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Abstract  

Abundant novel circular Rep-encoding ssDNA viruses (CRESS DNA viruses) have been discovered in 

the past decade, prompting a new appreciation for the ubiquity and genomic diversity of this group of 

viruses. Although highly divergent in the hosts they infect or are associated with, CRESS DNA viruses 

are united by the homologous replication-associated protein (Rep). An accurate genealogy of Rep can 

therefore provide insights into how these diverse families are related to each other. We used a dataset of 

eukaryote-associated CRESS DNA RefSeq genomes (n=926), which included representatives from all six 

established families and unclassified species. To assure an optimal Rep genealogy, we derived and tested 

a bespoke amino acid substitution model (named CRESS), which outperformed existing protein matrices 

in describing the evolution of Rep. The CRESS model-estimated Rep genealogy resolved the monophyly 

of Bacilladnaviridae and the reciprocal monophyly of Nanoviridae and the alpha-satellites when trees 

estimated with general matrices like LG did not. The most intriguing, previously unobserved result is a 

likely single origin of intron-containing Reps, which causes several geminivirus genera to group with 

Genomoviridae (bootstrap support 55%, aLRT SH-like support 0.997, 0.91-0.997 in trees estimated with 

established matrices). This grouping, which eliminates the monophyly of Geminiviridae, is supported by 

both domains of Rep, and appears to be related to our use of all RefSeq Reps instead of subsampling to 

get a smaller dataset. In addition to producing a trustworthy Rep genealogy, the derived CRESS matrix is 

proving useful for other analyses; it best fit alignments of capsid protein sequences from several CRESS 

DNA families and parvovirus NS1/Rep sequences. 

  

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 1, 2019. ; https://doi.org/10.1101/687855doi: bioRxiv preprint 

https://doi.org/10.1101/687855
http://creativecommons.org/licenses/by-nc/4.0/


 

Introduction 

Our understanding of eukaryotic circular Rep-encoding single-stranded DNA (CRESS DNA) viruses is 

changing, as this group is no longer restricted to plant and livestock infecting pathogens, but is now 

considered ubiquitous. With the application of the highly processive phi29 polymerase to enrich for 

circular DNA through rolling circle amplification, numerous publications have found CRESS DNA 

viruses, including on all continents (Haible et al., 2006; Inoue-Nagata et al., 2004; Li et al., 2010; Rosario 

et al., 2009, 2012; Wyant et al., 2012). Many CRESS DNA viruses have been associated with animals 

such as insects, birds, rodents, bats, chimps and humans, and in myriad environmental and animal tissue 

samples (reviewed in Zhao et al., 2019). Alongside the discovery driven, accelerated accumulation of new 

viral sequences deposited to GenBank, we are seeing commensurate taxonomical revisions and proposals 

to change the groupings of CRESS DNA viruses (Kazlauskas et al., 2017; Krupovic et al., 2016; Rosario 

et al., 2017; Varsani and Krupovic, 2017; Varsani and Krupovic, 2018; Varsani et al., 2014a; Varsani et 

al., 2014b; Varsani et al., 2017). The proposal of several new CRESS DNA viral families is anticipated 

(Kazlauskas et al., 2018)Abbas et al 2019) and additional unclassified sequences await the discovery of 

similar sequences before classification may be attempted. While we understand more about the diversity 

within this group than ever before, the relationships among CRESS DNA viral species, and even their 

classified families, are not well understood.  

Building a phylogenetic tree is an established way to put new viral sequences into the context of well-

characterized viruses. However, unlike eukaryotic cytochrome c oxidase I and prokaryotic 16S 

phylogenetic trees, viruses do not share a universal gene that can be used to reconstruct their evolutionary 

history. Instead, the deep phylogeny of viruses is typically restricted to groups that share at least one 

homologous protein. RNA dependent RNA polymerase is the shared gene used to study the relationships 

among RNA viruses (Koonin, 1991; Koonin and Dolja, 2012; Payne, 2017). Glycoprotein B and DNA 

polymerase protein sequences have been used for phylogenetic analyses and taxonomic classification of 

dsDNA herpesviruses (Chmielewicz et al., 2003; Ehlers et al., 1999; McGeoch and Gatherer, 2005). 

Despite varying genomic structure and size, all CRESS DNA viruses, by definition, share a replication 

associated protein (Rep) sequence, facilitating its use for development of a phylogeny of CRESS DNA 

viruses. While Rep gene sequences can be useful for studying the relationships within an individual 

family of CRESS DNA viruses (Simmonds et al., 2017), ssDNA viruses are known to evolve as quickly 

as RNA viruses (Duffy and Holmes, 2008; Duffy et al., 2008; Firth et al., 2009; Harkins et al., 2009; 

Shackelton et al., 2005), quickly saturating the information in their nucleotide sequences (Melcher 2010). 

