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Sound localization in reverberant environments is a difficult task that human listeners perform
effortlessly. Many neural mechanisms have been proposed to account for this behavior. Gen-
erally they rely on emphasizing localization information at the onset of the incoming sound
while discarding localization cues that arrive later. We modelled several of these mechanisms
using neural circuits commonly found in the brain and tested their performance in the context
of experiments showing that, in the dominant frequency region for sound localisation, we have
a preference for auditory cues arriving during the rising slope of the sound energy (Dietz et al.,
2013). We found that both single cell mechanisms (onset and adaptation) and population
mechanisms (lateral inhibition) were easily able to reproduce the results across a very wide
range of parameter settings. This suggests that sound localization in reverberant environments
may not require specialised mechanisms specific to perform that task, but could instead rely
on common neural circuits in the brain. This would allow for the possibility of individual
differences in learnt strategies or neuronal parameters. This research is fully reproducible, and
we made our code available to edit and run online via interactive live notebooks.

Introduction

The precedence effect, or law of the first wave, is a psychoacoustical phenomenon occurring when
multiple sounds reach the listener’s ears in quick succession (Wallach et al., 1949). For small
enough delays, the perceived sound is located near the source of the leading sound. In other words,
in order to extract reliable localization cues, the auditory system favors the computation of dichotic
cues conveyed in the first sound arriving at the ears. Doing so unburdens the localization process
from dealing with confounding reverberations. Although well studied (Zurek, 1987; Blauert, 1997;
Litovsky et al., 1999; Brown et al., 2015), the neural mechanisms behind the precedence effect are
still not well understood. In particular, it is not clear at what stage of the auditory pathway the
re-weighting of the interaural cues occurs.

Principally, two main processing sites were suggested. On the one hand, different types of neural
adaptation have been reported to take place in the periphery of the auditory pathway. Proposed
models of peripheral adaptation range from simulating the ringing of the basilar membrane (Tollin,
1998) to adaptation occurring at the synapse between the inner hair cells and the auditory nerve
fibers (Hartung and Trahiotis, 2001; Xia and Shinn-Cunningham, 2011). Similarly, onset cells
located in the cochlear nucleus (Rothman and Manis, 2003; Spencer et al., 2012, 2018) are likely to
play a role in discarding counfounding localization cues. On the other hand, models of the auditory
system including lateral inhibitory circuits in the medial superior olive (MSO) or inferior colliculus
(IC) were also able to account for some aspects of the precedence effect. Most of these models
rely on the transient inhibition of the lagging sound (Lindemann, 1986a,b; Zurek, 1987; Xia et al.,
2010). Overall, peripheral models seem to account well for precedence effect related behaviors with
short sounds while inhibition based models produce better results with longer sounds (Braasch and
Blauert, 2003).

To further understand how interaural time differences (ITDs) are processed by the auditory system
in reverberant environments, a study from Dietz et al. (2013), showed that human listeners tend
to rely on interaural phase differences (IPDs) located in the onset of low-frequency amplitude
modulated sounds. To demonstrate this, the authors crafted an amplitude modulated binaural
beats (AMBB) stimulus exhibiting a time-varying IPD performing a full cycle (from 0° to 360°) over
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the time-course of a single envelope cycle, while ensuring that there is no interaural level difference.
By asking participants to match the perceived location produced by the AMBB sounds to static
IPD pointers, Dietz et al. (2013) observed that the subjects mostly made use of the interaural cues
positioned in the rising portion of the envelope of the stimulus (instead of the peak of the envelope
where the amplitude is maximal). The perceived IPD was also shown to increase with modulation
frequency. Later on, Hu et al. (2017) conducted a similar experiment and uncovered that IPD
extraction in the rising slope is conditional to the value of the carrier frequency. For 200 Hz stimuli,
the subjects mostly reported IPDs located at the peak of the envelope. However, for 600 Hz stimuli,
subjects prioritized the rising portion of the envelope.

We investigated a variety of neural mechanisms that could account for the perceived location of
the AMBB stimulus in an attempt to rule out certain mechanisms. Instead, we found that all
the mechanisms we tried were able to account for this effect. This raises the possibility that the
effect may be the result of general processes occurring throughout the brain rather than specialised
mechanisms for sound localisation in reverberant environments, and would allow for considerable
individual differences in terms of neuronal parameters (Prinz et al., 2004) or localization strate-
gies (Keating et al., 2016). In the first half of this paper, we investigate single neuron mecha-
nisms that occur before binaural integration takes place, using a simple, general model including
multiple mechanisms that can enhance onset (including adaptation and delayed inhibition). In
the second half of the paper we investigate population level mechanisms based on the interaction
of excitation and inhibition after binaural integration. To ensure computational reproducibility,
the entirety of the code used to produce the results presented in this paper is available online
(https://github.com/neural-reckoning/simple_ambb_modelling) and can be edited and run
directly in the browser.

Results

We investigated the neural mechanisms that could account for the data collected by Mathias Dietz
and colleagues on amplitude modulated binaural beats (AMBBs; Dietz et al. 2013, 2014). These are
sinusoidally amplitude modulated tones where there is an interaural phase difference (IPD) in the
tone or carrier that linearly increases from 0 to 360° during each amplitude modulation cycle. At
low modulation frequencies this is perceived as a sound moving around the head. In psychophysical
experiments, subjects were asked to move a slider to modify a second amplitude modulated tone
with a static IPD (controlled by the slider) to match as closely as possible the AMBB. It might be
expected that when forced to assign a single IPD to a stimulus that has all possible IPDs, the IPD
at the time where the stimulus was strongest would be chosen (corresponding to an IPD of 180°).
However, they found that subjects tended to choose an IPD in the rising portion of the envelope
(figure 1), at a phase that increases monotonically with the modulation frequency but is always less
than 180°.

We consider two possible explanations for this effect based on mechanisms that occur either before
or after binaural integration. In Single neuron mechanisms, we investigate whether monaural single
neuron properties could explain the observations, and what conditions the observed data would
impose on the parameters and types of those neurons. Dietz et al. (2014) argue that the mech-
anism must occur before binaural integration takes place, but their argument is based on only a
single neuron. With a population of neurons, an inhibitory mechanism can also explain the effect.
In Population mechanisms, we investigate these population level effects with a lateral inhibition
mechanism. Throughout, we use abstract rate models of neurons with rich dynamics to extract the
essential details while keeping the model complexity manageable (similarly to Goodman et al. 2017).
This enables us to investigate how the behaviour of the model depends on all of the parameters and
plot the parameter spaces, which would not be possible with a biophysically detailed model with a
large number of parameters.

