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ABSTRACT 30 

Live-cell imaging of mitochondrial function and dynamics can provide vital insights into both 31 

physiology and pathophysiology, including of metabolic diseases like type 2 diabetes. However, 32 

without super-resolution microscopy and commercial analysis software it is challenging to 33 

accurately extract features from dense multi-layered mitochondrial networks, such as those in 34 

insulin-secreting pancreatic β-cells. Motivated by this, we developed a comprehensive pipeline, 35 

and associated ImageJ plugin, that enables 2D/3D quantification of mitochondrial network 36 

morphology and dynamics in mouse β-cells, and by extension other similarly challenging cell-37 

types. The approach is based on standard confocal microscopy and shareware, making it widely 38 

accessible. The pipeline was validated using mitochondrial photo-labelling and unsupervised 39 

cluster analysis, and is capable of morphological and functional analyses on a per-organelle basis, 40 

including in 4D (xyzt). Overall, this tool offers a powerful framework for multiplexed analysis of 41 

mitochondrial state/function, and provides a valuable resource to accelerate mitochondrial research 42 

in health and disease. 43 

  44 
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INTRODUCTION 45 

Mitochondria are the main energy producing organelle of eukaryotic cells and are essential for a 46 

diverse range of cellular functions, including ATP synthesis, Ca2+ homeostasis, ROS signaling, 47 

and the control of apoptotic cell death (1, 2). Microscopy has been instrumental in unraveling 48 

intricacies of mitochondrial biology and their diverse roles in cellular physiology and 49 

pathophysiology. Electron microscopy has provided fundamental insights into mitochondrial 50 

ultrastructure and cellular distribution in health and disease but requires cell fixation and only 51 

provides a static snapshot. In contrast, fluorescence microscopy of live cells, labeled with 52 

mitochondria-targeted fluorescent proteins or dyes, has revealed that mitochondria are highly 53 

dynamic and motile organelles that undergo frequent fusion and fission events (3-5). 54 

Mitochondrial dynamics and network morphology vary in different cellular states, and are 55 

important for the function and quality control of the organelle, as well as overall cell health and 56 

adaptation to stress (1). Healthy mitochondria are generally mobile, tubular in shape and exist in 57 

complex networks, whereas cells undergoing profound stress or entering apoptosis often display 58 

swollen and fragmented mitochondria, marked by concurrent disruption of metabolism, membrane 59 

potential, ROS levels, and Ca2+ signalling (6-8). Quantitative imaging-based assessment of 60 

mitochondrial morphology and dynamics can therefore provide valuable insights into cellular 61 

physiology and pathophysiology. 62 

In pancreatic β-cells, mitochondria play an essential role in insulin secretion, which relies 63 

on ATP and other mitochondria-derived metabolites to both trigger and amplify insulin granule 64 

exocytosis in response to glucose and other nutrient stimuli (9). Dysfunction of β-cell mitochondria 65 

therefore results in loss of glucose-stimulated insulin secretion (10). Perturbations to mitochondria 66 

are also a common feature in insulin target tissues with impaired insulin signaling (11, 12). 67 

Mitochondria thus take center stage in both β-cell failure and insulin resistance and are an area of 68 

significant focus in efforts to understand the pathophysiology of type 2 diabetes (13-15). 69 

Mitochondria also exist as dynamic networks in β-cells. Fusion within the network may help 70 

protect β-cells from nutrient stress-induced apoptosis (6), and mitochondrial fragmentation, 71 

swelling and dysfunction are seen in β-cells from patients with type 2 diabetes and rodent models 72 

of diabetes (15-18). Normal insulin secretion may also be influenced by β-cell mitochondrial 73 

dynamics (19-21), but exactly how networking of the organelle relates to its metabolic capacity in 74 
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healthy β-cells or during conditions of moderate nutrient excess remains unclear and warrants 75 

further investigation.  76 

Most types of microscopy can detect the prominent morphological differences between 77 

healthy and severely stressed mitochondria with relative ease. It is, however, much more 78 

challenging to accurately quantify subtle changes in mitochondrial dynamics, or perform 3D 79 

analysis of the full mitochondrial network. This is particularly difficult in cells with a dense 80 

mitochondrial network that spans several layers, such as β-cells (6, 18). Although methods have 81 

been published that integrate 3D confocal imaging and analysis of mitochondria, these generally 82 

use commercial software packages and/or are optimized for relatively flat cell types (22, 23). This 83 

is likely one reason why there are only few quantitative analyses of β-cell mitochondrial dynamics, 84 

and why full 3D investigations of β-cell mitochondria are limited to a small number of examples 85 

using super-resolution approaches, such as 4π-microscopy (18, 24).  86 

To facilitate progress in the important area of mitochondrial biology and dynamics we 87 

present here a pipeline for quantitative multidimensional analysis of mitochondria that is based on 88 

standard confocal fluorescence microscopy and the open source image analysis platform 89 

ImageJ/Fiji (25, 26). In this, we identify a superior method for accurate identification of individual 90 

mitochondria within dense networks, and we outline a framework for quantitative description of 91 

mitochondrial morphology and network characteristics. Applying this pipeline to clonal MIN6 β-92 

cells and primary mouse β-cells, we quantitatively distinguish mitochondrial morphologies, 93 

including the functional and morphological changes to physiological and pathophysiological 94 

stimuli. Additionally, we discuss the pros and cons of 2D and 3D imaging approaches, identify 95 

image processing steps required for accurate mitochondrial analysis in 3D, and apply these to 96 

quantitate distinct 3D β-cell network morphologies.  Finally, we extend our analysis to 4D by 97 

including time-lapse data, and we demonstrate the feasibility of using the pipeline to quantitate the 98 

dynamics of the entire three-dimensional mitochondrial network in live cells.  99 

 100 

RESULTS AND DISCUSSION 101 

Overall workflow & general considerations 102 

Fluorescence confocal analysis of mitochondria in live cells involves several general steps, each 103 

of which is important for high-quality results (Figure 1). As a starting point, the cells must be 104 

cultured on glass coverslips, or other vessels, that are appropriate for confocal microscopy. The 105 
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mitochondria should then be labelled using carefully chosen mitochondria-targeted fluorescent 106 

proteins or organic dyes (27), and the image acquisition should be optimized and carried out in a 107 

manner that provides sufficiently high resolution and image quality for accurate analysis. Because 108 

these factors and general steps can vary between specific experiments and microscope systems, an 109 

extensive discussion falls beyond the scope of this paper. The imaging parameters and conditions 110 

we have used are detailed in Materials and Methods. Our focus in the following will be on the 111 

post-acquisition steps that are critical for accurate morphological analysis of mitochondria in the 112 

confocal images. 113 

Image acquisition and analysis can be done in 2D or 3D, and by further extending this to 114 

include time-lapse capture, important information can be extracted about mitochondrial dynamics. 115 