Therefore, it is necessary to use protein sequences to determine the evolutionary relationships of 

divergent families and representatives of CRESS DNA viruses.  
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Unfortunately, methods available for describing CRESS viral protein evolution are not ideal. Previous 

attempts at building Rep trees have used a variety of amino acid substitution matrices, all of which may 

be poorly parameterized for CRESS DNA viruses. General matrices (such as LG, WAG, BLOSUM62, 

VT and PAM) are either estimated from aged and short protein sequence alignments, or from datasets 

containing protein sequences of multiple biological sources (mostly cellular). Organismal biologists in 

several areas have noticed the non-specific performance of these general matrices, and compensated for 

this inadequacy by estimating substitution matrices from highly specific protein sequences and then 

constructing phylogenies. Thus, the amino acid substitution matrices rtREV, cpREV, mtREV, HIVb, 

HIVw and FLU were developed from retro-transcribing viruses, chloroplasts, mitochondria, HIV and 

influenza sequences respectively (Adachi and Hasegawa, 1996; Adachi et al., 2000; Dang et al., 2010; 

Dimmic et al., 2002; Nickle et al., 2007b). Unsurprisingly, these specific matrices repeatedly outperform 

the general matrices in describing their designated sequences. The rtREV matrix has even been selected 

as the best-fitting matrix by ProtTest for CRESS DNA viral sequences on occasion (Dayaram et al., 2016; 

Dayaram et al., 2015a; Dayaram et al., 2015b; Kraberger et al., 2015b; Rosario et al., 2015). This result 

highlights the shortfalls of the general substitution matrices to describe CRESS DNA viral evolution 

rather than suggesting that CRESS DNA viruses evolve in an identical manner to retro-transcribing 

viruses. 

To best understand the evolution of CRESS DNA viruses, we estimated and validated an amino acid 

matrix specific to eukaryotic-associated CRESS DNA viruses (which have a more recent common 

ancestor than they do with prokaryotic ssDNA viruses, Koonin and Ilyina, 1993). Sequences of the 

homologous protein Rep were used since it is necessarily present in all CRESS DNA viruses. As 

expected, this CRESS matrix outperformed all other established matrices in describing CRESS Rep 

phylogeny, and its Rep genealogy had several differences compared to trees estimated from the same 

alignment but using established protein matrices. However, all of our trees supported a previously 

unobserved relationship: a common origin for the intron-containing form of the Rep among some 

members of Geminiviridae and Genomoviridae. This clade destroys the reciprocal monophyly between 

these related families; our Rep genealogy supports monophyly for only three of the six established 

families of CRESS DNA viruses.  

Results 

Generation of a CRESS DNA virus Rep-specific amino acid substitution matrix 

926 Rep sequences from eukaryotic-infecting or eukaryotic-associated CRESS DNA viruses were 

aligned, trimmed, and an initial maximum likelihood tree was built with the best-fitting model chosen in 

ProtTest3 (VT+G+F, uniformly chosen by AIC, AICc and BIC scores). The trimmed alignment was 
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jackknifed ten times and the tree split accordingly. Each training set half was used for amino acid 

substitution matrix estimation in four ways: with HyPhy or FastMG, and starting with the seed matrix of 

VT or LG (a total of 40 estimated matrices). The four estimated matrices for each training dataset along 

with VT, LG and rtREV were fitted to the appropriate test set half and tree in PAML and goodness of fit 

was compared through maximum likelihood scores (Supplementary File 1). The FastMG estimated 

matrices always outperformed the established matrices, but the HyPhy estimated matrices did not.  

We then evaluated the consistency of jackknifed matrices by comparing their Pearson correlation 

coefficients (Supplementary File 2). Matrices estimated by FastMG are very similar to each other, 

regardless of starting from the VT or LG matrix, with correlation coefficients ranging from 0.989 to 

0.999. The HyPhy fit algorithm produced more varied matrices with correlation coefficients ranging from 

0.824 to 1. The lowest correlations (as low as 0.79) were seen when comparing the three established 

matrices (VT, LG and rtREV) to the estimated matrices, substantiating that these matrices may not model 

the evolution of the Rep protein very well. Control analyses showed that the size of our training datasets 

was sufficient to reconstruct an established amino acid substitution matrix (Pearson correlation 

coefficients of the fmg matrices’ rates to WAG rates ranged from 0.93 to 0.97) without systematic over- 

or under-representation of substitution rates, as shown by the lack of correlation among matrices derived 

at different simulated levels of substitution rate variation (Supplementary File 3). This validates the 

potential for our 40 estimated matrices to accurately capture the patterns of protein evolution in CRESS 

DNA viral Reps.  

 

Matrix selection and comparison to established matrices 

We selected one single trained matrix from the ten that best fit each of the test datasets to be the single 

matrix for all downstream analyses. We built maximum likelihood trees from ten test set alignments using 

the best performing matrix of every jackknifed training sets. Then, we rank ordered these ten matrices by 

the likelihood scores of the trees they generated (Supplementary File 4). The best matrix with the lowest 

sum in ranking (fmgVT-10) was named the CRESS matrix and used to construct the CRESS DNA viral 

Rep tree.  

We compared the substitution rates of the CRESS matrix to rtREV, LG and VT, shown as heat maps are 

the log10 ratio of amino acid substitution (Figure 1). The CRESS matrix has generally lower rates of 

substitution compared to rtREV, has similar rates compared to LG and higher rates compared to VT. The 

CRESS matrix seems to have a consistently low proline (P) - Isoleucine (I) interchange rate compared to 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 1, 2019. ; https://doi.org/10.1101/687855doi: bioRxiv preprint 

https://doi.org/10.1101/687855
http://creativecommons.org/licenses/by-nc/4.0/


 

all other three matrices. Compared to VT, the CRESS matrix has higher rates of substitution involving 

cysteine (C), methionine (M), histidine (H) and tryptophan (W). 

 

 
Figure 1. Comparison of four amino acid substitution matrices. Log-ratio rate matrices of CRESS rates 

over those of rtREV, LG and VT are shown left to right. The intensity of blue color indicates substitutions 

where CRESS has lower rates, and the intensity of brown color indicates substitutions where CRESS has 

higher rates.  