Single neuron mechanisms

A natural place to start given that subjects tend to favour the rising slope would be to assume
that the input signal is being differentiated, and therefore the reported IPD will be at the peak
of the (differentiated) neural signal (figure 1A). However, this peak occurs at 90° regardless of the
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modulation frequency, which does not match the pattern of a later preference at higher modulation
frequencies observed experimentally, and also leaves open the question of the neural mechanism
implementing this differentiation.
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Figure 1: Basic mechanisms of the single neuron model. In each panel, the left and middle plots show,
respectively, the response of the model at a low (4 Hz) and high (64 Hz) modulation frequency. The envelope
is shown as the grey shaded area, while the output of the model is shown as a black line. The right hand plot
shows the location of the peak response of the model at different modulation frequencies (black line), and
the data for human subjects (red dashed line). The human data shows the standard deviation of responses
across subjects as error bars. (A) Model output is the rectified differential of the envelope. (B) Onset model.
(C) Adaptation model. (D) Complex model using both onset and adaptation mechanisms.

Onset and adaptation mechanisms can explain rising slope preference

We model onset behaviour abstractly as the weighted difference of two low-pass filtered signals (with
different time constants). This can be interpreted either as two precisely timed excitatory/inhibitory
pathways, or in a similar way to the octopus cell model of Spencer et al. (2012, 2018) and Ferragamo
and Oertel (2002). Their model uses a spike threshold on the rate of change of the membrane
potential (Platkiewicz and Brette, 2010, 2011), which we reformulated in terms of firing rates (see
Methods and Appendix). With this model it is possible to closely fit the experimentally observed
relationship between the modulation frequency and the extracted phase with this model (figure
1B). The parameters are β ≥ 0 the relative weight of the subtracted signal (so β = 0 corresponds
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to just low pass filtering the signal), and the time constants of the positive and negative filters (τe
and τi respectively).

Another set of mechanisms relate to various forms of adaptation, e.g. spike frequency adaptation
or synaptic depression. We model these with a single reservoir model that exhibits a response to
a constant input that exponentially decays from an initial to a fully adapted response. This is
similar in structure to several well used and equivalent models of adaptation in the auditory nerve
(Meddis, 1986; Westerman and Smith, 1988; Zhang and Carney, 2005). It is also equivalent to the
short-term synaptic plasticity model of Tsodyks et al. (1998) (with depression only, no facilitation,
for the derivation see appendix A of Tsodyks and Wu 2013). Our adaptation model is therefore
able to summarise a number of adaptation-related mechanisms, and uses only two parameters (see
Methods). Figure 1C shows that this adaptation mechanism is also able to closely fit the data.
The parameters are τa the time constant of the adaptation, and 0 ≤ α < 1 the strength of the
adaptation (with α = 0 indicating no adaptation).

In our full model, both onset and adaptation mechanisms are available, as well as some additional
mechanisms such as gain and compression, and this enables us to fit the data even more closely
(figure 1D).

Mechanisms are highly robust

We computed which values of the model parameters were consistent with the data, and found that
the model was very robust, with large regions of the parameter space giving good fits (Figure 2A).
Note that since the model has 6 free parameters and there are only 5 data points, it is a priori
unsurprising that it is possible to fit the data well. However, this is not a case of simple curve
fitting as the model is highly constrained in terms of the possible phase/fm curves it can produce
(Figure 2B), with the majority (73%) being monotonically increasing, for example. We investigate
this in more detail in Curve fitting analysis below. Finally, if we remove some mechanisms and
their associated parameters, in almost all cases the model is able to fit the data well with as few as
three parameters (Figure 3), and a mathematical approximation fits reasonably well with just one
parameter (see Appendix).

Using this model, we can determine which mechanisms are able to explain the data, and which
mechanisms are essential. We considered model variants where some of the parameters were given
fixed values (Figure 2A) or some mechanisms removed (Figure 3). The key mechanisms of the
model are adaptation and onset: either mechanism can work, although the best fits obtained with
adaptation only are better than the best fits obtained with the onset mechanism only (Figure
3ABC); and at least one of the two mechanisms must be present (Figure 2A, α versus β). The
compression and gain mechanisms did not contribute substantially (Figure 3A). We investigated the
octopus cell model discussed earlier (Ferragamo and Oertel, 2002; Spencer et al., 2012, 2018) and
found that it could provide a good fit only if adaptation was present alongside the onset mechanism
(Figure 3AD). For model variants including the onset mechanism, the positive or excitatory time
constant τe must be small (Figures 2A and 4B), and the negative or inhibitory time constant τi
must be larger than τe (Figure 3CD, τe versus τi). An interesting feature of all the model variants
is that the extracted phase curve in the experimental data appears to be at or close to the lowest
values possible in the models (Figure 3A).

Best model fits divide into two main phenomenological cell types

We investigated the parameters and phenomenological behaviour of all model cells that were capable
of reproducing the experimental data within an error of 30° (Figure 4), as this was the size of the
smallest error bar in the experimental data. We computed the rate and temporal modulation
transfer functions (rMTF, tMTF), and extracted the corresponding best modulation frequencies
(BMF), mean MTFs, and modulation depths (MD) for each cell. We found that there was no
clear demarcation of the parameter space into discrete cell types based on parameter values, as
a continuum of values led to good fits (Figure 4A). However, we found that there was a clear
demarcation into two cell types based on their modulation transfer functions. One cell type has
a high tMTF: it phase locks sharply to the stimulus envelope at all modulation frequencies (high
mean tMTF value, low tMD), and has a strongly modulated high pass or band-pass rMTF. This
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Figure 2: Parameter space. (A) Model error plotted as a function of different pairs of parameters. Each
pixel shows the lowest error achievable for a particular fixed value for the corresponding pair of parameters.
White contours show 15 degree error (solid), 30 degrees (dashed) and 45 degrees (dotted). (B) A sample of
the extracted phase curves for 1000 randomly selected parameters (green curves, excluding parameters which
give zero output for some value of fm), the data (red dashed) and the best fitting model (black).

cell type corresponds to the parameter β > 1, or a strong onset mechanism which allows it to
strongly phase lock to the envelope. These cells can have a wide range of adaptation strengths,
fast excitatory time constants and slower inhibitory time constants. The other cell type has a more
variable tMTF with a correspondingly higher tMD, along with a typically lower rMD. This cell
type corresponds to the parameter β < 1, or a weak onset mechanism that is consistent with a
weaker locking to the envelope. These cells tend to have stronger adaptation, and are consistent
with a wider range of excitatory and inhibitory time constants compared to the onset cell type, as
well as a wider range of behaviours (Figure 4B). Both cell types were about equally present in the
parameter space considered.