The choice between these imaging modes may be influenced by several considerations, including 116 

the type and thickness of the cell, the specific parameters to be quantified, and the biological 117 

questions being asked. For instance, we will discuss later how some 2D analyses of relatively thick 118 

cells, such as pancreatic β-cells, can be associated with inaccuracies that may be mitigated by a 119 

full 3D analysis of the mitochondrial network. In all cases, accurate quantification of mitochondrial 120 

features involves image processing steps and identification of the mitochondrial objects in the 121 

image. Morphological features can then be extracted using appropriate 2D or 3D shape descriptors, 122 

while mitochondrial networking can be assessed through skeletonization analysis. In this latter 123 

process, the binarized mitochondria are converted into topological skeletons (the thinnest form 124 

that is equidistant to its edges) and the branches of the skeleton are analyzed. In the following, we 125 

describe each of these post-acquisition steps and identify a number of “best approaches”, to build 126 

a pipeline for accurate multidimensional analysis of mitochondria that we also implement and 127 

make available in a comprehensive Mitochondria Analyzer plugin for ImageJ/Fiji (28). 128 

 129 

Image thresholding and identification of mitochondria 130 

Before accurate morphological analysis of fluorescently–labeled mitochondria can be done, it is 131 

essential that: i) the mitochondrial population is correctly identified in the images, and ii) the 132 

individual mitochondrial units can be distinguished within the dense mitochondrial network. For 133 

this critical step, a thresholding process based on analysis of the intensity histogram is used to 134 

distinguish pixels with “true” fluorescent signal from background signal. This process also groups 135 

any identified positive pixels that are connected into discrete objects (i.e. mitochondria) that can 136 
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be analyzed further. Thresholding approaches can be broadly categorized as either ‘Global’ or 137 

‘Local’, which identify positive pixels based on the histogram of the entire image or on dynamic 138 

analyses of image sub-regions, respectively (22, 29). Global thresholding tends to be the most 139 

commonly used approach, but this may reflect its relative ease of use rather than accuracy.  140 

To identify the most suitable thresholding strategy for mitochondrial identification, we 141 

compared the performance of the Global and Local threshold methods available for ImageJ/Fiji on 142 

images of primary islet cells stained with MitoTracker dye. This was judged on the ability to 143 

preserve mitochondrial structural detail while minimizing capture of background signal. For 144 

optimal results, all images were pre- and post-processed to reduce noise (see Materials & 145 

Methods). Among the Global-based algorithms in the ImageJ/Fiji “Auto Threshold” command, 146 

we qualitatively estimated that the Default method performs similar to, or in several cases better 147 

than, the other Global algorithms (Figure S1). 148 

The Local thresholding methods we tested included the Mean, Median, and Mid-grey 149 

algorithms (part of the “Auto Local Threshold” command), as well as the Weighted Mean method 150 

(also called Adaptive threshold), which is available through a separate plugin (30) (Figure S2). 151 

These Local methods compute a threshold for each pixel in the image and require the definition of 152 

two parameters: a block size and a C-value. The block size specifies the size of the region around 153 

each pixel for which the histogram is analyzed and should be chosen based on the size of the 154 

objects of interest for the best results (30). The C-value provides an offset to the threshold and 155 

helps strike a balance between minimizing noise detection and incorrectly splitting objects into 156 

smaller pieces (30, 31). Using the Adaptive threshold method for optimization, we found that the 157 

ideal C-value depended on the image’s signal-to-noise contrast and needed to be empirically 158 

determined. For each set of images that has been acquired and processed in a similar manner, we 159 

therefore recommend that various combinations of block size and C-values should be tested on a 160 

representative image to determine the best combination. The optimized parameters can then be 161 

used to threshold all images in the group similarly (Figure S2, Supplemental Methods for details). 162 

Among the Local threshold approaches, our assessment was that the Mean and Adaptive threshold 163 

methods best captured mitochondrial structure, and that the Adaptive threshold further tended to 164 

identify less noise (Figure S2B). 165 

A side-by-side comparison indicated that Local (Adaptive) thresholding resolves 166 

mitochondria better than Global thresholding, which appears to capture more out-of-focus signal 167 
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and/or noise, and therefore erroneously merges adjacent objects (Figures 2A & B). For a more 168 

stringent and quantitative evaluation, we used mitochondria-targeted photoactivatable GFP (mito-169 

PAGFP) to selectively photo-label single mitochondria and identify truly contiguous organelles 170 

within dense regions of the network (4, 5). As exemplified in Figure 2B, and quantified in Figure 171 

2C (see also Figure S3), Adaptive thresholding was indeed better at delineating photo-labeled 172 

mitochondria, and distinguishing closely adjacent parts of the network that are physically separate. 173 

In contrast, the Global threshold algorithm consistently overestimated the mitochondrial size. 174 

Taken together, these comparisons established that using Adaptive thresholding, with empirically 175 

optimized parameter values, is a superior approach for accurate identification of fluorescently 176 

labeled β-cell mitochondria. 177 

 178 

Two-dimensional analysis of mitochondrial morphology and network connectivity 179 

After careful image thresholding, the next step is to quantify the morphological features of the 180 

identified mitochondrial objects. We therefore identified a comprehensive set of parameters to 181 

capture and mathematically describe key aspects of the mitochondrial morphology. For 2D 182 

analysis, we characterize mitochondrial size by area and perimeter, while mitochondrial shape is 183 

defined by form factor (FF) and aspect ratio (AR). We evaluate the overall connectivity and 184 

morphological complexity of the mitochondrial network based on the skeletonized network, and 185 

quantify this by the number of branches, the number of branch junctions, as well as total 186 

(accumulated) length of branches in the skeleton. Figure 3 summarizes the various parameters and 187 

indicate how they change with various morphologies.   188 

To evaluate the ability of this approach to measure and distinguish mitochondrial 189 

morphologies, we transfected MIN6 cells with mito-YFP and generated an image-set consisting 190 

of 2D slices from 84 cells. We then divided the cells into three different categories based on visual 191 

inspection of their mitochondria: 1) a “fragmented” group, characterized by small round 192 

mitochondria and little branching; 2) a “filamentous” group, with highly connected networks of 193 

long/filamentous mitochondria; and 3) an “intermediate” group of cells, containing a mixture of 194 

punctate and longer tubular mitochondria. As shown in Figure 4, analysis of the 2D images resulted 195 

in quantitative morphological and networking parameters that differed significantly between the 196 

three groups. Of note, a more in-depth comparison of the two shape descriptors revealed that FF 197 

required smaller sample sizes than AR to detect differences between the three morphological sub-198 
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types, and seemed particularly well-suited for distinguishing between cells with filamentous and 199 

intermediate mitochondrial morphologies (Figure S4). Likely, this is because AR only measures 200 

elongation, whereas FF incorporates the perimeter and therefore is more sensitive to curvature and 201 

the irregular shapes of filamentous mitochondria (Figure S4B). Collectively, these results 202 

demonstrate that our combined approach for image processing, thresholding, and analysis enables 203 

quantitative identification and comparison of mitochondrial morphological sub-types. 204 