 

Genealogy construction and comparison 
Four aLRT SH-like support maximum likelihood trees were built using CRESS, rtREV, LG and VT in 

PhyML3. 1000 bootstrap trees were also generated for each matrix in RaxML, and the bootstrap support 

were mapped to the PhyML trees (Figure 2 and Supplementary Files 5&6). The viral sequence-derived 

matrices (rtREV, CRESS) constructed more similar trees than those constructed with the two general 

matrices (LG, VT), which were more similar to each other (Figure 2, Supplementary File 6). Both virus-

specific matrices placed Nanoviridae as a sister group to Alphasatellites (CRESS aLRT SH-like 0.942, 

rtREV aLRT SH-like 0.765, not supported by bootstrapping in either tree), while the general matrices 

placed Nanoviridae inside the Alphasatellite clade. There is a single alphasatellite sequence that groups 

with the geminiviruses; this is Ageratum leaf curl Cameroon alphasatellite, which appears to be a 

truncated version of the geminivirus Ageratum leaf curl Cameroon virus instead of sharing ancestry with 

other alphasatellites – its Rep belongs with other geminiviruses. The general matrices place Smacoviridae 

within clade containing Geminiviridae, Genomoviridae and some unclassified viruses, but the virus-

specific matrices placed the Smacoviridae clade outside of clade with geminiviruses and genomoviruses. 
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The CRESS matrix tree is the only tree that grouped all currently classified Bacilladnaviridae in one 

clade (aLRT SH-like 0.833, not supported by bootstrapping) – the trees built with the other three matrices 

failed to place Thalassionema nitzschioides DNA virus Rep (BAN59850) inside the Bacilladnaviridae 

clade. And finally, classified Circoviridae are often intermingled with unclassified Rep sequences, as 

have seen in previous Rep trees (Kazlauskas et al., 2018; Kraberger et al., 2015a; Simmonds et al., 2017; 

Varsani and Krupovic, 2018). 

 

 
Figure 2. Left panel: Maximum likelihood tree of the Rep protein built using the CRESS matrix. 

Clockwise from the top: light blue for Nanoviridae, purple for the alphasatellites (Alphasatellitidae), teal 

for Genomoviridae, green for Geminiviridae, red for Bacilladnaviridae, dark blue for Smacoviridae, and 

orange for Circoviridae. Black taxa are from currently unclassified CRESS DNA viral sequences. The 

scale bar shows branch length of 1.0 substitution per site. A version of this tree with accession number 

labels at the tips for all taxa can be found in Supplementary File 5. Right panel: Maximum likelihood 

trees of the Rep protein built using the rtREV, LG and VT matrices. All three trees share the scale bar 

below, which shows branch length of 1.0 substitution per site. NEXUS files for these trees with aLRT 

support values can be found in Supplementary File 6. 
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The most surprising relationship resolved, which was found in all four trees, is the single clade for the 

intron-containing form of Rep from two CRESS DNA virus families. The CRESS matrix tree has 55% 

bootstrap support and 0.997 aLRT SH-like support for the clade containing all but one member of 

Genomoviridae and the intron-containing geminivirus Reps (from the genera Becurtovirus, Capulavirus, 

Grablovirus and Mastrevirus), while the three other matrices produced 45% bootstrap support, and 0.915-

0.997 aLRT SH-like support for the clade (Figure 2 and Supplementary Files 5&6). Further inspection of 

the unclassified Reps in this clade showed most (7/11) contained annotated introns in the same location in 

their GenBank files. Blastp results indicated the remaining four Reps are highly similar to intron-

containing mastrevirus Reps, genomovirus Reps and other unclassified intron-containing Reps, implying 

that all members of this clade contain an intron that they inherited by descent. We investigated the support 

in our alignment for the single ancestral origin of intron-containing Reps in these two families by dividing 

the MUSCLE aligned full dataset into helicase and endonuclease domains as described in previous 

literature (Kazlauskas et al., 2018). The two resulting trees independently show support for the intron-

containing form of Reps (endonuclease tree aLRT SH-like support 0.842, helicase tree aLRT SH-like 

support 0.909, (Figure 3; Supplementary Files 7 and 8)). 

 
Figure 3 Unrooted maximum likelihood trees of CRESS Rep helicase (left) and endonuclease (right) 

domain. Genomovirus Reps are colored in teal, geminivirus Reps are colored in green, all other taxa 

(classified and unclassified) are colored in black. The black circles indicate the nodes for the common 

ancestor of intro-containing Reps (helicase tree: aLRT SH-like support 0.909; endonuclease tree: aLRT 
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SH-like support 0.842). A version of these trees with accession number labels at the tips for all taxa can 

be found in Supplementary Files 7 and 8. 