Homogeneous neurons without onset mechanisms do not exhibit an early preference

So far, we have considered a model that only responds to the envelope of the sound, which can be
seen either as an approximation, or as applying only to cells with low synchronisation to the carrier.
We added the carrier to the model, and one additional low pass filter mechanism (representing the
inner hair cell or other low pass filtering processes). For simplicity we used a low pass filter with
time constant τIHC, although higher order filters may provide a better fit to the data (Russell and
Sellick, 1983). In addition to considering the carrier frequency of fc = 500 Hz used in Dietz et al.
(2013, 2014), we also calculated results for fc = 200 Hz. This lower carrier frequency was studied
in Hu et al. (2017) with a similar experimental design, and they found that there didn’t appear
to be an extraction of the early IPD at this fc, only at the higher fc (they used 600 Hz in that
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Figure 3: Comparison of restricted models. (A) Extracted phase curves (lower panels as in Figure 2B) for
different model variants: All parameters available; a Reduced set where gain and compression were removed
(L = 0, γ = 1), which is also the case in the remaining variants; Adaptation only (β = 0); Onset only
(α = 0); Octopus cell (α = 0, β = 1); Adapting octopus cell (β = 1). The upper panel shows the error of the
best performing set of parameters found for that variant. All are within the error bars of the data (dashed
red line) except for the octopus cell. (B-D) Parameter maps as in Figure 2A for three of the model variants
(adaptation, onset, adapting octopus).
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paper, similar to the 500 Hz used in the earlier papers). However, the results are not directly
comparable, so we decided to measure the error in the model as the combination of the error at
500 Hz as measured above, and an error at 200 Hz assuming that the equivalent experimental results
were a flat IPD = 180°. The contribution of the error at 200 Hz was weighted less as there is no
direct experimental data in this case, only a hypothetical curve based on a similar experiment (see
Methods for more details).

We found that the model was able to simultaneously reproduce the two different extracted phase
curves at fc = 200, 500 Hz (Figure 5). The main difference in the parameters found is that with the
carrier frequency included in the model it is not possible to closely fit the data with an adaptation-
only model (β = 0), and indeed onset strength has to be quite high (β > 1, Figure 5B). In addition,
some well fitting parameters in the envelope only model with a large τi no longer work well in this
case. We found that uniformly the tMTF was higher at fc = 500 Hz compared to 200 Hz, the tMD
lower, and the rMD was always very high for fc = 500 Hz (but could have a wide range of values
at 200 Hz).
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Figure 5: Effect of introducing carrier frequency. (A) Error in best fit for fixed adaptation strength α and
inhibition strength β (as in Figure 4). Here, the error is measured at both fc = 500 Hz and fc = 200 Hz
assuming a hypothetical flat 180° extracted in the latter case. The 200 Hz error is weighted less as there is
no corresponding experimental data. (B) Parameter and property histograms as in Figure 4. Here, colours
show properties at 200 Hz (blue) and 500 Hz (orange). (C) Best fit in detail as in figure 4.

It would be tempting to conclude from this that only onset cells can account for all the experimental
data of Dietz et al. (2013, 2014) and Hu et al. (2017), however the populations of cells responding
to a 200 Hz and 500 Hz carrier frequency are different, and there is no a priori reason to think that
they should be the same cell types or have the same parameters.

Model predicts earlier preference at higher sound levels

We took the collection of good parameters (with an error less than 30°) and applied different gains
to amplify or attenuate the signal before recomputing the extracted phase curves. We found that
with a considerable degree of consistency, increasing the sound level led to an earlier phase being
extracted, while decreasing the level led to a later phase (Figure 6). Experimental data has not
yet been collected to quantitatively test this hypothesis, but early observations are in qualitative
agreement (Mathias Dietz, personal communication of unpublished observations).
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Figure 6: Single neuron model predictions for varying sound level. Left panel shows mean prediction at
different sound levels for parameters that match the experimental data well at a sound level of +0 dB. Right
panels show sample extracted phase curves for each sound level.

Population mechanisms

In order to investigate whether mechanisms acting after binaural integration could give rise to
a similar effect, we next investigated the role of population mechanisms assuming no monaural
mechanisms that give rise to an early phase preference. In the experiments of Dietz et al. (2013)
participants were asked to choose which amplitude modulated tone with a static IPD sounded
most similar to the amplitude modulated binaural beat (AMBB) stimulus. We therefore modelled
the process as pattern matching on the neural population (as in the sound localisation model of
Goodman et al. 2013). We included a lateral inhibition mechanism that is found throughout the
brain, and in the case of sounds with a static IPD serves to better separate the patterns. In the case
of the AMBB stimulus, this model was able to robustly reproduce the preference for early phase,
getting later with increasing modulation frequency, and fit the experimental data with low error
across a wide range of parameters (figure 7).

In more detail, the model receives as input responses from a population of cells with different IPD
tuning, with the density of best IPDs as measured for guinea pigs (McAlpine et al., 2001). These
neurons directly excite a second layer of neurons and inhibit the neighbours of those neurons, serving
to sharpen the pattern of responses. Finally, we compare the patterns of activities for the AMBB
stimulus with the patterns obtained for different amplitude modulated tones with static IPDs, and
select the static IPD with the most similar response. The model has five parameters: τb is the time
constant of the inhibition process; σk is the width of the lateral inhibition as a fraction of the whole
population (so σk = 1 means all neurons inhibit all others and σk = 0 means no inhibition); γ is
the strength of the inhibition; k is an integer that determines the shape of the IPD tuning curve
and can be experimentally fit to different animal models; and m is the envelope synchronization of
the inputs, so when m = 0 the inputs are not synchronised to the envelope at all, at m = 1 they
exactly match the shape of the envelope, and for m > 1 they have enhanced synchronisation (e.g.
onset cells). See Methods for further details of the model.

Lateral inhibition and pattern matching gives rise to a robust early phase preference

We calculated model fits for a wide range of parameter values (89,100 different parameter sets in
total). The best fit had an error of just 5° (figure 7B), and large regions of the parameter space
led to low errors (figure 7A) of less than 30° (the size of the smallest error bar in the experimental
data). Overall, 8.1% of the parameter sets led to an error below 30° and 41% of the parameter
sets led to solutions which increased monotonically with the modulation frequency. Most of the
parameter sets (78%) led to a later phase preference than the experimental data, 2% to an earlier
phase preference and 20% were earlier for some modulation frequencies and later for others.