 205 

Validation of morphometric quantifications and classifications by unsupervised clustering 206 

Next, we further tested our pipeline by using Spanning-tree Progression Analysis of Density-207 

normalized Events (SPADE) (32, 33) to obtain an unbiased classification of our test images. The 208 

morphological parameters that had been calculated from our image set of 84 mito-YFP-expressing 209 

MIN6 cells (shown in Figure 4) were loaded into SPADE, which used these to generate a 210 

population tree in which each node represents a cell (Figure 5A). This SPADE tree was then 211 

subdivided into 3 cell populations based on automatic classification of their mitochondrial features 212 

(Figure 5A; see Materials and Methods for details). When images from each of the three SPADE-213 

identified groups were subsequently examined, the mitochondria in each group were noticeably 214 

dissimilar in appearance (Figure 5B), and comparative analysis revealed that there were significant 215 

differences in all the morphological descriptors (Figure 5C & D). The morphometric data indicated 216 

that SPADE Subgroups 1, 2, and 3 corresponded to cells with filamentous, intermediate, and 217 

fragmented mitochondria, respectively. This was confirmed by an 88% match between the 218 

unsupervised SPADE clustering and our manual grouping of the cells. Together, these results 219 

provide an unbiased validation of the applicability and robustness of our 2D pipeline for analysis 220 

of mitochondrial network structure and complexity. 221 

 222 

Limitations of 2D mitochondrial analysis 223 

Our 2D analyses reliably measure mitochondrial morphology in an optical cross-section and can 224 

provide valuable information regarding the state of the organelle. However, when cells are 225 

relatively thick and tend to have a mitochondrial network that spans several layers, this approach 226 

has its challenges and limitations. It is difficult to know if a given plane in a cell is truly 227 

representative, and as illustrated by the green objects in Figure 6A the 2D appearance of a 228 

mitochondrion will also depend on its orientation relative to the optical cross-section. Moreover, 229 
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a 2D image is unlikely to reveal the actual interconnectedness of the mitochondrial network. When 230 

a mitochondrion spans multiple planes and intersects the focal cross-section at several points, it 231 

can result in a notable misrepresentation of the morphology, as illustrated by the blue schematic 232 

object in Figure 6A. That this also occurs in situ is demonstrated in the side-by-side 2D and 3D 233 

visualization of a photo-labeled mitochondrion in Figure 6B & C. When viewed in 2D, the 234 

localized photo-activation of mito-PAGFP seemed to label four small and distinct mitochondria 235 

(Figure 6B; shown in green), but a full 3D reconstruction revealed that it was in fact one continuous 236 

organelle (Figure 6C), consistent with diffusion-mediated distribution of GFP within the lumen. 237 

Another inherent limitation of 2D analysis is that it does not allow direct quantitation of 238 

the total mitochondrial mass. Cross-sectional area has been used to estimate mass in relatively flat 239 

cells like neurons and fibroblasts where mitochondria are confined to a limited number of planes 240 

(22, 34). However, this approximation is less appropriate for thicker cells, including β-cells. A 241 

common alternative, intended to capture as much of the mitochondrial network as possible, 242 

involves acquiring a stack of z-slices and projecting these into a single plane for faster and simpler 243 

analysis (6, 23). Such projections contain information from the whole network, but in voluminous 244 

cells this will erroneously merge overlapping mitochondria and produce indiscriminate clusters in 245 

the resulting image.  246 

As the importance of mitochondrial dynamics and its implication for cellular health and 247 

disease has become more apparent, there is also an increasing need for more comprehensive 248 

characterization of the organelle. Accordingly, there will inevitably be instances where the caveats 249 

of 2D analysis we discussed above become restricting. To enable more precise quantification of 250 

mitochondrial volume and network structure we therefore expanded our pipeline to include a 251 

complete 3D representation and analysis.   252 

 253 

Three-dimensional imaging and analysis of mitochondria 254 

Full 3D reconstruction of mitochondria can be accomplished by taking a stack of serial slices 255 

throughout the volume of the cell and integrating them with software such as ImageJ/Fiji. 256 

However, there are technical challenges and constraints specifically associated with 3D imaging. 257 

Foremost of these is that the maximum axial resolution (z-axis) of confocal microscopes is 258 

approximately 500-800 nm, which is almost three times worse than the lateral (xy-plane) (35, 36). 259 

As mitochondria are often less than 1 micron in diameter they approach this limit (18). This can 260 
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lead to a distorted appearance of imaged mitochondria, particularly in the z-axis where it causes 261 

artificial stretching and blending of signal from objects in close vertical proximity to each other. 262 

In the following section we discuss steps that can be taken to mitigate some of these caveats and 263 

improve 3D results.  264 

 265 

Image acquisition and processing requirements for accurate 3D analysis 266 

An important first consideration when acquiring a stack of images for 3D analysis is the z-distance 267 

between adjacent imaging planes. If the spacing is too large the final reconstruction will be 268 

inaccurate. On the other hand, over-sampling will take unnecessary time, increase photo-toxicity, 269 

and require additional resources for image storage and analysis. The distance between serial 270 

sections should therefore be set according to the optimal Nyquist sampling rate, which provides 271 

the ideal density of information to permit accurate digital reconstruction of an object (37). The 272 

Nyquist distance can be calculated using online resources (38).  273 

Even under optimal conditions, a confocal image will be affected by inherent diffraction-274 

induced distortion of the imaged object. This distortion can be represented by a point-spread 275 

function (PSF) and then computationally corrected by using deconvolution algorithms. By 276 

removing the effects of the PSF, the deconvolution process provides a more correct representation 277 

of the underlying object and also helps eliminate out-of-focus light and/or noise in the image (36). 278 

In Figure 7 we illustrate this and use the free DeconvolutionLab2 module for ImageJ/Fiji and the 279 

commercial deconvolution software, Huygens Professional (SVI), to test the effect of 280 

deconvolution on 3D-stacks of mitochondria (see Materials and Methods for details). As seen in 281 

Figure 7A, mitochondria in the raw image stack have approximately 2-3x greater diameter in the 282 

xz-view than in the xy-view, which illustrates the z-stretching. The deconvolution algorithms help 283 

reduce this distortion, remove noise, and improve the contrast and separation of adjacent objects 284 

(Figure 7A and Figure S5). In general, we found that the Huygens deconvolution package reduced 285 

axial stretching more effectively than the ImageJ DeconvolutionLab2 module. By and large, 286 

however, both deconvolution algorithms significantly increased the quality of 3D mitochondrial 287 

network reconstructions compared to the raw confocal images (Figure 7B). Deconvolution also 288 

affected subsequent 3D quantifications of mitochondrial number, shape, and size in a way that 289 

indicated superior separation of individual mitochondria within the full population (Supplemental 290 