 

Single origin for intron-containing Rep 

The single origin of intron-containing Reps from Genomoviridae and four genera within Geminiviridae, 

from an unspliced Rep is a result not previously observed in the literature, which repeatedly show Reps of 

Genomoviridae and Geminiviridae as reciprocally monophyletic (e.g., (Dayaram et al., 2015a; Simmonds 

et al., 2017; Zawar-Reza et al., 2014). The grouping of intron-containing Reps is appealing from the 

perspective of Occam’s razor: it is more plausible that an intron was only inserted once in the same 

location in evolutionary history of the CRESS DNA viruses instead of being inserted at the same location 

multiple times in two separate lineages. We investigated why others have not observed this single intron-

containing clade in previous trees. Our analysis included RefSeq sequences for each CRESS DNA viral 

species, including from the Geminiviridae, which is the most speciose viral family, while most 

researchers use only a small number of representative geminiviruses in a dataset, and these 

representatives most often come from Begomovirus, which comprises 75% of the annotated geminivirus 

species (https://talk.ictvonline.org/taxonomy/). Begomovirus Reps do not contain an intron, so often the 

sequence diversity of geminivirus Reps was inadequately represented (Castrignano et al., 2017; 

Simmonds et al., 2017; Varsani and Krupovic, 2018). Interestingly, when we reduced the number of 

Begomovirus Reps in our dataset to the same size as the largest intron-containing genus, Mastrevirus 

(n=37), the single origin of intron-containing geminivirus and genomovirus Reps loses support, and 

nanoviruses group within the alpha-satellites instead of being reciprocally monophyletic (Figure 4). We 

also investigated whether our trimming of our alignment affected our results: trimmed and untrimmed 

alignments of our 926 sequences did not change major tree branching patterns including the monophyly 

of intron-containing Rep sequences (data not shown). 
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Figure 4 Unrooted maximum likelihood trees with equal number of Begomovirus and Mastrevirus Reps 

built with CRESS matrix. Alignment produced by MUSCLE. Green for Geminiviridae, teal for 

Genomoviridae, dark blue for Smacoviridae, red for Bacilladnaviridae, orange for Circoviridae, light 

blue for Nanoviridae, purple for the alphasatellites (Alphasatellitidae). Currently unclassified taxa are 

colored black. A version of this tree with accession number labels at the tips for all taxa can be found in 

Supplementary File 9. 

 

To further probe the difference between our tree and a recently published Rep tree that showed members 

of Geminiviridae and Genomoviridae as separate clades (Kazlauskas et al., 2018), we examined the 

methods used to make the two Rep trees. The previously published study used a smaller dataset of 

CRESS DNA virus Rep sequences (n=647), which was further pruned by removing detectable 

recombinants (final n = 380). When we removed the recombinant sequences detected in that study from 

our dataset, we still supported the single origin of intron-containing Reps in Genomoviridae and the 

appropriate genera from Geminiviridae (Figure 5). Additionally, there were differences in alignment 

algorithms, as the other study used MAFFT instead of MUSCLE. We aligned our original dataset with 

MAFFT and compared its ML tree (Figure 6) with our original MUSCLE alignment derived tree (Figure 

2). The MAFFT tree of our entire dataset did not show single intron origin for intron-containing members 

of Geminiviridae and Genomoviridae. However, when we extracted the geminivirus and genomovirus 

sequences from both the MAFFT alignment and the original MUSCLE alignment and built smaller trees 

(Figure 7), both showed the intron-containing clade of geminiviruses and genomoviruses separate from 

the non-intron-containing clade of geminiviruses. This suggests that the inclusion of Reps from other 
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families obscured the potential single origin of intron-containing Rep in the MAFFT alignment tree. 

While both algorithms have been used to analyze CRESS DNA virus evolution, there is no a priori or a 

posteriori reason to prefer one algorithm over the other. Regardless, some datasets aligned with both 

algorithms provided support for a single origin of intron-containing Reps in families Geminiviridae and 

Genomoviridae.  

.  

Figure 5 Unrooted maximum likelihood tree built with 123 recombinant sequences removed from the 926 

CRESS Rep dataset. Green for Geminiviridae, teal for Genomoviridae, all other taxa (classified and 

unclassified) are black. A version of this tree with accession number labels at the tips for all taxa can be 

found in Supplementary File 10. 
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Figure 6 Unrooted maximum likelihood tree built with the full 926 CRESS Rep dataset. Alignment 

produced by MAFFT. Green for Geminiviridae, teal for Genomoviridae, dark blue for Smacoviridae, red 

for Bacilladnaviridae, orange for Circoviridae, light blue for Nanoviridae, purple for the alphasatellites 

(Alphasatellitidae). Currently unclassified taxa are black. A version of this tree with accession number 

labels at the tips for all taxa can be found in Supplementary File 11. 
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Figure 7 Unrooted maximum likelihood tree with Geminivirus and Genomovirus Reps built with CRESS 

matrix. Alignment produced by MAFFT (left) and MUSCLE (right). Green for Geminiviridae, teal for 

Genomoviridae. SH-like support labeled on the branch between the no intron Reps (above) and intron-

containing Reps (below). Versions of these trees with accession number labels at the tips for all taxa can 

be found in Supplementary Files 12 and 13. 

 

CRESS matrix performance on other sequences 

Capsid protein (CP) sequences from CRESS DNA viral families Bacilladnaviridae, Circoviridae, 

Genomoviridae, Nanoviridae and Smacoviridae were downloaded and aligned using MUSCLE. Model 

performance was ranked in ProtTest3, comparing 56 different models (CRESS, LG, VT, rtREV, HIV-B, 

HIV-W, FLU in combination with +I, +G, +F parameters). The CRESS models (CRESS+G+F, 

CRESS+I+G+F) outperformed all other models in building ML trees with CRESS DNA viral CP 

alignments (Table 1). An alignment of NS1/Rep sequences from linear ssDNA parvoviruses was also 

tested, CRESS+I+G+F was the best model chosen based on three different criteria (Table 1). A circular 

ssDNA phage major capsid protein multiple sequence alignment was provided by collaborators (K. 