Some parameters are more tightly constrained than others if we seek a close fit to the data. The
synchronization index m for parameter sets with low error shows a particularly striking pattern
(figure 7C). There is a very steep drop in the number of good solutions where m < 1, suggesting
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Figure 7: Population model parameter space, as in figure 2. (A) Model error plotted as a function of
different pairs of parameters. Each pixel shows the lowest error achievable for a particular fixed value for the
corresponding pair of parameters. White contours show 15° error (solid), 30° (dashed) and 45° (dotted). (B)
Sample and best model results. (C) Histograms of the parameters leading to an error less than 30°.

that enhanced synchronisation may play a role. This enhanced synchronisation is evident in some
auditory neurons, and may come about as a result of the onset mechanisms discussed in Single
neuron mechanisms for example. For parameters τb and γ the best fits were obtained in a limited
although not extreme range. Best fits were obtained for τb in the moderate range 2-8 ms, for
example. Larger values of the inhibition strength γ lead to a shut down of the network and less
inhibition leads to solutions closer to 180°. The least critical parameters were σk and k. The former
is the width of the lateral inhibition, which could take on almost any value except those close to
the extremes where there was no inhibition (σk = 0) or maximum inhibition (σk = 1). The tuning
curve width, controlled by k, had almost no effect.

Distribution of tuning leads to peak preference at low carrier frequencies

Hu et al. (2017) suggests that carrier frequency has an important effect on the perceived IPD of
the AMBB stimulus. They showed that with a carrier frequency of 200 Hz, the perceived IPD is
shifted toward the peak of the envelope, while at 600 Hz it is perceived during the rising slope as
in Dietz et al. (2013). McAlpine et al. (2001) found that the distribution of best IPDs at 200 Hz
is different to that at 500 Hz. In our model, we found that for some parameters, this change in
BIPD distribution alone caused a shift in perceived IPD towards the peak (figure 8). As before,
when investigating model fits at 200 Hz and 500 Hz we weight the error at 200 Hz much less
(one third) than the error at 500 Hz, as the experimental data from Hu et al. (2017) is much less
precise (preferred IPD is only reported as rising, peak or falling, a granularity of about 90°). The
lowest error found was approximately 15°, meaning that the extracted phase was within 15° for all
modulation frequencies at 500 Hz, and within 45° at 200 Hz, both well within the limits set by the
data. In order to interpret the sensitivity of the model to the BIPD distribution, we computed the

9

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 28, 2020. ; https://doi.org/10.1101/687178doi: bioRxiv preprint 

https://doi.org/10.1101/687178
http://creativecommons.org/licenses/by-nc/4.0/


mean preferred IPDs across all good solutions (error below 30°) for carrier frequencies from 200 to
1000 Hz. We found that decreasing the carrier frequency led to a shift in preference towards the
peak (figure 8D). For carrier frequencies above 500 Hz, the preference did not shift any earlier.
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Figure 8: (A) Error in best solution (black lines and dots), and percent of the parameter space leading
to good solutions (green bars), when allowing one parameter to take different values at 200 Hz and 500 Hz
(except for “BIPD only” where all parameters are identical except for the BIPD distribution). (B) Best
solutions found at 200 Hz and 500 Hz. (C) Trend in mean preferred IPD over modulation frequencies when
varying the value of a single parameter. The trend was obtained by averaging over all solutions below 30°.
(D) Mean IPD across all good solutions for various carrier frequencies.

Although the error for the best solution is low, this result requires some precise parameter tuning,
and only 0.5% of parameters tested had an error lower than 30°. This model assumes that the
parameters of the neurons must be the same at a carrier frequency of 200 and 500 Hz, but these
are different neurons (due to tonotopy, Humphries et al. 2010; Ress and Chandrasekaran 2013), and
they may therefore have different parameters. We refer to the case where all parameters must be the
same as homogeneous and the case where they may be different as heterogeneous. We investigated
heterogeneous networks by allowing only one parameter to have a different value at 200 and 500 Hz
(figure 8). Unsurprisingly, this leads to much better fits. Allowing for different relative strengths
of excitation and inhibition γ at 200 and 500 Hz – which is very plausible as synaptic weights can
be learned – leads to a best fit with an error of just 5°, and almost 4% of the parameter space with
errors less than 30°. Allowing σk and m to vary led to only slight larger minimum errors, although
in these cases a somewhat smaller percentage of parameters led to errors below 30°. Allowing the
tuning curve width to vary (controlled by k) did not contribute to a good fit. We investigated how
each parameter contributes to the mean preferred IPD (calculated across all good solutions and all
modulation frequencies, figure 8C). Preferred phase decreased monotonically when either the width
(σk) or strength of inhibition (γ) increased, and tended to decrease with increasing synchronisation
(m), except at 500 Hz for larger values of m. Very small time constants of inhibition (τb) led to a
later phase preference, but had relatively little effect as long as the time constant was larger than
around 1 ms. Narrower tuning curves (larger values of k) led to slightly later phase preference.

Curve fitting analysis

For both the single neuron and population models, we have around the same number of parameters
as data points. We therefore investigated whether or not our results could be explained simply as
curve fitting by calculating how well the model could fit the data if the data were different (figure
9). Two different conditions were used. In the first one, the target IPDs for each modulation
frequency were chosen independently and uniformly at random between 0° and 360°. In the second
condition, the target IPDs were again chosen randomly, but this time between 0° and 180°, and with
the additional constraint that they should be monotonically increasing with modulation frequency.
In both cases, the best fits obtained to the actual data were much better than the best fits for
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the random target IPDs in almost all cases. None of the 1,000 fully random IPD targets could be
fitted as well as the experimental data. With the extra constraints, the single neuron model could
fit the random data better than the experimental data only 3% of the time, and the population
model only 8% of the time. Since the models were not able to fit the majority of random data,
even when constrained to have a qualitatively similar shape to the experimental data, these results
cannot simply be explained as curve fitting.
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Figure 9: Best fits for experimental data (red line) and randomised target data (orange for fully random,
blue when constrained to be monotonically increasing with modulation frequency less than 180°). Shaded
areas show cumulative histograms of the minimum error found for the target data (so 0% of randomly selected
data could be fit with an error of 0° while 100% could be fit with an error less than 180°). (A) Single cell
model. (B) Population model.

Discussion

We modelled a number of single neuron and population level neural mechanisms across different
stages of the auditory pathway to account for the preference for extracting binaural cues during
the rising slope of an amplitude modulated signal (Dietz et al., 2013). By emphasizing the cues
contained in the onsets of sounds, this effect was suggested to be important in responding to the
sound following a direct path in a reverberant environment, and discarding later arriving information
from indirect paths. This may be an important factor underlying a number of phenomena, including
spatial release from masking in cocktail party situations (Cherry, 1953; Freyman et al., 1999).