Table 1; see discussion of the 3D analysis parameters below). In summary, these results 291 
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demonstrate that deconvolution of the raw confocal image stacks helps mitigate limitations of 3D 292 

imaging and is a necessary step for accurate reconstruction and quantification of the full 293 

mitochondrial network.  294 

 295 

Three-dimensional quantification of mitochondrial morphology and network connectivity 296 

When a high-quality representation of the full mitochondrial network has been generated, 297 

ImageJ/Fiji can be used to extract information about the 3D morphology and connectivity by the 298 

same general principles previously discussed for 2D. Mitochondrial size in 3D is represented by 299 

volume and surface area, while shape is characterized by the sphericity of the mitochondrial object. 300 

The complexity of the 3D network is quantified by the same branch parameters used for 2D (see 301 

Figure 3 for a summary). Analogous to our 2D analyses, we evaluated our 3D approach by 302 

generating a set of image stacks from mito-YFP-expressing MIN6 cells, and grouping these as 303 

fragmented, filamentous, or intermediate based on the visual appearance of the reconstructured 304 

mitochondrial networks (Figure 8A). Quantification using ImageJ/Fiji (See Figure 9 and Materials 305 

& Methods for details) showed that the number of mitochondria per cell and their average 306 

sphericity progressively increased, while the average mitochondrial volume decreased, as we move 307 

from filamentous to intermediate to fragmented morphologies (Figure 8B). In contrast, the total 308 

mitochondrial volume of each cell remained constant, highlighting that significant morphological 309 

heterogeneity can occur independent of changes to mitochondrial mass (Figure 8B). In the 310 

skeletonized network the number of branches and branch junctions progressively decreased, 311 

illustrating that mitochondrial fragmentation, not surprisingly, is associated with a reduction in 312 

overall network complexity (Figure 8C & D). Together, the above results and discussions 313 

demonstrate how standard confocal imaging can be combined with ImageJ/Fiji-based processing 314 

and analysis, to quantify volume, morphology, and connectivity of the entire mitochondrial 315 

network in pancreatic β-cells. To our knowledge, full 3D characterization of live β-cell 316 

mitochondria has previously only been done at this level using specialized super-resolution 317 

imaging techniques (18, 24).  318 

 319 

Pipeline Summary 320 

Figure 9 illustrates the overall pipeline for 2D and 3D mitochondrial analysis. In summary, 2D 321 

image slices or 3D image stacks are first acquired, and the latter deconvolved prior to analysis. In 322 
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ImageJ/Fiji, deconvolution of 3D stacks is done using the DeconvolutionLab2 module (39) and if 323 

desired, the 3D stack can be visualized using the “3D Viewer” or “Volume Viewer” functions. 324 

Alternatively, 3D deconvolution and visualization can be done using commercial software, such 325 

as Huygens, if available to the user (Figure 7). For analysis, all images are then pre-processed 326 

using the commands: “Subtract Background”, “Sigma Filter Plus”, “Enhance Local Contrast”, and 327 

“Gamma Correction”. We then empirically test a range of block sizes and C-values for the 328 

“Adaptive Threshold” command to establish the optimal values and use these as input when 329 

applying the threshold algorithm. The resulting binarized images are post-processed using the 330 

“Despeckle”, “Remove Outliers”, and “Fill 3D Holes” commands. At this stage, we recommend 331 

comparing the final thresholded image to the original images as a quality control check of the 332 

object identification and segmentation. The identified mitochondrial objects are then analyzed in 333 

2D using “Analyze Particles”, which provides mitochondrial count, area, perimeter, form factor 334 

(FF), and aspect ratio (AR). For 3D analysis, we use the “3D Object Counter” and “3D Particle 335 

Analyzer” (from the MorphoLibJ package) commands to quantify count, volume, surface area, 336 

and sphericity. The thresholded objects are then converted into skeletons using “Skeletonize 337 

(2D/3D)”, and we apply the “Analyze Skeleton” command to obtain the number of skeletons, 338 

number of branches, length of branches, and number of branch junctions in the 2D or 3D network. 339 

Additional details and parameter values can be found in Materials and Methods. 340 

 341 

Quantifying physiological and pathophysiological changes to mitochondrial morphology and 342 

networking 343 

Having established and validated the mitochondrial analysis pipeline, we next used it to 344 

characterize mitochondrial changes under relevant physiological and pathophysiological 345 

conditions. As a test of acute functional responses, primary mouse β-cells were cultured in either 346 

basal (3 mM) or stimulatory (17 mM) glucose for 1 hour and co-stained with MitoTracker green 347 

(MTG) and the mitochondrial membrane potential-sensitive dye TMRE (Figure 10A). The MTG 348 

fluorescence is insensitive to changes in mitochondrial polarization and served as the signal for 349 

mitochondrial detection and morphological characterization (40). The TMRE intensity provided a 350 

simultaneous readout of the activity of the individual mitochondrial units, and as expected 351 

stimulatory glucose increases the TMRE/MTG intensity ratio (Figure 10B). By visual inspection 352 

there were no obvious differences in mitochondrial morphology between the cells in low and high 353 
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glucose (Figure 10A), but quantitative analysis revealed a number of significant effects (Figure 354 

10C & D). Despite no change to total mitochondrial area, glucose stimulation increased the number 355 

of mitochondria, reduced their average size (area and perimeter) and made them more round 356 

(decreased form factor); all of which suggests increased mitochondrial fission (Figure 10C). This 357 

was further supported by skeletonization analysis, which showed that stimulatory glucose caused 358 

an overall reduction in mitochondrial network connectivity (decreased branch parameters) (Figure 359 

10D). This experiment agrees with previous reports linking drp1-dependent mitochondrial fission 360 

to glucose-stimulated insulin secretion (19, 20), and demonstrates that our analysis pipeline is 361 

sensitive enough to allow quantitative detection of subtle physiological changes to mitochondrial 362 

morphology and networking. 363 

As an example of a full 3D application, we quantified the mitochondrial changes in 364 

palmitate-treated MIN6 cells; an in vitro model of the β-cell lipotoxicity associated with obesity 365 

and type 2 diabetes. As expected from previous 2D analyses (6) we observed a fragmentation of 366 

the mitochondrial network following treatment with a high concentration of palmitate (Figure S6). 367 

This pathophysiological stress response did not affect total mitochondrial volume but was clearly 368 

reflected in all parameters describing the 3D shape and size of individual mitochondrial units 369 

(Figure S6). Comparing the 2D morphological changes associated with 1 hour of glucose 370 

stimulation and 6 hours of palmitate exposure, it is interesting to note that palmitate treatment 371 

reduced AR by 26% and FF by 29%, while glucose stimulation only decreased AR and FF by 4% 372 

and 12%, respectively. This suggests that physiological fission generates daughter mitochondria 373 

that largely retain their shape, in contrast to the more pronounced stress-induced fragmentation, 374 

which also causes a striking rounding of the smaller organelles.   375 

 376 

Four-dimensional analysis of mitochondrial dynamics 377 

At any given time, the overall structure of a mitochondrial network reflects the net balance of 378 

fusion and fission between individual mitochondria. These are dynamic, energy-dependent, 379 

processes that involve mitochondrial movement, and coordinated actions of proteins that mediate 380 

fusion of the outer and inner membranes, or constriction and splitting of the organelle (2). Based 381 

on static image analysis alone it can be difficult to know the reason for a change in morphometry. 382 