Rosario and M. Breitbart, details in (Creasy et al., 2018) and LG+I+G+F outperformed all other matrices 

tested, though the CRESS matrix was ranked second. These results indicate that the CRESS matrix can 

0.997

0.999
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describe both Rep and CP evolution of eukaryote-associated ssDNA viruses, and potentially would be 

useful for some datasets of ssDNA phage protein sequences in the future.  

 

Discussion 

In this study, we built a CRESS DNA viral Rep genealogy with a bespoke CRESS matrix to gain insight 

into the relationships among the diverse families of CRESS DNA viruses. We observed an unprecedented 

single evolutionary origin for intron-containing Rep shared by some members of the Geminiviridae and 

virtually all in Genomoviridae. In fact, the one genomovirus Rep (from KY056250) that was not in this 

clade is likely inaccurately classified – it was named a gemycircularvirus due to its 52% similarity in the 

CP to a gemycircularvirus sequence obtained from preserved caribou feces (Lima et al 2017 JGV). Its 

predicted Rep does not appear to have an intron and is unlike the Reps of other characterized 

genomoviruses, so it is appropriately outside of the supported clade. Further supporting its 

misclassification is that the conserved nonanucleotide in the genomic origin of replication 

(TAAGATTCG, Lima et al 2017) does not match that of genomoviruses (TAWWDHWAN, Varsani and 

Krupovic 2017) or any family of CRESS DNA viruses. We propose that this sequence should not be 

considered a member of Genomoviridae and that genomovirus Reps form a well-supported clade nested 

within a well-supported monophyletic group of intron-containing Reps. It should be noted that some 

members of Circoviridae are also predicted to have an intron in their Rep gene; this is not in the same 

location as in geminiviruses and genomoviruses, and likely represents a unique integration event 

(Mankertz and Hillenbrand, 2001). Intron splicing in the circoviruses has only been studied in the porcine 

circoviruses, which form a well-supported clade (aLRT SH-like 0.994, 100% bootstrap, Figure 2) – our 

Rep genealogy also supports the monophyly of this second intron introduction into Rep. 

 

Relationships among other CRESS DNA viral families 

Some of the large branching patterns observed on our full dataset tree are consistent with previous 

analyses. Notably, the close association of members of Nanoviridae and alphasatellites, and the close 

placement of members of Genomoviridae and Geminiviridae. In contrast, without strong support, 

bacilladnavirus and smacovirus Reps were close to each other in our tree compared to previous trees 

(Dayaram et al., 2015b; Varsani and Krupovic, 2018). The relatively few members of Bacilladnaviridae 

are known to infect diatoms (Kazlauskas et al., 2017; Nagasaki, 2008), which are phylogenetically closer 

to plants than animals. Therefore, we might expect their Reps to be more similar to other plant-infecting 

CRESS DNA viruses (Nanoviridae, Geminiviridae) instead of smacoviruses, which are associated with 
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animals. In previous trees, Reps from Smacoviridae closely grouped with those of nanoviruses and 

alphasatellites, with strong support (Kazlauskas et al., 2018).  

A majority of the Reps from unclassified CRESS DNA viruses are sister taxa to circovirus Reps. 

Circoviridae used to be the catch-all group for all circular eukaryotic infecting viruses not associated with 

plants, and species assigned to Circoviridae but not to a genus may represent additional genera or families 

of CRESS DNA viruses (Rosario et al., 2017). As previously proposed, many of the unclassified CRESS 

DNA viruses should be organized into novel families (Kazlauskas et al., 2018).  

Some unclassified Reps were placed in unexpected places in the CRESS matrix tree, such as the two 

protruding, unclassified taxa inside the Geminivirus clade. This suggests that the dataset does not have 

many sequences that are similar to these unclassified Reps, so the alignment algorithm was not able to 

accurately align this sequence to other sequences present in the dataset. Perhaps these long branches are 

due to poorly aligned Rep sequences, which could make their placement near geminiviruses coincidental; 

perhaps they are the first representatives of highly derived geminivirus-like groups. Updated annotation is 

pending for many CRESS DNA viral sequences in GenBank, both currently classified and unclassified, 

so the odd placement of some potentially mislabeled Rep sequences may be more understandable in the 

future.  

While we do not know what the true phylogeny of CRESS DNA viruses looks like, especially as 

discovery of this group is still ongoing, we believe that our comprehensive genealogy is the best 

representation of the relationship among the diverse Rep sequences that have been sampled to date. The 

bespoke CRESS matrix will help future phylogenetic analyses on CRESS DNA viruses as others discover 

additional, novel representatives of this group. 

 

The utility of the CRESS matrix.  

Prior to phylogenetic reconstruction, tools such as JModelTest and ProtTest are widely used to select for 

the most appropriate model with which to estimate phylogenetic relationships for a given alignment. 

General models such as Dayhoff, BLOSUM, VT, WAG, LG, are all estimated from unconstrained, non-

specific, aligned protein sequences. The most recent general model, LG, published in 2008, used the 

entire Pfam database (Finn et al., 2016), but the database is heavily weighted towards non-viral sequences 

(Skewes-Cox et al., 2014). Unfortunately, the majority of CRESS DNA viruses were discovered and 

accessioned into NCBI GenBank after 2009 (Zhao et al., 2019), which means any genomic novelty in this 

group would be excluded from the LG matrix. Furthermore, since most CRESS DNA viruses have very 

few ORFs, often only a CP and a Rep, their sequence diversity contributes little to the overall Pfam 
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database. While general models do increasingly well at describing the patterns dominated by genetic code 

constraints and the physiochemical properties of the amino acids (Murrell et al., 2011), there will always 

be opportunities for specific matrices to resolve protein evolution in biological entities that have more 

unique lifestyles and constraints, such as fast-evolving CRESS DNA viruses with single-stranded 

mutational biases (Cardinale et al., 2013; Frederico et al., 1990; Xia and Yuen, 2005).  