We found that adaptation and onset mechanisms occurring in single neurons before binaural inte-
gration (for example in the auditory nerve or cochlear nucleus) could lead to a rising slope preference
that was an excellent quantitative fit to the experimental data recorded by Dietz et al. (2013) across
a very wide range of parameters. The best results fell into two main separate classes: strong onset
or strong adaptation. Of these two, onset cells were more consistent with the result that preference
shifts towards the peak when the carrier frequency is low (Hu et al., 2017), although this did not
allow us to fully rule out adaptation as a key mechanism as the auditory system is tonotopically
organised and neuron parameters in low frequency regions may be different to those at higher
frequencies. Our model predicts that higher sound levels lead to a preference for earlier onsets
(and vice versa), which is consistent with preliminary unpublished observations (Dietz, personal
communication).

We then considered mechanisms arising at the level of populations of neurons after binaural integra-
tion (for example in the inferior colliculus or auditory cortex). We found that we could again very
precisely reproduce the quantitative effect, this time assuming only a local interaction of excitation
and inhibition, a lateral inhibition motif that is found in many areas of the brain. This model was
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also very robust, and was able to reproduce the shift towards the peak at low frequencies based only
on the difference in distribution of the interaural phase difference preferences of binaural neurons
observed in mammals (McAlpine et al., 2001). This model required that its inputs show a strong
synchronisation to the envelope of the stimulus, which can be the result of the onset mechanisms
discussed above for example, suggesting that single neuron and population mechanisms may work
in concert. The model finally predicts that although lowering the carrier frequency below 500 Hz
leads to a later preference (a shift towards the peak), increasing the carrier frequency above 500 Hz
should not lead to an earlier preference.

Although some of the mechanisms reviewed in this study have been shown to explain some aspects
of the precedence effect (Hartung and Trahiotis, 2001; Braasch and Blauert, 2003; Xia and Shinn-
Cunningham, 2011; Xia et al., 2010), none of them were previously tested quantitatively in the
context of the experiments by Dietz et al. (2013). Additionally, the use of simple models allows
for a comprehensive exploration of some aspects of the precedence effect such as the extraction of
IPDs in low-frequency amplitude modulated sounds.

The mechanisms we used in these models are not unique to the auditory system. Our adaptation
and onset models are similar or equivalent to membrane potential and synapse dynamics that are
found throughout the nervous system (see Methods and Appendix). Adaptation allows neurons to
minimize energy costs while encoding persistent stimuli (Jones et al., 2015) and to increase their
sensitivity to new stimuli (Fairhall et al., 2001). At the population level, excitatory-inhibitory
networks are often found in other sensory modalities, such as in orientation tuning in vision (Ben-
Yishai et al., 1995) or in the detection of touch in the field of somatosensation (Mountcastle, 1959).
In the case of the auditory system, these circuits have not been positively identified, but would
likely be located in the inferior colliculus, where many inhibition circuits exist (Pollak et al., 2011),
or higher up in the auditory pathway.

In order to thoroughly investigate the parameter spaces of our models, we abstracted and simplified
them as much as possible. This has the great advantage of allowing us to precisely understand the
interactions of the different mechanisms, but has the disadvantage of making it difficult to apply the
model to other more complex stimuli. Incorporating additional mechanisms such as cochlear and
modulation filterbanks would be straightforward but would introduce a large number of additional
parameters.

In summary, we found that we could account for the experimental data across a wide range of
parameters using multiple single neuron or neural population mechanisms that are not specific to
the binaural system, or even to the auditory system. Indeed, it appears that a diverse set of neural
mechanisms located in the auditory pathway all emphasize the extraction of the ITD information
in the onset of the envelope. While we cannot definitively say which mechanisms are present and
contribute to the precedence effect, our results suggest that all the mechanisms we studied have the
capacity to do so. This opens the door for two hypotheses that may drive future work.

The first hypothesis is that the preference for early arriving auditory cues (Dietz et al., 2013,
2014; Hu et al., 2017), and the precedence effect more generally, may not be the result of an
adaptation specifically for sound localisation in reverberant environments, but may be the result
of an evolutionary exaptation or co-opted adaptation. That is, an instance of the brain using
already existing dynamics and mechanisms (adaptation, excitation/inhibition, lateral inhibition) to
carry out a new function (that may then subsequently have been refined by further evolutionary
pressure). This possibility has been suggested more generally under various names, including circuit
motifs (Braganza and Beck, 2018), computational primitives (Marcus et al., 2014) and canonical
computations (Kouh and Poggio, 2008). In terms of our efforts to try to understand the incredible
and general abilities of the brain, this might be an even more exciting possibility than the alternative
that there are mechanisms adapted specifically for processing reverberant sounds.

The second hypothesis is that, since the range of parameters equally able to account for the data
is so wide, there may be individual differences. These individual differences could come from two
sources. It could be that there are a range of neural parameters that all give rise to the same
behaviour, as in the case of the pyloric network of the crustacean stomatogastric ganglion (Prinz
et al., 2004). Or, it could be that individuals learn different sound localization strategies, making use
of the different neural mechanisms that are available to them, in line with the finding that human
listeners exhibiting asymmetric hearing can take advantage of multiple adaptive mechanisms to
improve their ability to localize sounds (Keating et al., 2016).
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We therefore strongly encourage researchers to investigate the extent to which new experimental
results can be reproduced using simple and general models, and thoroughly explore the parameter
space in detail along the lines suggested by O’Leary et al. (2015) and used previously in the auditory
system in Goodman et al. (2017).

Methods

Models were implemented in Python using the Brian simulator (Goodman and Brette, 2008, 2013;
Stimberg et al., 2019) and the scientific computing packages NumPy and SciPy (Jones et al.,
2016). All the code is available online (https://github.com/neural-reckoning/simple_ambb_
modelling) and can be edited and run directly in the browser via live, interactive notebooks.