For instance, a more connected and elongated network can be the result of an increase in fusion 383 

events, a decrease in fission activity, or a combination of both. To further understand the 384 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 11, 2019. ; https://doi.org/10.1101/687749doi: bioRxiv preprint 

https://doi.org/10.1101/687749
http://creativecommons.org/licenses/by-nc-nd/4.0/


14 
 

underlying changes, it can therefore be valuable to monitor mitochondrial movement, 385 

morphological changes, and organelle interactions in real-time. In practical terms, this requires 386 

that image acquisition can be repeated at sufficiently frequent intervals, and that the analysis is 387 

extended to the time-domain. Previous studies have applied these principles to 2D images to 388 

provide important insights regarding mitochondrial dynamics and turnover in pancreatic β-cells 389 

(3, 6).  390 

Here, we tested the feasibility of recording and quantifying the time-dependent dynamics 391 

of the full 3D mitochondrial network (i.e. an extension to 4D analysis). For this, we expressed 392 

mito-YFP in MIN6 cells and imaged these in a stage-top incubator on the confocal microscope. 393 

3D time-lapse data were generated by acquiring z-stacks of the cells at regular time-intervals 394 

(every 45 s) for a period of 30 minutes. At the 13-minute mark, we added a high concentration of 395 

the mitochondrial uncoupling agent, FCCP, with the purpose of inducing a relatively rapid change 396 

in mitochondrial dynamics and architecture. As seen in Figure 11 and Supplemental Video 1, the 397 

FCCP triggered a rapid, and dramatic, loss of mitochondrial connectivity along with an increase 398 

in the number of organelles. Interestingly, there was also a transient decrease in both average and 399 

total mitochondrial volume, which indicates an initial contraction and shrinking of the 400 

mitochondrial fragments followed by significant swelling; a known response to stress and osmotic 401 

shock (41). The abrupt and severe deterioration of the mitochondrial network likely reflects the 402 

induction of apoptosis due to profound damage from high levels of FCCP. 403 

With this proof-of-principle experiment we have established the feasibility of analyzing 404 

the temporal dynamics of a full mitochondrial network using standard confocal microscopy. A 405 

powerful next step could be to combine this 4D approach with other tools such as photo-labeling 406 

and tracking of individual organelles, to generate even more complete and in-depth knowledge of 407 

the events that shape the mitochondrial network in health and disease. 408 

 409 

CONCLUSION & PERSPECTIVES 410 

Most aspects of cellular function and survival are linked to mitochondrial physiology or signals 411 

originating from the organelle, and in these contexts the importance of mitochondrial morphology 412 

and dynamics has become evident (1, 2). The integrity of the organelle itself, and by extension the 413 

metabolic health of the cell, depends on the capacity for mitochondrial adaptation to stress and on 414 

selective turnover of damaged parts of the network by mitophagy (3). These processes rely on 415 
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mitochondrial fusion and fission dynamics, which require sensitive live-cell imaging approaches 416 

to study (42). Our current understanding of mitochondrial dynamics in pancreatic β-cells has also 417 

been based largely on such imaging approaches (3, 6). However, it is challenging to accurately 418 

quantify β-cell mitochondrial morphometry and dynamics by fluorescence microscopy, and many 419 

important questions remain unanswered.   420 

 In the previous sections, we established a comprehensive set of methods for quantitative 421 

image analysis and ‘morphofunctional’ characterization of mitochondria based on standard 422 

confocal microscopy and the ImageJ/Fiji shareware. The robustness of these approaches was 423 

validated in several ways, including by unsupervised data clustering. We demonstrated the 424 

applicability of the resulting pipeline for cells with dense multi-layered mitochondria by 425 

conducting detailed 2D and 3D morphometric analyses of β-cells, and further extended these to 426 

4D time-lapse imaging with the accuracy needed for quantitative assessment of network dynamics. 427 

To help researchers implement these methods, we have also built our analysis pipeline into a plugin 428 

for ImageJ/Fiji called Mitochondria Analyzer. The plugin is publicly available (28) and includes 429 

a graphical user interface to facilitate pre-processing, parameter optimization, image thresholding 430 

and automated morphofunctional analysis of mitochondrial images or image stacks, according to 431 

the work-flow we have presented (Figure 9).  432 

When testing the pipeline, we demonstrated the capability for multi-parameter 433 

characterization by performing 2D analyses of β-cells co-stained with MTG and TMRE for 434 

simultaneous recordings of changes to mitochondrial morphology and membrane potential. 435 

However, the pipeline can in principle be applied to any number of mitochondrial parameters, 436 

provided they can be jointly imaged and then quantified using shape- and intensity-based 437 

descriptors. We therefore predict that the same type of analysis using a stable mitochondrial label 438 

combined with one or more spectrally distinct fluorescent biosensors, e.g. for mitochondrial redox 439 

state, matrix Ca2+ or pH, could provide valuable insights into physiological and pathophysiological 440 

structure-function relationships in mitochondria. Importantly, the analysis pipeline treats all 441 

identified objects separately, and can therefore extract the morphological and functional 442 

descriptors on a per-mitochondria basis. In the previous sections we presented our results based 443 

on the cellular averages, but the same data-sets contain the descriptors associated with thousands 444 

of individual mitochondria and can be mined for a wealth of information about morphometry-445 

physiology correlations and heterogeneity at the organelle level (43, 44). It should also be 446 
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emphasized that the practical considerations and best-practices we have discussed, and 447 

incorporated into our pipeline, are not restricted to β-cell analyses, but can also be applied to other 448 

cell types.  449 

Finally, the pipeline can in principle also be used to investigate fluorescently labelled 450 

organelles other than mitochondria, provided that appropriate thresholding/analysis parameter 451 

adjustments can be made. The importance of inter-organelle contacts for cellular function and 452 

health are becoming clear, as is the highly complex and dynamic nature of the “organelle 453 

interactome” (45-47). Within the technical boundaries associated with standard confocal 454 

microscopy, the analysis approaches we have described here can help most research laboratories 455 

achieve the level of accuracy needed to explore internal mitochondrial network interactions, and 456 

likely also the mitochondrial relationship with other organelles, as we work to clarify the sub-457 

cellular basis of diabetes and other diseases. 458 

 459 

MATERIALS AND METHODS 460 

Reagents 461 

Collagenase type XI (#C7657), Tetramethylrhodamine Ethyl Ester (TMRE, #87917), D-glucose 462 

(#G7528), Bovine Serum Albumin (BSA, #A7030), FCCP (#C2920) and palmitic acid (#P5585) 463 

were purchased from Sigma-Aldrich (St. Louis, Missouri). MitoTracker Deep Red FM 464 