Among the four matrices used in this study, it seems the CRESS matrix falls in the large gulf between the 

fast-changing rtREV and the slower general matrices (Figure 2). While we have not compared CRESS to 

all described matrices, it may fill a useful niche for other proteins’ evolution. Just as the rtREV model has 

been useful beyond studies on retro-transcribing elements, the inclusion of the CRESS matrix in ProtTest 

may result in the model being used to develop phylogenies for proteins from distantly related viruses. 

Perhaps its moderate substitution rate would be preferred by other viruses that evolve faster than cells but 

more slowly than some RNA viruses (Duffy et al., 2008). 

We found the fmg algorithm to perform better than fit. Importantly, fmg successfully extracted a 

consistent signal of protein evolution that overcame the stochastic effects of different randomly split 

datasets, regardless of whether LG or VT was used as the seed matrix. For the creation of future specific 

amino acid models, when known phylogenies are not available (cf. rtREV (Dimmic et al., 2002) and HIV 

(Nickle et al., 2007a)), our work recommends FastMG.  

Our CRESS matrix was useful both for building our Rep genealogy and describing the evolution of other 

proteins in CRESS DNA viruses and linear ssDNA viruses. As the annotation of ssDNA phages known 

by sequences alone improves, we welcome the opportunity to test the fit of the CRESS matrix to their 

Rep homologs – and are curious if CRESS would outcompete established matrices to describe the 

evolution of phage Reps, which are very distantly related to eukaryote-associated Reps (Koonin and 

Ilyina 1993). Regardless, we anticipate the CRESS matrix will likely become the consistently chosen 

matrix for eukaryotic CRESS DNA virus protein phylogenies, and hopefully the substitution rates 

estimated from CRESS DNA viral sequences helps accurately model their protein evolution, creates more 

accurate alignments, and is useful in searching databases for similar sequences (Thorne, 2000).  

 

Material and Methods 

Dataset generation 

Collection: Rep sequences were downloaded from NCBI RefSeq December, 2017. RefSeq sequences 

were chosen to include unclassified viral sequences but exclude repeating sequences from the same 

species. Some CRESS DNA viruses have introns in their Rep genes. Generally, the spliced protein 
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product is specified in GenBank and that was used, however we had to manually form the spliced Rep 

from some older sequences of families with known introns (i.e., Mastrevirus). This was done after 

MUSCLE v3.8.31 (Edgar, 2004) alignment of all Geminiviridae Reps, and the unaligned region 

corresponding to the introns were cut. The list of included sequences with details of edits in 

Supplementary File 14 and the alignment is in Supplementary File 15.  

Alignment and trimming: All Rep sequences were pooled into one FASTA file and aligned using 

MUSCLE v3.8.31 (default setting: max 16 iterations) (Edgar, 2004). The multiple sequence alignments 

were trimmed using trimAl v1.2 command line (Capella-Gutierrez et al., 2009), resulting in alignments 

with the length of 329 aa, the average length of the Rep data set. This was achieved by removing all 

columns with gaps in more than 40% (-gt 0.6) of the sequences while respecting the conservation of 

17.12% of the columns (trimAl v1.2 adds columns in decreasing order of score when necessary). The 

trimmed MUSCLE alignment was used for matrix estimation.  

Matrix estimation 

ProtTest 3.4 (Darriba et al., 2011) determined the best model for building the initial maximum likelihood 

(ML) tree of the trimmed MUSCLE alignment. A total of 80 models’ NNI ML trees were compared: JTT, 

LG, Dayhoff, WAG, Blosum62, VT, rtREV, DCMut, MtREV, MtArt with combinations of +I, +G, +F. 

VT+G+F was the overall best performing model according to AIC, AICc, BIC scores. A full data set ML 

tree was constructed with VT+G+F using PhyML 3.1(Guindon et al., 2010) for subsequent computations.  

Then, the 926-sequence alignment was randomly jackknifed using a python script 

(https://github.com/lzhao-virevol/matrix) into two halves as the training and test datasets. Ten pairs of 

jackknifed datasets were generated as replicates. The initial maximum likelihood tree was also divided 

accordingly into ten training trees and ten test trees manually using Figtree 

(http://tree.bio.ed.ac.uk/software/figtree/). The training set was used to estimate an amino acid 

substitution matrix with a modified HyPhy batch file from Nickle et al. (Nickle et al., 2007a) 

(https://github.com/lzhao-virevol/matrix) and FastMG (Dang et al., 2014). We used two matrices to seed 

our matrix estimation: VT, the best-fitting matrix to the full dataset and LG, the most recent general 

amino acid substitution matrix (Le and Gascuel, 2008), which is frequently used to describe CRESS DNA 

virus evolution (Bistolas et al., 2017; Castrignano et al., 2017; Kaszab et al., 2018; Male et al., 2016). The 

HyPhy estimated matrices initiated with LG and VT are named fitLG and fitVT matrices. The FastMG 

estimated matrices initiated with LG and VT are named fmgLG and fmgVT matrices. 