Stimulus

The amplitude modulated binaural beats (AMBB) stimuli, designed by Dietz et al. (2013), are
amplitude modulated tones whose envelopes follow the equation

E(t) = 1
2 (1− cos(2πfmt)), (1)

where fm is the modulation frequency of the stimulus. The main characteristic of the AMBB
stimulus is its dynamic interaural phase difference (IPD) varying from 0° to 360° in one modulation
cycle. This is achieved by introducing an interaural frequency difference between the left and right
channels of the sound:

SL(t) = sin(2π(fc + fm/2)t) E(t) (2)

SR(t) = sin(2π(fc − fm/2)t) E(t). (3)

In these equations, fc refers to the carrier frequency while SL and SR represent respectively the
left and right channels. In the first part of section Results (up until section Homogeneous neurons
without onset mechanisms do not exhibit an early preference ) we study peripheral adaptation
mechanisms which are known to be monaural, and therefore only use the envelope of the stimulus
as input. Later, while investigating the influence of the carrier frequency (section Homogeneous
neurons without onset mechanisms do not exhibit an early preference) we add a carrier channel at
500 Hz.

S(t) = cos(2πfct) E(t). (4)

Single neuron model

We start off by describing the modelling of single cells in the auditory periphery. In this study,
cochlear filtering was not necessary as all signals were narrowband. We model amplification, com-
pression and inner hair cell dynamics in a fairly standard way as follows. First we half-wave rectify
and compress the signal as

Apre(t) = ([10L/20S(t)]+)γ , (5)

where the operator []+ represents half-wave rectification ([x]+ = x when x > 0 otherwise [x]+ = 0),
L is the gain (in dB) and γ is the compression (γ = 1 is no compression, and γ = 1/3 is a commonly
used value). The signal is then passed through a first order low pass filter with time constant τihc:

τihc
dA

dt
= Apre −A. (6)

The resulting signal was then passed to an adaptation stage inspired by the functioning of the
synapse between the inner hair cells and the auditory nerve fibers. This model is a simplification of
published adaptation models (Meddis, 1986, 1988; Westerman and Smith, 1988; Zhang and Carney,
2005) to a single reservoir and consequently a single time-constant. The quantity of available
neurotransmitter Q (between 0 and 1) is depleted at a rate proportional to the product of the
incoming signal and the remaining amount of neurotransmitter (κQA), and replenished at a rate
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proportional to the deficit (ρ(1 − Q)). The output of the model Ra is the product of the input
signal A with the instantaneous quantity of available neurotransmitters Q and models the resulting
firing rate of the nerve fibers:

dQ

dt
= −κQA+ ρ(1−Q) (7)

Ra = AQ. (8)

To give an idea of the behaviour of this model, with a fixed input A = 1 it decays exponentially
to a value 1 − α = ρ/(κ + ρ) with time constant τa = 1/(κ + ρ). We can invert this (κ = α/τa,
ρ = (1 − α)/τa) and use α and τa as parameters, with α representing the strength of adaptation
(α = 0 no adaptation, α close to 1 for strong adaptation) and τa the time constant of adaptation
(for a fixed reference signal).

Finally, we use the following equations to model either onset cells or excitatory and inhibitory
dynamics:

τe
dRe
dt

= Ra −Re (9)

τi
dRi
dt

= Ra −Ri (10)

R = [Re − βRi]+. (11)

Each current was produced by low-pass filtering the signal with different time-constants τe and τi.
If τe < τi are close this acts as a differentiator.

The model is run for a number of cycles (at least 1) until it settles into a periodic state, and then
the IPD returned by the model is the phase corresponding to the time when the output signal R(t)
is at a maximum on the next cycle:

extracted phase = 2πfm · arg max
t

R(t) . (12)

Without any additional mechanisms (adaptation or onset, i.e. α = β = 0), the IPD returned by
the model is consistently equal to 180°.

Error measures

To evaluate the fit of the model to the data, we used the maximum absolute error in the IPD across
modulation frequencies:

ε = max
fm
|IPDdata(fm)− IPDmodel(fm)|. (13)

The same error measure was also used in the population model. In cases where we compare errors
at fc = 200 Hz and fc = 500 Hz we compute ε200 and ε500 using the equation above, and compute
a total error based on a weighted maximum of these two:

ε = max{ ε500, 1
3ε200 }. (14)

We weight the error at fc = 200 Hz lower as we do not have direct and equivalent experimental
data at this carrier frequency (Hu et al., 2017).

Modulation measures

We computed several measures of the variation of phase-locking and firing rates with modulation
frequency.

The mean temporal modulation transfer function (tMTF) measures the degree to which the model
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phase-locks to the envelope across modulation frequencies, and is computed as:

φ(t) = 2πfmt (15)

R(fm) =
1

2π

∫ 2π

0

R(fm, φ(t)) dt (16)

v(fm) =
2π

R(fm)

√(∫ 2π

0

R(fm, φ(t)) sin(φ(t)) dt

)2

+

(∫ 2π

0

R(fm, φ(t)) cos(φ(t)) dt

)2

(17)

tMTF =
1

Nfm

∑
fm

v(fm) (18)

Here φ(t) is the modulation phase at time t, R(fm) is the mean firing rate across one modulation
cycle, and v(fm) is the vector strength.

The rate modulation transfer function, rMTF (fm), is the ratio of the mean firing rate at frequency
fm to the maximum across all fm, and the mean rMTF is the mean of this over all fm, so that a
low value indicates a variable rMTF and a value near 1 indicates a fixed rMTF:

rMTF (fm) =
R(fm)

maxfm R(fm)
(19)

rMTF =
1

Nfm

∑
fm

rMTF (fm) (20)

In the set of equations above and in the rest of this method section, a line over a symbol represents
the operation of taking a mean over time t.

The temporal modulation depth (tMD) is computed as the normalised difference between the mini-
mum and maximum vector strength across modulation frequencies:

tMD = max
fm

v(fm)−min
fm

v(fm) (21)

The rate modulation depth (RMD) is similarly computed as the normalised difference between the
minimum and maximum firing rates across modulation frequencies:

rMD = 1− minfm R(fm)

maxfm R(fm)
(22)

The temporal best modulation frequency (tBMF) is the modulation frequency maximizing the vector
strength:

tBMF = arg max
fm

v(fm) (23)

The rate best modulation frequency (rBMF) is the modulation frequency maximizing the mean firing
rate:

rBMF = arg max
fm

R(fm) (24)

Population model

We model the experiment of Dietz et al. (2013) by comparing the similarity of the neural population
response to the AMBB stimulus to the response to an amplitude modulated tone with a static IPD.
The neurons in these populations are binaural and IPD-tuned, and interact with each other by
lateral inhibition. We explain each of these elements below.

