinement

STEP 3: MELD
RMSD 3.27 Å

STEP 2: MDFF
RMSD 3.91 Å

STEP 1: MELD
RMSD 7.93 Å

STEP 4: MDFF
RMSD 2.53 Å

Unfolded
RMSD 25.04 Å

Synthetic
3.0 Å Resolution

Fig. 2. Ensemble models for TRPV1 and the refinement protocol for ubiquitin. (A) Ensemble refinement with CryoFold
showcased for the soluble domain of TRPV1. Several conformations from the TRPV1 ensemble are superimposed; color
coding from blue (N-terminal) to red (C-terminal). In a MELD-only simulation, a soluble loop (indicated in red) artifactually
interacted with the transmembrane domains. Following the data-guidance from ReMDFF, this loop interacted with the
soluble domains and a more focused ensemble is derived that agrees with the electron density. (B) Stages of the refinement
protocol for a test case, ubiquitin. The initial model is an unfolded coil. MELD was used to generate 50 search models
from just the amino acid sequence, and no usage of the electron density data. Then, these models were rigid-fitted into
the electron density using Chimera(59), and ranked based on their global cross-correlation. ReMDFF refined the best
rigid-fitted model even further. The ReMDFF model with the highest Cross Correlation (CC) to the density map served as a
template for the subsequent iteration with MELD. In two consecutive MELD-ReMDFF iterations the RMSD of the folded
model relative to the crystal structure (1UBQ) attenuated from 25.04 Å to 2.53 Å
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A) Map
resolution
1.8 Å

B) Map
resolution
5.0 Å

ROSETTA-EM

MELD-1

MDFF-1

ROSETTA-EM

Unfolded

MELD-1
MDFF-1
MELD-2
MDFF-2

Unfolded

Final model
Native structureTargeted MDMAINMASTMAPUnfolded Rosetta model

Native structure

(RMSD 1.56 Å) (RMSD 1.28 Å)

(RMSD 2.35 Å) (RMSD 2.29 Å) RMSD (Å)

RMSD (Å)
3210 4 2826242220 30

SFX
(5.0 Å Resolution)

SFX
(1.8 Å Resolution)

Fig. 3. Hybrid structure determination of Flpp3. (A) High-resolution density map at 1.8 Å resolution. An unfolded
structure was used as the initial model. A SFX density map at 1.8 Å resolution was employed to generate the Cα position
(green spheres) using MAINMAST, and the initial model was fitted into these positions by targeted MD. The resulting
structure (green cartoon model) was then subjected to MELD-ReMDFF refinement. This procedure yielded a structure
with RMSD of 1.56 Å relative to the native SFX structure (yellow). The Rosetta-EM model (cyan) has an RMSD of 1.28 Å
with respect to the SFX structure. (B) Lower-resolution density map at 5 Å resolution. An initial Cα trace in the map was
computed using MAINMAST. Subsequent MELD-ReMDFF refinement resulted in a structure (green cartoon model) with
an RMSD of 2.29 Å from the SFX structure (yellow). The best Rosetta-EM model has (cyan) an RMSD of 2.35 Å to the
SFX structure. Barplots depict the evolution of RMSD of the CryoFold models with each subsequent MELD-ReMDFF
refinement.
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PDB:5IRZ
Starting structure (STEP 0):

5IRZ heated to 600K

Soluble domain TRPV1 
(EMD5778)

3.8 Å -  6.0 Å Resolution
Native Structure (PDB:51RZ) 

Final Model (STEP 4)PDB:3J5P

A) B)

TRPV1 Multistep RefinementC)  

STEP 3: MELD
RMSD 4.32 Å

STEP 2: MDFF
RMSD 4.25 Å

STEP 1: MELD
RMSD 9.11 Å

STEP 4: MELD
RMSD 3.41 Å

LOW
RESOLUTION
β-SHEET

MISSING
LOOP

MELD / MDFF

Refinement
+

Fig. 4. Modeling of the soluble domain of TRPV1. (A) TRPV1 structures deposited in 2016 (pdb 5IRZ in yellow) and in
2013 (pdb 3J5P in cyan in cartoon representation, showing the latter has a more resolved β-sheet while the former possess
an additional extended loop. (B) The 5IRZ model was heated at 600 K using brute-force MD, while constraining the α
helices. After 10 ns of simulation, this treatment resulted in a search model with the loop regions significantly deviated and
the β sheets completely denatured. The search model was subjected to MELD-ReMDFF refinement. A single round of
MELD regenerated most of the β-sheet from this random chain, however the 5- to 15-residue long interconnecting loops
still occupied non-native positions. Subsequent ReMDFF refinement with the 5IRZ density resurrected the loop positions.
One more round of the MELD and ReMDFF resulted in the further refinement of the model. The final refined model agrees
well with 5IRZ (C) Progress of the refinement in each step of CryoFold. MELD step 1 shows the β sheets modeled correctly,
while the loops recovered in MDFF step 2, and refinement was complete by step 4.
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Fig. 5. CryoFold samples several biologically relevant states of the soluble domain of mitochondrial F1 - F0 ATP-
synthase. We modeled mitochondrial F1 - F0 ATPsynthase starting from pdb 6RET (state I) and excluding the grey region
embedded in the membrane from refinement. CryoFold samples different conformations through a hinge motion in the
OSCP region (orange) connecting the arm (blue) with the rotary domains (cyan). Clustering and 2D-RMSD analysis shows
Cryofold samples conformations of additional ATPsynthase states represented by pdb codes 6RDK, 6RDL (state IV). Ohter
states represented by pdb codes 6RDQ, 6RDR (state II) and 6RDW, 6RDX (state III) are included in SI.
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+

CryoFold 
Refinement

Fig. 6. Modeling transmembrane Magnesium-channel CorA. (A) The CryoFold protocol on CorA. A starts from an Cα
trace based Cryo-EM density map using MAINMAST and refined through different cycles of MELD and MDFF produces a
structure that agrees extremely well with the native structure (yellow), featuring accurate beta structures. (B) CryoFold
produces narrower, more constraint ensembles as we iterate through MELD/MDFF. (C) The evolution of the RMSD of
CryoFold models with each MELD-ReMDFF refinement. The end-model is 2.60 Å RMSD from the native structure.
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