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NATURAL VERSUS RANDOM PROTEINS: NOUVEL NEURAL
NETWORK APPROACH BASED ON TIME SERIES ANALYSIS

ALEXEI TSYGVINTSEV

Abstract. We study the set of about 35000 primary structures of natural proteins

of length more than 360 residues and the same size set generated via partial or total

randomization. Associated to every sequence composed of 20 amino acids, a time series

is formed from hydropathy values of the first 360 residues. To measure the absolute

deviations of hydropathy index on different time scales, the 24-dimensional vector of

total log-amplitudes is introduced. We describe then a configuration of the 1-hidden

layer neural network which is trained to solve the binary classification problem of natural

and random sequences. A satisfactory distinguishing accuracy random/natural of 88%

is obtained.

1. Introduction

The term Never Born Proteins was originally introduced in [1] to describe a collec-

tion of randomly generated sequences composed of 20 amino acids which could posses

some folding stability properties observed in the laboratory experiments. It seems nev-

ertheless, that from the purely combinatoric point of view, there is no clear difference

between primary structures of natural proteins observed in Nature and synthetic amino

acids sequences randomly uniformly generated [9]. Based on the Shannon entropy [7], it

was reported in [6] that natural protein sequences are random like Never Born Protein se-

quences i.e their corresponding entropies are asymptotically same. It should be noted that

in the above and similar studies only primary structures, viewed as words composed of

20 amino acids, are considered. By contrast, many authors have stressed the importance

of the quantitative features emerging from particular secondary or tertiary structures of

proteins (experimentally known for natural and predicted for random ones) with the use

of which more sharp distinction between random and natural can be achieved (see for ex-

ample [8] where the evolutional network was designed for this purpose). At the same time,

Key words and phrases. neural networks, amino acid sequences, random sequences, never born pro-

teins, primary structures, hydropathy.

1

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted July 11, 2019. ; https://doi.org/10.1101/687558doi: bioRxiv preprint 

https://doi.org/10.1101/687558


a considerable number of controversial viewpoints on the question of random/natural pro-

teins can be found in literature and apparently many conclusions are methodologically

driven. A number of aspects of this problem require further investigation and clear precise

definitions.

In this communication we address the problem of sorting out random/natural applying

the artificial neural network approach based solely on primary structures and hydropathy

values of individual amino acids. We study an initial data base of 35022 natural proteins

of length 361 ≤ N ≤ 400 residues taken from UniProtKB (http://www.uniprot.org) and

the same size data set formed by uniformly randomised (at different degrees) sequences

of the same length.

The particular size of n = 360 residues is chosen by considering a particularly high

number of divisors of n which is 24.

We define in Section 2 the 24-dimensional vector, associated to every amino acid se-

quence S (natural or randomised) of the length n, whose entries are logarithms of the

sum of local amplitudes computed for every partition of S. The corresponding time series

is constructed in a natural way by adding the z-score values of hydropathy parameters [5]

of amino acids along the sequence S starting from the first left residue. See [4] for some

alternative applications of discrete time series representations of protein sequences.

In Section 3, a conventional in machine learning partition 80 % − 10 % − 10 % of the

initial data set to training-validation-test sets is applied. We use the 24 − 24 − 1 neural

network trained to solve the binary classification problem random/natural for different

length of randomized tails of natural primary structures. The trained neural network is

capable to classify correctly 88 % of the testing set containing 50 % of random and 50 %

of natural amino acids chains.

2. Total amplitudes of amino acid sequences

To analyse the primary structure of proteins, in order to use the time series tools, we

need to transform a given sequence of amino acids, composed of 20 residues {A,C,D, . . . }.
into the numerical form. We begin by considering the hydropathy values of amino acids,

defined in [5] (Table 1) which are then normalised using z-score (Table 2).

A C D E F G H I K L M N P Q R S T V W Y

1.8 2.5 -3.5 -3.5 2.8 -0.4 -3.2 4.5 -3.9 3.8 1.9 -3.5 -1.6 -3.5 -4.5 -0.8 -0.7 4.2 -0.9 -1.3

Table 1. Hydropathy values of 20 amino acids
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A C D E F G H I K L M N P Q R S T V W Y

H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12 H13 H14 H15 H16 H17 H18 H19 H20

0.7 1.0 -1.0 -1.0 1.1 0.0 -0.9 1.6 -1.1 1.4, 0.8 -1.0 -0.3 -1.0 -1.3 -0.1 -0.0 1.5 -0.1 -0.2

Table 2. Z-score Hydropathy values

For the sake of simplicity, we provide the truncated values only while 16-digits precision

is used in all numerical computations.

Let S = (S1, S2, . . . , S360), Si ∈ Σ be any sequence of amino acids where

Σ = {A,C,D,E, F,G,H, I,K, L,M,N, P,Q,R, S, T, V,W, Y } . (2.1)

The time series X associated to S is defined as follows

X = (x1, x2, . . . , x360), x1 = H1, xi = xi−1 +Hi =
i∑

k=1

Hk, i ≥ 2 , (2.2)

by adding recursively the z-score hydropathy values along the amino acid chain starting

from its first residue on the left. Figures 1-4 contain graphs of these series for 4 particular

natural proteins. We observe that their structures and regularity can be quite different :

from the sideways behaviour (Fig.1-2) to the trend-like one (Fig. 3-4). Fig. 5 illustrates

the time series of a typical synthetic sequence whose all residues (excepting the very first

one which is fixed to be “M”) are chosen randomly.