Each of the binaural neurons in the first layer is sensitive to IPD (φ), with a tuning curve centered
around its best IPD (BIPD φ̃) given by

T (φ̃, φ) =
(

cos
φ̃− φ

2

)k
. (25)
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This tuning curve has previously been shown to fit various animal models for different values of
k (Harper and McAlpine, 2004; Joris et al., 2006; Fischer et al., 2008; Goodman et al., 2013)
and is shown in figure 10C. We next assume that the response is proportional to the stimulus
amplitude. For the AMBB stimulus, the amplitude at time t is given by E(t) as above, and the
IPD φ(t) = 2πfmt, so the response of the neuron with BIPD φ̃ at time t is

F (φ̃, t) = T (φ̃, φ(t)) · E(t). (26)

The original amplitude modulated signal has modulation depth 1 (the envelope goes from 0 to 1),
however the modulation depth of the neural response to this stimulus may differ, and may have a
higher or lower synchronisation or vector strength with respect to the modulation frequency. We
model this by replacing the envelope E(t) above with

E(t) = 1
2 [1−m cosφ(t)]+. (27)

The variable m represents the synchronization of the neural response to the envelope of the stimulus.
When m = 0 there is no synchronization of the neural response to the stimulus. When m = 1 the
synchronization is the same as the modulation depth of the stimulus. Finally, when m > 1, the
neuron exhibits enhanced synchronization (as seen for example in onset cells).

For computational efficiency, we discretize the model by choosing NBIPD = 100 BIPDs uniformly
between 0° and 360°, and (for each modulation frequency) Nt = 250 time steps per modulation
cycle (so the sample width is 1/Ntfm at modulation frequency fm). We write the discrete BIPDs
and times as φ̃i = 2πi/NBIPD and tj = j/Ntfm. Note that this does not mean we consider BIPDs
to be necessarily uniformly distributed: below we will weight the responses according to the density
distribution of BIPDs. With these discretizations, we can now write the model in matrix form as
follows:

Tij = T (φ̃i, φ(tj)) (28)

Eij =

{
E(ti) if i = j

0 otherwise
(29)

F = TE. (30)

The pattern of activity generated by equation (30) can be seen in Figure 10A.

BIPD distribution

We used an experimentally measured BIPD distribution, with the mean µ and the standard devi-
ation σ of the BIPDs measured from guinea pigs in McAlpine et al. (2001). The density of BIPDs
in our model then followed a bimodal normal distribution based on these statistics. The density
function of this distribution is proportional to:

d(φ̃) = e−(µ−φ̃)
2/2σ2

+ e−(−µ−φ̃)
2/2σ2

. (31)

At fc = 500 Hz, this distribution has values close to 0 at BIPDs around 180° and exhibits two peaks
respectively around IPDs equal to 45° and 315°. BIPD distributions at different frequencies can be
seen in figure 10B.

To incorporate the non-uniform BIPD distribution into the uniform matrix formulation above, we
multiply the response Fij with the density d(φ̃i) (figure 10A). The model here is continuous valued,
but can be considered to represent mean firing rates or spike counts. Multiplying by the density
therefore makes the response proportionate to the mean number of spikes from neurons tuned to a
given BIPD. As a consequence, some of the weighted responses with φ̃ close to 180° will be close
to 0 because there are next to no neurons with BIPD close to 180°. We write the response of the
weighted network as FW , in matrix form:

Dij =

{
d(φ̃i) if i = j

0 otherwise
(32)

FW = DF = DTE. (33)
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Figure 10: (A) Top row: the first column shows the response of the neurons to the stimulus. The response
of the network after BIPD weighting is shown in the second column. The third column shows the inhibition
layer, i.e. the network after inhibition. The last column shows the response of the network after subtracting
the γ weighted inhibition layer from the BIPD weighted neural activity. Second row: Same as first row but
when the stimulus is an AM tone with a static IPD=180°. Third row: same but with IPD=90°. (B) Shape
of the BIPD distribution at different carrier frequencies. (C) Shape of the tuning curve centered around
BIPD = 180° with different values of the exponent k. (D) Shape of the inhibition kernel. The weight of
inhibition decreases exponentially with time following the time constant τb. The fraction of neurons involved
in the inhibition process is set by the variable σk.

Lateral inhibition

The next layer of neurons in the network have a lateral inhibition mechanism. This is modelled with
a synaptic connectivity assuming a narrowly tuned excitation and broad lateral inhibition (figure
11). We assume that excitatory neurons are fast compared to inhibitory neurons, which we model
by applying a low-pass filter to the inhibitory neurons (approximating a number of neural processes
such as membrane potential or synapse dynamics).

The individual inhibitory currents iinh(φ̃, t) are found by low-pass filtering the response. This can
be represented as a convolution of the response with an exponentially decaying kernel:

iinh(φ̃, t) =

∫ 0

−∞
eτ/τbFW (φ̃, τ − t) dτ. (34)

The second layer of neural responses is then formed by taking the first layer as the narrowly tuned
excitatory response, and subtracting the inhibitory currents (weighted by a factor γ) for all BIPDs
within a window of size σk. The variable σk is the fraction of the set of BIPDs involved in the
inhibition, so σk = 0 represents no inhibition and σk = 1 represents all neurons receiving the same
inhibition proportional to the sum of the population activity. The summed inhibitory current is
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Figure 11: Structure of the network. Black circles represent the initial response of the neurons in the network
to the AMBB stimulus. Each neuron is tuned to different BIPDs, from 0° to 360°. Blue circles represent
the local inhibitory currents, and are low-pass filtered version of the black circles. The resulting inhibition
currents, after low-pass filtering, are weighted by a factor γ and summed within the BIPD window of width
σk. Green circles represent the output neural activity for each BIPD. Each green circle is the response of
the neuron to the stimulus (the black circles) minus the weighted sum of the inhibitory currents (orange
arrows). Pattern-match decoding is performed on the pattern of currents represented by the green circles.
Curves below the schematic represent the exaggerated output of the network at each stage of processing.
Line colours correspond to the network elements above.

given by

Iinh(φ̃, t) =
∑

ψ∈Sk(φ̃)

iinh(ψ, t) =
∑

ψ∈Sk(φ̃)

∫ 0

−∞
es/τbFW (ψ, t− s)ds, (35)

where Sk(φ̃) is the set of BIPDs within a distance σk of φ̃. The net response of the second layer is
therefore the excitatory response minus γ times the summed inhibitory current:

FWI(φ̃, t) = [FW (φ̃, t)− γIinh(φ̃, t)]+. (36)

From equations 34 and 35, we can see that the summed inhibitory current Iinh can be written as
the 2D convolution of the response of the network with a kernel K. In other words, equation (36)
can be rewritten as

FWI = [FW − γFW ~K]+, (37)
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where ~ represents 2D convolution. The kernel K is the outer product of Kt and Kφ, defined as

Kφ(ψ) =

{
1 if |ψ| < 2πσk

0 otherwise
(38)

Kt(s) =

{
es/τb if s < 0

0 otherwise
(39)

K(ψ, s) = Kt(s) ·Kφ(ψ). (40)

For the discretized formulation, we approximate K by cutting off s < −3τb. With this approx-
imation made, equation 37 becomes a matrix equation (although note that some care is needed
to handle the circular boundaries in the convolution). This matrix formulation was essential in
optimising the model to run in a reasonable time and allowing us to evaluate such a large number
of parameter sets.