(#M224726), MitoTracker Green FM (MTG, #M7514), Hoechst 33342 (#H3570), RPMI 1640 465 

(#11879), Dulbecco’s Modified Eagle’s Medium (DMEM, #11995), Fetal Bovine Serum (FBS, 466 

#10438), Trypsin-EDTA (#25300), Penicillin-Streptomycin 10,000 U/mL (#15140), and HBSS 467 

(#14185) were purchased from Life Technologies/Thermo Fisher Scientific (Carlsbad, California). 468 

Dimethyl sulfoxide (DMSO, #BP231) was purchased from Fisher Scientific (Waltham, 469 

Massachusetts). Minimum Essential Media (MEM, #15-015-CV) was purchased from Corning 470 

(Corning, New York). The mitochondria-targeted YFP (mito-YFP) and mitochondria-targeted 471 

photoactivatable GFP (mito-PAGFP) plasmids were gifts from Dr. Mark Cookson (48) and Dr. 472 

Richard Youle (Addgene #23348) (5), respectively. 473 

 474 

Cell Isolation and Culture 475 

MIN6 cells were cultured at 37°C and 5% CO2 using complete DMEM supplemented with 10% 476 

FBS and 2% Penicillin-Streptomycin. Culture media was replaced every 2 days and cells were 477 
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passaged upon reaching 70-80% confluency. To assess the effects of palmitate on mitochondrial 478 

networks, cells were cultured for 6 hours in complete DMEM supplemented with either 1.5 mM 479 

palmitate complexed to BSA in a 6:1 ratio, or BSA-only vehicle control. 480 

 Pancreatic islets were isolated from wild-type male mice of a mixed C57BL/6 and CD1 481 

background using collagenase digestion and filtration-based purification, as previously described 482 

(49). The isolated islets were hand-picked and allowed to recover overnight before being dispersed 483 

into single cells and seeded on 25 mm glass coverslips (50). The islet cells were cultured in RPMI 484 

completed with 10% FBS and 2% Penicillin-Streptomycin at 37ºC and 5% CO2 for 4 days before 485 

imaging. All animal procedures were approved by the University of British Columbia Animal Care 486 

Committee. 487 

 488 

Cell Transfection and Mitochondrial Labeling 489 

MIN6 cells were seeded at a density of 2.0 x 105 on 25 mm glass coverslips (0.13-0.16 mm 490 

thickness, VWR #16004-310) and incubated for 24 hours before being transfected with mito-YFP, 491 

mito-dsRed, or mito-PAGFP plasmids using Lipofectamine® 2000 (Life Technologies #11668), 492 

as per the manufacturer’s protocol. All plasmids were expressed for at least 24 hours before 493 

confocal microscopy. 494 

 To assess the effect of acute glucose exposure on mitochondrial morphology and 495 

membrane potential, primary mouse islet cells were cultured for 60 minutes in completed RPMI 496 

media containing 3 mM glucose or 17 mM glucose and then stained with 0.1 µg/mL Hoescht 497 

33342, 50 nM MTG, and 25 nM TMRE for 30 min, followed by a wash with completed RPMI 498 

immediately prior to imaging. 499 

 500 

Image Acquisition by Confocal Microscopy 501 

Live cells were imaged in a Tokai Hit INUBTFP-WSKM stage-top incubator at 37oC on a Leica 502 

SP8 Laser Scanning Confocal Microscope (Concord, Ontario, Canada). For 2D, images were 503 

acquired using a 63x HC Plan Apochromatic water immersion objective (1.2 NA). Pixel size was 504 

adjusted using the “Optimize” function in the Leica LASX Software and the pinhole size was 1.0 505 

AU. For 3D acquisition, z-stacks were obtained using a 63x oil immersion objective (1.4 NA). 506 

Pixel size (x, y) and z-spacing were adjusted as per the calculated optimal Nyquist sampling 507 

parameters (38), and pinhole size was reduced to 0.75 AU. The z-step size generally varied 508 
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between 170-220 nm.  Bi-directional scanning was enabled, and all images were acquired using at 509 

least three frame averages. Laser power, detector filtering/gating, and gain were adjusted to 510 

maximize signal without saturation, while also minimizing background signal, cross-fluorescence, 511 

and photobleaching.  512 

 513 

Time-Lapse 3D Imaging 514 

Time-lapse 3D (xyzt) imaging was performed on MIN6 cells transfected with mito-YFP plasmid. 515 

Acquisition settings were established as above, and z-stacks were acquired every 45 s for 30 min. 516 

The acquisition time for each stack was approximately 30 s. At the 13 min-mark, FCCP was added 517 

to the chamber for a final concentration of 25 µM. 518 

 519 

Mitochondrial labeling by Photoactivatable Green Fluorescent Protein 520 

MIN6 cells were co-transfected with mito-PAGFP and mito-dsRed 24 hours prior to imaging, as 521 

described above. Mito-dsRed was visualized using a 561 nm excitation laser with emission 522 

detected between 585 nm to 650 nm. Individual mitochondria were marked for photo-labeling 523 

using the “Bleach Point” function in the Leica LasX software, and the PAGFP was activated using 524 

a 405 nm laser pulse of 150 ms duration. The activated PAGFP was then imaged using a 488 nm 525 

excitation laser with an emission range between 505 nm and 550 nm. All other imaging settings 526 

were as described above. 527 

 528 

Image Deconvolution 529 

Deconvolution of 3D and 4D stacks was performed in Huygens Professional version 16.10 (SVI) 530 

using the CMLE (Classic Maximum Likelihood Estimation) algorithm with a Signal-to-Noise 531 

Ratio of 7.0, maximum iterations of 40, and quality threshold of 0.001. For deconvolution in 532 

ImageJ/Fiji, the “PSF Generator” plugin (51) was used to generate a theoretical PSF based on our 533 

microscope parameters, and deconvolution was performed with the “DeconvolutionLab2” module 534 

utilizing the Richardson-Lucy TV algorithm with regularization set to 0.0001 and maximum 535 

iterations of 30 (39, 52). 536 

 537 

 538 

 539 
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Image Processing and Thresholding 540 

The workflow and procedures for image processing and thresholding are summarized in Figure 9. 541 

Using ImageJ/Fiji, 2D images or deconvolved 3D image stacks (operating on each slice in the 542 

stack) were pre-processed using the following commands: 1) “Subtract Background” (radius = 543 

1μm) to remove background noise; 2) “Sigma Filter Plus” (radius = 0.1 μm, 2.0 sigma) to reduce 544 

noise and smooth object signal while preserving edges; 3) “Enhance Local Contrast” (block size 545 