We fix now n = 360 and define

D = {1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 18, 20, 24, 30, 36, 40, 45, 60, 72, 90, 120, 180, 360} , (2.3)

the set of all 24 divisors of n.

For a particular divisor d ∈ D one gets a partition of X

X = Xd
1 ∪Xd

2 ∪ · · · ∪Xd
kd
, Xd

i = (x(i−1)d+1, . . . , xid), kd = 360/d , (2.4)

in kd fragments of equal size d.

For i ∈ {1, . . . , kd}, the corresponding local ith amplitude is defined according to

aid = max
xk∈Xd

i

(xk)− min
xk∈Xd

i

(xk) . (2.5)

The sequence of sums of local amplitudes

Ad =

kd∑
i=1

aid, 1 ≤ d ≤ 24 , (2.6)

is mapped then to the 24-dimensional vector

a = [a1, . . . , a24], am = log(Am), 1 ≤ m ≤ 24 , (2.7)

3

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted July 11, 2019. ; https://doi.org/10.1101/687558doi: bioRxiv preprint 

https://doi.org/10.1101/687558


called the total log-amplitude of the time series X. Figures 6-7 contain graphical repre-

sentations of a for two particular natural and random truncated primary sequences. The

linear and correlated patterns can be clearly spotted. This is not really surprising, since,

as was reported in [2], for many stochastic time series, some entries of total log-amplitude

vectors (2.7) obey linear law with the slope given by the fractal dimension of the series in

question.

3. Neural network description and solving the classification problem

For numerical simulations, the Java neural network framework Neuroph 2.96 was used.

First, we selected the data set DATA from UniProtKB (http://www.uniprot.org) of

primary structures of natural proteins of the length 361 ≤ N ≤ 400 which contains

35022 sequences (rows) in total. This set was systematically row shuffled before each new

network training. Then, DATA is partitioned into 3 subsets according to

DATA = DATAtr
80% + DATAval

10% + DATAtest
10% . (3.1)

For every of the 3 above subsets, its α%-randomised “clone” is created to form a parallel

to (3.1) randomised partitioning

RAN(α) = RAN(α)tr80% + RAN(α)val10% + RAN(α)test10% , (3.2)

where every row of the table RAN(α)ij is obtained by uniform randomization of
[
α
100
n
]
,

n = 360 amino acids of every row of the table DATAi
j starting from the last residue on

the right, while leaving others to be intact (with the very first residue on the left “M”

always kept unchanged).

The sets of both types are then joined together to build a new data set

D = D1 +D2 +D3 , (3.3)

with

D = (DATA,RAN(α)) D1 = (DATAtr
80%,RAN(α)tr80%)

D2 = (DATAval
10%,RAN(α)val10%) D3 = (DATAtest

10%,RAN(α)test10%) ,
(3.4)

which is used to train the 24 − 24 − 1 neural network. The Sigmoid activation function

was chosen and the z-score normalisation was applied to input vectors whith parameters

(empirical average and variance) computed from the DATAtr
80% set only. The desired

values of the network’s data set were fixed according to: “0” ∼ α%-random input row

and “1” ∼ natural primary structure row. Training was done using the back-propagation

in a batch mode using the D1 set. To define the stoping rule, one waits until the LMS
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error computed on the validation D2 set starts to increase while the LMS error evaluated

on the training D1 set is still decreasing.

4. Results and conclusion

The capacity of trained network was evaluated to classify sequences from the test set

D3, not used during the training, and which composition was 50/50 natural or random.

The results are quite satisfactory and listed in Table 3.

α 100 % 50 % 33 % 19 %

AD 88 % 77 % 71 % 65 %

Table 3. Distinguishing accuracy AD of the neural network for different α’s

Decreasing of AD with lower values of α is expectable since AD → 50% as α→ 0 with

the difference random/natural disappearing. The maximum 88% of the accuracy can be

explained by the fact that only limited part of protein’s structure is coded by hydropathy

values of amino acids. Our preliminary findings indicate that neural networks are able

to uncover hidden distinguishing patterns in total log-amplitude vectors of natural and

random amino acid sequences. Since these numerical features are intimately correlated

to fractal and self-similarity characteristics of time series [2], it would be of interest to

establish links between our results and other studies of the protein fractal structures [3].
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Figure 1. Time series formed by first 360 residues of of the Putative move-

ment protein, Q91TW8

Figure 2. Probable GPI-anchored adhesin-like protein PGA32, Q5ADQ7

Figure 3. Prisilkin-39, C0J7L8
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Figure 4. 29C-likeproteinDDB G0287399, Q54KD5

Figure 5. Uniformly random sequence of 360 residues

Figure 6. The total log-amplitude vector for random sequence from Fig.5

Figure 7. The total amplitude vector of 360-residues left tail of

GDSLesterase, Q9SVU5
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