The result of the convolution process is shown in the fourth column of figure 10A. An important
characteristic of the network’s response after lateral inhibition is the introduction of phase-shifts
in the neuronal response. The distribution of these phase-shifts mostly depend on the value of τb
and on the modulation frequency (figure 12A and 12B) and becomes critical during the similarity
scoring process.
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Figure 12: (A) Response of the network to the modelled amplitude modulated binaural beat (AMBB)
stimulus with modulation frequency fm = 4 Hz. Response of the network without inhibition is shown in
white contours. (B) Same as A but with fm = 64 Hz. (C) Similarity scoring. Similarity map showing
similarity values for each modulation frequency, between the response of the full model to AMBB and the
response to the amplitude modulated tones with static interaural phase differences.

Similarity scoring

The experiment described in Dietz et al. (2013) relies on the subjects matching static IPD pointers
to the location they perceived while listening to the AMBB stimulus. To model this process, we used
a similarity scoring method between the response produced by the AMBB stimulus and the response
produced by different static IPD pointers. We initially considered the hemispheric decoder (Stecker
et al., 2005; Grothe et al., 2010) but we were not able to use it in the context of this experiment
because of its mono-dimensionality. Indeed, if the hemispheric ratio in response to the AMBB
stimulus as a function of phase difference is R(φ) then R must be 2π-periodic by construction of the
experiment. This means that all but at most two values of R must have multiple inverses in [0, 2π)
and therefore it is impossible to use the hemispheric difference to match the static IPD successfully.
Instead, we used a decoder inspired by the pattern match decoder described in Goodman et al.
(2013). It works by computing a similarity measure between the response of the network FWI to
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the AMBB stimulus and the response of the network to an amplitude modulated tone with a static
IPD SWI(φ̃). The similarity was scored over a full stimulus cycle. 40 static IPDs were selected,
linearly distributed between 0° and 360°. Examples of such patterns can be found in figure 10A
second and third row. We score the similarity between the response to the AMBB stimulus and
the static IPD stimuli using the dot product between the flattened arrays FWI and SWI(φ̃). The
IPD maximizing the similarity scoring was returned by the model (figure 12C). This is equivalent
to the cosine similarity metric as |SWI(φ̃)| is the same for all φ̃.

φout = arg max
φ̃

< SWI(φ̃), FWI > (41)

Starting phase

Simulations were run with 8 different starting IPDs (φstart) between 0° and 360° as in Dietz et al.
(2013). φstart corresponds to the value of the instantaneous IPD at the onset of the stimulus (when
t = 0). In order to compare to the curves in Dietz et al. (2013), model curves were plotted using
the circular mean of the extracted IPDs over the 8 different φstart.
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Appendix

Onset cell is a special case of excitation/inhibition model

In the single neuron onset model (equations 9-11), Re could represent an excitatory pathway, Ri an
inhibitory pathway, and R = [Re − βRi]+ the output of excitation minus inhibition with a relative
inhibitory strength β. However, if β = 1 and τe � τi the same equations can also be interpreted as
a single onset neuron. The equations are approximately equal to a rate-based version of the octopus
cell model of Spencer et al. (2018), which is itself a simplification of the models of Spencer et al.
(2012) and Ferragamo and Oertel (2002). In their spiking model,

τv
dv

dt
= x− v

τx
dx

dt
= −x,

where v is the membrane potential, x is a synaptic conductance that is increased by a fixed amount
for each incoming spike, and the model fires a spike when dv/dt crosses some threshold. In the
limit of a large number of incoming spikes with small synaptic weights we can replace the discrete
changes in x by a continuous current I(t) to give

τx
dx

dt
= I(t)− x.

Setting I(t) = Ra(t) and τx = τe we can immediately see that Re = x. Now v evolves with time
constant τv which is much larger than τx so on the time scale of the evolution of v we will have
that x ≈ I(t) and so

τv
dv

dt
≈ I(t)− v.

Setting τv = τe this gives us v ≈ Ri. In the limit of a large number of output spikes, the firing rate
of the onset cell will be approximately proportional to

dv

dt
=
x− v
τv

≈ Re −Ri
τv

=
R

τv
.

In other words, the firing rate is proportional to R.

Analytic solution for α = 0

We set up the following set of differential equations:

τe
dRe
dt

= E(t)−Re (42)

τi
dRi
dt

= E(t)−Ri (43)

R = Re − βRi, (44)

where E(t) is the envelope as above. We solve the differential equations with the following periodic
boundary conditions (corresponding to the settled solution after the initial few cycles):

Re(0) = Re(1/fm) (45)

Ri(0) = Ri(1/fm). (46)

(47)
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Solving these equations gives

Re(t) =
1 + σ2

e − cosφ− σe sinφ

2(1 + σ2
e)

(48)

Ri(t) =
1 + σ2

i − cosφ− σi sinφ

2(1 + σ2
i )

, (49)

where

φ = 2πfmt (50)

σe = 2πfmτe (51)

σi = 2πfmτi. (52)

We want to find the maximum value of t where dR/dt = 0 and d2R/dt2 < 0, which we find to be
the value of θ so that

cos θ = β(1 + σ2
e)− (1 + σ2

i ) (53)

sin θ = βσi(1 + σ2
e)− σe(1 + σ2

i ). (54)
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Figure 13: Best fit to data for analytically solved single neuron onset model.

The parameter θ can be extracted directly as θ = tan−1(sin θ/ cos θ) but some care has to be taken
to get the correct value of θ ∈ [0, 2π). This gives us a three parameter equation that can fit the
data extremely well (figure 13). If we measure fm in kHz then the following is a close fit to the
data:

θ(fm) = tan−1
(

0.001− 0.79f2m
0.1fm − 1.63f3m

)
. (55)

However, we can simplify further if we assume that σeσi = σ2
e = σ2

i = 0 to get

θ = tan−1
(

2π(βτi − τe)
β − 1

· fm
)

= tan−1(Afm), (56)

for a single constant A. Figure 13 shows that this approximation gives a reasonable fit with A = 0.15
when fm is small but breaks down for fm = 64 Hz.
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