= 64, slope = 2.0 for 2D and 1.25 for 3D stacks) to enhance dim areas while minimizing noise 546 

amplification; and 4) “Gamma Correction” (value = 0.80 for 2D and 0.90 for 3D) (29) to correct 547 

any remaining dim areas. To identify mitochondria in the images, we evaluated multiple global 548 

and local thresholding algorithms (Figure 2 and Figures S1-S3). Based on our comparisons, we 549 

elected to use the “Adaptive Threshold” method (30). In the “Adaptive Threshold” plugin, block 550 

size was set to an equivalent of 1.25 μm and the optimal C-value was empirically determined for 551 

each image set (See Figure S2 for additional details). The thresholded images were then post-552 

processed using “Despeckle” and then “Remove Outliers” (radius = 0.15 μm2) to remove residual 553 

noise. For 3D stacks we additionally applied the “Fill 3D Holes” command from the “3D ROI 554 

Manager” plugin (53). 555 

 556 

2D Analysis of Mitochondrial Function, Morphology, and Network Characteristics 557 

The approach for quantification of mitochondrial characteristics is summarized in Figure 9. For 558 

2D analysis, the image was first processed and thresholded (see above) and the resulting binary 559 

image was used as the input for the “Analyze Particles” command (Size = 0.06 μm2-Infinity, 560 

Circularity = 0.00-1.00), measuring for “Area”, “Perimeter”, and “Shape Descriptors”. Form 561 

Factor (FF) was derived as the inverse of the “Circularity” output value. For network connectivity 562 

analysis, the “Skeletonize 2D/3D” command was applied to the thresholded image to produce a 563 

skeleton map, and the “Analyze Skeleton” command was used to calculate the number of branches, 564 

branch lengths, and branch junctions in the skeletonized network.  565 

To simultaneously measure mitochondrial polarisation and morphology, islet cells were 566 

co-stained with MTG and TMRE. Our threshold method was first applied to the MTG channel and 567 

morphological analysis was done on the identified objects. Additionally, the “Analyze Particles” 568 

command (“Add to Manager” option enabled) was used to convert the identified objects 569 

(mitochondria) into regions of interest (ROIs). These ROIs were then superimposed onto the raw 570 
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images of the MTG and TMRE channels, and the MTG and TMRE intensities of each individual 571 

mitochondrion were measured as the “Mean gray value” obtained via the “Analyze Particles” 572 

command. The degree of mitochondrion polarisation was then expressed as the ratio of TMRE to 573 

MTG intensity and correlated with mitochondrial morphology on a per-organelle basis.  574 

 575 

3D Analysis of Mitochondrial Morphology and Network Characteristics 576 

For 3D analysis, the image stacks were first deconvolved, pre-processed, and thresholded as 577 

described above and summarized in Figure 9. Next, the “3D Object Counter” command (Size = 578 

0.6 μm3-Infinity) was used to calculate the number of mitochondrial objects and produce a labelled 579 

object map. The object map was subsequently used as an input for the “Particle Analyzer 3D” 580 

command (part of the MorphoLibJ package) (54) to calculate the volume, sphericity (weighted by 581 

volume of the object), and corrected surface area (“Crofton 13 directions” method) of each 582 

mitochondrial object. Network connectivity analysis was performed on the skeletonized 3D 583 

network using the same commands as 2D analysis. For 4D (xyzt) analysis, these 3D analysis steps 584 

were performed on each stack obtained in the time-course acquisition. 585 

 586 

Unsupervised Categorization of Mitochondrial Morphology using SPADE 587 

Spanning-tree Progression Analysis of Density-normalized Events (SPADE v3.0) (32, 33) was 588 

used to automatically classify 2D mitochondrial images into 3 different categories based 589 

exclusively on their calculated morphological and network parameters. Briefly, mitochondrial 590 

parameter data was transformed into a Flow Cytometry Standard (FCS) file using FlowJo V10 and 591 

loaded into SPADE. A SPADE tree was created using default settings, without application of 592 

arcsinh transformation or removal of outliers. The number of desired clusters was set equal to the 593 

total number of images in the data set. The “Auto Suggest Annotation” function was then used to 594 

partition the SPADE tree into 2 subgroups and the larger of these was subsequently auto-595 

partitioned again, resulting in a total of 3 subgroups. The data in these SPADE-identified groups 596 

were then exported as CSV formatted files for statistical comparison. 597 

 598 

Statistical analysis 599 

All data were represented as mean ± standard error of the mean (SEM). Data were analyzed in 600 

GraphPad Prism 6.0 software (La Jolla, California) using Student’s t-test or One-way ANOVA, 601 
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followed by Sidak multiple comparison test as appropriate. Statistical significance was set at a 602 

threshold of p < 0.05. 603 
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Chaudhry et al. – Figure 1 

 

 

 

Figure 1: Schematic of the general workflow required for mitochondrial analysis by confocal microscopy.  The shaded 

boxes represent the steps that are addressed and detailed in this paper. 
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Chaudhry et al. – Figure 2 

 

Figure 2: Comparison of mitochondrial identification using Global vs Adaptive thresholding methods. (A) Two 

representative examples of object identification using Global thresholding (‘Default’ method) vs Adaptive thresholding 

(radius = 1.25 μm, C = 11) on images of MIN6-cell mitochondria labelled with Mito-YFP. The number of identified objects 

(mitochondria) and their total area are indicated below the images. Scale bar = 1 μm. (B) Part of the mitochondrial network 

in a MIN6 cell co-transfected with mito-dsRed and mito-PAGFP. Top - All mitochondria imaged in the mito-dsRed channel. 

Bottom left - A single mitochondrion (green) was labeled by laser-based mito-PAGFP activation at the point indicated by 

the arrow. Bottom right - Object identification using Global vs Adaptive threshold algorithms applied to the dsRed channel; 

in each image, the object that is identified as contiguous with the PAGFP-labelled mitochondrion is shown in green. 

Comparison with the original image shows that the Adaptive method more accurately distinguished the photo-labeled 

mitochondrion, whereas Global thresholding artificially merged it with adjacent mitochondria. Scale bar = 1 μm. (C) 

Quantitative comparison of the degree to which Global and Adaptive thresholding under- or over-estimated the PAGFP-

labeled mitochondrion in 5 test images. The corresponding images and details of the estimation algorithm are shown in 

Figure S3.  
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Chaudhry et al. – Figure 3 

 

 

 

Figure 3: Summary of morphological and network descriptors used in 2D/3D analysis of mitochondria. (A) Summary 

and definitions of the mathematical descriptors used to quantify mitochondrial morphology in two and three dimensions. 