Matrix evaluation 
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Likelihood scores were calculated for each matrix of interest (LG, RtREV, VT, fitLG1-10, fitVT1-10, 

fmgLG1-10, and fmgVT1-10) describing the ten test datasets (half alignment and tree) in PAML: codeml 

using model 3, Empirical+F (Yang, 1997). We included the LG and VT matrices that the estimated 

matrices were based on, and included rtREV because it is a specific matrix that has been previously used 

to describe CRESS DNA virus Rep evolution (Dayaram et al., 2016; Dayaram et al., 2015a; Dayaram et 

al., 2015b; Kraberger et al., 2015b; Rosario et al., 2015). To examine how similar the estimated matrices 

are to each other (and to the three established matrices), we calculated Pearson correlations in Excel 

(Redmond, WA) for the matrices.  

The best-fitting matrix for of the ten test sets according to codeml results was used to build a maximum 

likelihood tree (PhyML3 with 4 discrete gamma rate categories, and empirical amino acid frequency 

options), producing ten test sets trees each. The maximum likelihood scores of these 100 trees were rank 

ordered by -In score within each test set. The matrix with the highest overall ranking was chosen as the 

best performing matrix, named the CRESS matrix. We compared the CRESS matrix to the established 

matrices VT, LG and rtREV using log10 ratios (Excel).  

Dataset size validation 

A series of datasets with identical sequence number and length as the training datasets were simulated to 

test if the training sets are sufficient to recover the amino acid substitution patterns. These pseudo datasets 

were simulated under the WAG model (Whelan and Goldman, 2001), with different site rate variation 

parameters (alpha: 0.1, 0.5, 1, and 2) in Seq-Gen v1.3.3 (Rambaut and Grassly, 1997). We simulated 

alignments of similar size (463 sequences with the length of 329aa) to the training set Rep alignment. 

Four alignments (one for each parameter for the gamma distribution) were combined with the tree from 

training set 10 to produce eight substitution matrices by the same matrix estimation methods used to 

generate the CRESS Rep-derived matrices: four fmg and four fit (Dang et al., 2014; Nickle et al., 2007a), 

both using seed matrix VT. The sequences-specific amino acid substitution matrix of each pseudo-dataset 

was estimated using the algorithms described above, and then compared to WAG through Pearson 

correlation tests.  

 

CRESS DNA viral Rep tree construction 

Four aLRT SH-like supported maximum likelihood Rep trees were also built in PhyML3 using CRESS, 

VT, LG and rtREV matrices with +G+F options. 1000 bootstrapped trees were also estimated using 

RAxML v8.2.10 (Stamatakis, 2014) on CIPRES (RAxML-HPC2 on XSEDE) with +G+F options using 
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CRESS, VT, LG and rtREV matrices. The bootstrapped trees were mapped onto corresponding aLRT 

SH-like supported ML trees with local non-MPI RAxML-HPC v8.1.17 (Stamatakis, 2014).  

As there is a hotspot of recombination between the two domains of Rep (Kazlauskas et al., 2018), we 

separated the endonuclease and helicase domain alignments by splitting the trimmed MUSCLE aligned 

full-length Rep alignment, according to previously published descriptions (Kazlauskas et al., 2018). The 

endonuclease and helicase domain maximum likelihood trees were built in PhyML3 (CRESS+G+F).  

We also removed sequences from our alignment that were determined to be recombinant by another study 

(Kazlauskas et al., 2018), and reduced the number of sequences used from the most overrepresented 

genus, Begomovirus. A total of 123 recombinants and 319 begomoviruses were separately removed from 

the full dataset’s MUSCLE alignment. The two trees were built in PhyML3 using CRESS+G+F.  

We aligned the 926 Rep sequences using MAFFT v7. 271 (options L-INS-I –ep 0.123) (Katoh and 

Standley, 2013) and also extracted the taxa from the MAFFT alignment (and from the analogous 

MUSCLE alignment) that were members of Geminiviridae and Genomoviridae for additional analysis. 

Trees based on these three datasets were built using PhyML3 with CRESS matrix and +G+F options.  

All trees were visualized with Figtree (http://tree.bio.ed.ac.uk/software/figtree/) and edited in Adobe 

Illustrator.  

Model comparison using modified ProtTest 

Capsid protein (CP) sequences from several families of CRESS DNA viruses and Parvoviridae RefSeq 

NS1 sequences were procured from NCBI in May 2018. Lists of CRESS DNA viral genome accession 

numbers were downloaded from the relevant family description from the International Committee on the 

Taxonomy of Viruses (ICTV, talk.ictvonline.org/taxonomy/) and if a CP was not identified in the 

sequence then the CP ORF was predicted using the NCBI ORF caller and validated through BLAST 

(accession numbers in Supplementary File 16). The 102 RefSeq Parvoviridae NS1/Rep sequences were 

either confirmed through database label or through BLAST (Supplement File 1). Each CP dataset and the 

parvovirus NS1/Rep dataset were aligned using MUSCLE (default setting: max 16 iterations) and left 

untrimmed. The phage major capsid protein sequence alignment was from published dataset (Creasy et al., 

2018), generously provided by K. Rosario (University of South Florida), and trimmed using -gappyout 

option in TrimAl 1.2. These alignments were provided to a modified version of ProtTest that includes the 

CRESS model (https://github.com/lzhao-virevol/matrix) to evaluate various model performance. All viral 

specific models (CRESS, rtREV, HIVb, HIVw, FLU) and two relevant general models (LG and VT) with 

different combinations of +G, +F, +I (a total of 56 models) were tested using strategymode: NNI 

maximum likelihood tree.  
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Figure Legends 

 

Figure 1. Comparison of four amino acid substitution matrices. Log-ratio rate matrices of CRESS rates 

over those of rtREV, LG and VT are shown left to right. The depth of blue color indicates substitutions 

where CRESS has lower rates, and the depth of brown color indicates substitutions where CRESS has 

higher rates.  