(B) Summary of parameters used to describe mitochondrial network connectivity and illustration of skeletonization analysis 

on: a punctate object with no branch junctions and minimal branch length (Left); a long single tubular object with no branch 

junctions but higher branch length (Middle); and a complex object with multiple branches and junctions (gray dots), and the 

highest total branch length (Right). Note that the mean branch length, derived by dividing the total branch length by number 

of branches, is greater in the object in the middle than the more complex object on the right. 
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Chaudhry et al. – Figure 4 

 

Figure 4: Quantitative comparison of mitochondrial morphology and network connectivity in 2D. Based on visual 

inspection of their mitochondria, 84 images of Mito-YFP-expressing MIN6 cells were categorized into three morphological 

groups: fragmented (20 cells), intermediate (46 cells), or filamentous (18 cells). (A) Examples of the YFP-labeled 

mitochondria in representative cells from each group, and (B) the objects identified by application of adaptive thresholding 

to the images. (C) The 2D morphological analysis of all cells in each of the categories. (D) Skeletonization of the 

mitochondrial objects identified in panel B. (E) Quantitative analysis and comparison of mitochondrial network connectivity 

performed on all cells in each morphological category. Data are represented by mean ± SEM. One-way ANOVA with Sidak 

post-hoc test was used to compare the groups; ***p<0.001, ****p<0.0001. 
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Chaudhry et al. – Figure 5 

 

Figure 5: Unsupervised categorization of mitochondrial features using Spanning-tree Progression Analysis of 

Density-normalized Events (SPADE). (A) A SPADE tree was generated based on the same set of 84 images used in Figure 

4, and then automatically subdivided into 3 groups; Group 1 contains 19 nodes/cells, Group 2 contains 47 nodes/cells, and 

Group 3 contains 18 nodes/cells. (B) Representative images extracted from each of the three SPADE-generated groups. (C, 

D) Comparison of the mitochondrial morphology and network parameters between the 3 SPADE-identified cell groups. All 

data are represented by mean ± SEM. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001 as determined by one-way ANOVA 

with Sidak post-hoc test; n=84 images. 
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Chaudhry et al. – Figure 6 

 

 

Figure 6: Limitations of 2D morphometric analysis. (A) Schematic illustrating the effect of object orientation in 3D space 

on the image capture in a horizontal 2D slice. The apparent 2D morphology of the same tubular object (shown in green) 

will depend on its orientation relative to the confocal plane. If a curved object (shown in blue) intersects the confocal plane 

at several locations, it will erroneously be identified as separate objects. (B) MIN6 cells were co-transfected with Mito-

dsRed and Mito-PAGFP and photoactivation induced at the point indicated by an arrowhead. Scale bars = 3 µm. Top row 

– 2D image of Mito-dsRed and mito-PAGFP channels after photoactivation. Bottom row – objects identified after pre-

processing and thresholding of the 2D cross-section. (C) Full 3D imaging and reconstruction (rendered using Huygens 

Professional software) of the same mitochondrial population shown in panel B. Note that the photo-labelled mitochondrion 

in 2D appears as a series of separate mitochondria, whereas 3D visualization correctly identifies it as one contiguous 

organelle. 
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Chaudhry et al. – Figure 7 

 

 

Figure 7: Deconvolution improves the quality and accuracy of 3D mitochondrial analysis. (A) A full z-stack was 

acquired from a Mito-YFP-expressing MIN6 cell that was 11 μm in height. Top Panel – Maximum projection views of the 

z-stack before and after deconvolution. The confocal image stack was deconvolved using either ImageJ DeconvolutionLab 

(Richardson-Lucy algorithm) or Huygens Professional (Classical Maximum Likelihood Estimation) software for 40 

iterations. The dotted line indicates the position of the axial section shown below. Bottom Panel – Axial sections (xz-plane) 

of the raw and deconvolved image stacks. The reduction in axial stretching of objects can be seen in the deconvolved stacks, 

with the best improvement achieved using the Huygens algorithm (see additional details in Figure S5 and Supplemental 

Table S1). (B) 3D renderings of the z-stack before and after deconvolution with ImageJ or Huygens Professional. All 3D 

visualizations were generated using the Huygens 3D object renderer, with a unique colour assigned to separate objects. 

  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 11, 2019. ; https://doi.org/10.1101/687749doi: bioRxiv preprint 

https://doi.org/10.1101/687749
http://creativecommons.org/licenses/by-nc-nd/4.0/


33 
 

Chaudhry et al. – Figure 8 

 

Figure 8: Quantitative comparison of mitochondrial morphology and network connectivity in 3D. Image stacks of 

Mito-YFP-expressing MIN6 cells were visualized in 3D and their mitochondria manually categorized as fragmented, 

intermediate or filamentous. (A) 3D renderings (produced using Huygens Professional) of representative Mito-YFP-

expressing MIN6 cells from each of the morphological categories. (B) Quantitative 3D analysis and comparison of 

mitochondrial morphology between cells in each category. (C) 3D renderings of the skeletonized mitochondrial network of 

the cells depicted in panel A. (D) Quantitative 3D analysis and comparison of mitochondrial network connectivity between 

cells in each category. All data are represented by mean ± SEM.  *p<0.05, **p<0.01, ***p<0.001, as determined by one-

way ANOVA with Sidak post-hoc test. N=10 cells in each category. 
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Chaudhry et al. – Figure 9 

 
 
 
Figure 9: Summary of pipeline for 2D and 3D mitochondrial analysis in ImageJ/Fiji. For illustration, an image stack 

was acquired from a MIN6 cell expressing Mito-YFP; a representative slice is shown as the 2D input, and the entire stack 

(after deconvolution) as the 3D input. 3D Stacks are represented as maximum projections here. Scale bars = 5 μm. See 

main text and Materials & Methods for additional details and parameter values.  
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Chaudhry et al. – Figure 10 

 
 
 

Figure 10: Two-dimensional analysis shows that glucose stimulation is associated with mitochondrial fission in 

pancreatic islet cells. Dispersed mouse islet cells were treated in either 3mM glucose (3G) or 17mM glucose (17G) for 60 

minutes and then labeled with Hoescht 33342, MitoTracker Green FM (MTG), and TMRE before 2D imaging. (A) 

Representative images of a MTG and TMRE stained islet cell in 3G and 17G. (B) TMRE/MTG ratio (normalized to average 

3G), indicating the degree of mitochondrial hyperpolarisation. Mitochondrial morphology and polarization were quantified 

using our 2D analysis pipeline in Fiji/ImageJ (see Materials and Methods). Comparison of mitochondrial morphometry (C), 

and mitochondrial network connectivity (D) demonstrates significant differences between cells acutely treated with low and 

stimulatory glucose. All data are represented by mean ± SEM. **p<0.01, ***p<0.001, ****p<0.0001 as determined by 

Student’s t-test; n=49 cells in each glucose treatment from 4 mice. 
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Chaudhry et al. – Figure 11 

 

 

Figure 11: Time-lapse 3D imaging (xyzt) and analysis of mitochondrial dynamics. Mito-YFP-expressing MIN6 cells 

were imaged in a stage-top incubator with one full image stack acquired every minute. (A) 3D renderings (produced in 

Huygens Professional) of the mitochondrial network in a single cell at different time-points. A high concentration FCCP 

(25 µM) was added to the incubation media around the 13-minute mark. (B) Quantitative analysis of the time-dependent 

effects of FCCP on mitochondrial number, sphericity, total and mean volume, and network characteristics in the cell. 
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