	
Figure 2. Left panel: Maximum likelihood tree of the Rep protein built using the CRESS matrix. 

Clockwise from the top: light blue for Nanoviridae, purple for the alphasatellites (Alphasatellitidae), teal 

for Genomoviridae, green for Geminiviridae, red for Bacilladnaviridae, dark blue for Smacoviridae, and 

orange for Circoviridae. Black taxa are from currently unclassified CRESS DNA viral sequences. The 

scale bar shows branch length of 1.0 substitution per site. A version of this tree with accession number 

labels at the tips for all taxa can be found in Supplementary File 5. Right panel: Maximum likelihood 

trees of the Rep protein built using the rtREV, LG and VT matrices. All three trees share the scale bar 

below, which shows branch length of 1.0 substitution per site. NEXUS format of these trees with aLRT 

support values can be found in Supplementary File 6. 

	
Figure 3 Unrooted maximum likelihood trees of CRESS Rep helicase (left) and endonuclease (right) 

domain. Genomovirus Reps are colored in teal, geminivirus Reps are colored in green, all other taxa 

(classified and unclassified) are colored in black. The black circles indicate the nodes for the common 

ancestor of intro-containing Reps (helicase tree: aLRT SH-like support 0.909; endonuclease tree: aLRT 

SH-like support 0.842). A version of these trees with accession number labels at the tips for all taxa can 

be found in Supplementary Files 7 and 8. 

	
Figure 4 Unrooted maximum likelihood trees with equal number of Begomovirus and Mastrevirus Reps 

built with CRESS matrix. Alignment produced by MUSCLE. Green for Geminiviridae, teal for 

Genomoviridae, dark blue for Smacoviridae, red for Bacilladnaviridae, orange for Circoviridae, light 

blue for Nanoviridae, purple for the alphasatellites (Alphasatellitidae). Currently unclassified taxa are 

colored black. A version of this tree with accession number labels at the tips for all taxa can be found in 

Supplementary File 9. 

	
Figure 5 Unrooted maximum likelihood tree built with 123 recombinant sequences removed from the 926 

CRESS Rep dataset. Green for Geminiviridae, teal for Genomoviridae, all other taxa (classified and 
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unclassified) are black. A version of this tree with accession number labels at the tips for all taxa can be 

found in Supplementary File 10. 

	
Figure 6 Unrooted maximum likelihood tree built with the full 926 CRESS Rep dataset. Alignment 

produced by MAFFT. Green for Geminiviridae, teal for Genomoviridae, dark blue for Smacoviridae, red 

for Bacilladnaviridae, orange for Circoviridae, light blue for Nanoviridae, purple for the alphasatellites 

(Alphasatellitidae). Currently unclassified taxa are black. A version of this tree with accession number 

labels at the tips for all taxa can be found in Supplementary File 11. 

	
Figure 7 Unrooted maximum likelihood tree with Geminivirus and Genomovirus Reps built with CRESS 

matrix. Alignment produced by MAFFT (left) and MUSCLE (right). Green for Geminiviridae, teal for 

Genomoviridae. SH-like support labeled on the branch between the no intron Reps (above) and intron-

containing Reps (below). Versions of these trees with accession number labels at the tips for all taxa can 

be found in Supplementary Files 12 and 13.  
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Table 1. Best model chosen by ProtTest3 for each tested ssDNA protein alignment. The table shows the 

models chosen by these information criteria and their corresponding weights. The best performing models 

were ranked by Akaike information criterion (AIC), corrected Akaike information criterion (AICc) and 

Bayesian information criterion (BIC) scores and the weights of these models are shown in parenthesis. 

+G assumes gamma-distributed rate variation across sites. +I estimates the proportion of invariant sites, 

+F uses empirical amino acid frequency. * indicates that the top two models’ weights do not sum to 1. 

 

Alignment AIC AICc BIC 

Bacilladnaviridae CP CRESS+I+G+F (1) CRESS+I+G+F (1) CRESS+I+G+F (1) 

Circoviridae CP CRESS+I+G+F (0.72) 

CRESS+G+F (0.28) 

CRESS+I+G+F (0.59) 

CRESS+G+F (0.41) 

CRESS+I+G+F (0.76) 

CRESS+G+F (0.24) 

Genomoviridae CP CRESS+G+F (1) CRESS+G+F (1) CRESS+G+F (1) 

Smacoviridae CP CRESS+I+G+F (0.96) 

CRESS+G+F (0.04) 

CRESS+I+G+F (0.96) 

CRESS+G+F (0.04) 

CRESS+I+G+F (0.76) 

CRESS+G+F (0.24) 

Nanoviridae CP LG+G+F (0.83) 

LG+I+G+F (0.17) 

LG+G+F (0.87) 

LG+I+G+F (0.09)* 

LG+G (0.92) 

LG+I+G (0.08) 

Parvoviridae NS1/Rep CRESS+I+G+F (0.99) 

CRESS+G+F (0.01) 

CRESS+I+G+F (0.99) 

CRESS+G+F (0.01) 

CRESS+I+G+F (0.90) 

CRESS+G+F (0.10) 

ssDNA phage MCP LG+I+G+F (1) LG+I+G+F (1) LG+I+G+F (1) 
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