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Abstract

GABAergic interneurons can be subdivided into three subclasses: parvalbumin positive
(PV), somatostatin positive (SOM) and serotonin positive neurons. With principal cells
(PCs) they form complex networks. We examine PCs and PV responses in mouse
anterior lateral motor cortex (ALM) and barrel cortex (S1) upon PV photostimulation in
vivo. In layer 5, the PV response is paradoxical: photoexcitation reduces their activity.
This is not the case in ALM layer 2/3. We combine analytical calculations and numerical
simulations to investigate how these results constrain the architecture. Two-population
models cannot account for the results. Networks with three inhibitory populations and
V1-like architecture account for the data in ALM layer 2/3. Our data in layer 5 can be
accounted for if SOM neurons receive inputs only from PCs and PV neurons. In both
four-population models, the paradoxical effect implies not too strong recurrent
excitation. It is not evidence for stabilization by inhibition.
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Introduction

Local cortical circuits comprise several subclasses of GABAergic interneurons which
together with the excitatory neurons form complex recurrent networks (Goldberg et al.,
2004; Jiang et al., 2015; Karnani et al., 2016; Markram et al., 2004; Moore et al., 2010;
Pfeffer et al., 2013; Tasic et al., 2018; Tremblay et al., 2016). The architecture of these
networks depends on the cortical area and layer (Beierlein et al., 2003; Jiang et al.,
2013; Rudy et al., 2011; Xu et al., 2013; Xu and Callaway, 2009).

Optogenetics is now classically used to reversibly inactivate a particular cortical area or
neuronal population to get insights into their functions (Atallah et al., 2012; Guo et al.,
2014b; Lee et al., 2012; Li et al., 2015; Svoboda and Li, 2018). Optogenetics has also
been applied to isolate the different components (e.g. feedforward vs. recurrent) of the
net input into cortical neurons (Lien and Scanziani, 2018, 2013). It can also be used to
experimentally probe the architecture of local cortical circuits (Moore et al., 2018; Xu et
al., 2013). However, because of the complexity of these networks and of their nonlinear
dynamics, qualitative intuition and simple reasoning (e.g. ‘box-and-arrow’ diagrams) are
of limited use to interpret the results of these manipulations.

‘Paradoxical effect’ designates the phenomenon that stimulation of a GABAergic
interneuron population not only decreases the average activity of the principal cells
(PCs) but also decreases the activity of the stimulated population (Murphy and Miller,
2009; Ozeki et al., 2009; Tsodyks et al., 1997). Intuitively, paradoxical effect arises when
the stimulation induces a strong activity suppression in the PCs (Kato et al., 2017;
Moore et al., 2018), such that the overall (synaptic+stimulus) excitation to the stimulated
population decreases. However, the precise conditions under which the paradoxical
effect occurs are difficult to establish without mathematical modeling.

In simple models consisting of only two populations (one excitatory and one inhibitory)
these conditions have been mathematically derived. The paradoxical effect occurs when
the networks operates in the regime known as inhibition stabilized (inhibition stabilized
networks, ISN) in which recurrent excitation is so strong that strong inhibition is
necessary to stabilize the activity. (Murphy and Miller, 2009; Ozeki et al., 2009; Tsodyks
et al., 1997), Networks, with several inhibitory populations have been recently
investigated (del Molino et al., 2017; Litwin-Kumar et al., 2016; Sadeh et al., 2017).
These studies considered network models with synaptic currents small compared to
neuronal rheobase currents (Gerstner et al., 2014; Lapicque 1909). However,
interactions in cortex are stronger than what is assumed in these studies (Shadlen and
Newsome, 1994).
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Simple networks with strong interactions comprising one excitatory and one inhibitory
population have been studied extensively. In a broad parameter range not requiring fine
tuning, such networks dynamically evolve into a state in which strong excitation is
balanced by strong inhibition such that the net input into the neurons is comparable to
their rheobases (van Vreeswijk and Sompolinsky, 1998, 1996). The theory of balanced
networks has been developed for a variety of single neuronal models including binary
neurons (van Vreeswijk and Sompolinsky, 1998, 1996), rate models (Harish and Hansel,
2015; Kadmon and Sompolinsky, 2015), leaky-integrate-and fire neurons (Hansel and
Mato, 2013; Mongillo et al., 2012; Rosenbaum and Doiron, 2014; Roxin et al., 2011; Van
Vreeswijk and Sompolinsky, 2005) and conductance-based models (Hansel and van
Vreeswijk, 2012; Pattadkal et al., 2018).

In the present study we investigate experimentally the effects of the photostimulation of
PV interneurons on the anterior lateral motor cortex (ALM) and barrel cortex (S1) of the
mouse. We show that two-population network models do not suffice to account for these
effects. To overcome this limitation, we develop a theory for the paradoxical effect in
balanced networks that takes into account the multiplicity of GABAergic neuronal
populations. Combining analytical calculations and numerical simulations we study, at
population and single neuron level, the responses of these networks. For two-population
balanced networks it has been shown that the paradoxical effect only occurs when the
network is inhibition stabilized (Pehlevan and Sompolinsky, 2014; Wolf et al., 2014).
Here we show that in contrast, in four-population networks, the paradoxical effect can
occur even if the network is not inhibition stabilized. We conclude with prescriptions for
experiments that according to the theory can be informative about network architectures
in cortex.

Results
ALM and S1 layer 5 exhibit paradoxical effect but not ALM layer 2/3

We expressed a red-shifted channelrhodopsin (ReaChR) in PV interneurons to
optogenetically drive local inhibition in the barrel cortex (S1) and anterior lateral motor
cortex (ALM) of awake mice (Hooks et al., 2015). We used orange light (594nm) to
illuminate a large area of ALM or S1 (2 mm diameter), photostimulating a large
proportion of PV interneurons (Fig. 1A). We measured the light-induced effects on
neural activity using silicon probe recordings. In both brain areas, putative PCs and
putative PV neurons were identified based on spike width (Methods). Neurons with wide
spikes were likely mostly PCs. Units with narrow spikes were fast spiking (FS) neurons
and likely expressed parvalbumin (Cardin et al., 2009; Guo et al., 2014b; Olsen et al.,
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2012; Resulaj et al., 2018). We investigated the responses of these neurons as a
function of the photostimulation intensity in ALM layer 2/3 and layer 5, and in S1 layer 5.
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Figure 1. Effects of photostimulation of PV-positive interneurons in the mouse
neocortex. A. Scheme of the experiment. B. Normalized spike rate as a function of laser
intensity in different brain areas and layers. Top, individual neuron responses of the PCs
(red) and PV (blue) neurons; bottom, population average responses. ALM: layer 2/3:
n =26 (PCs), n=9 (PV); layer 5: n =62 (PCs), n =12 (PV). S1: layer 5: n =82
(PCs), n =10 (PV).

We found that in all recorded layers and areas, the population average activity of the
PCs decreased with the optogenetic drive (Fig. 1B, Fig. 2). In contrast, the PV
population exhibited a behavior which depended on the recorded layer.

In ALM layer 2/3, the population average firing rate of PV neurons monotonically
increased with the photostimulation intensity. However, individual neuron responses
were heterogeneous. Most PV neurons increased their spike rates from baseline with
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increased photostimulation intensity. Some PV neurons initially decreased their spike
rates below baseline for low light intensity.
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Figure 2. Spike rates of PCs (top) and PV neurons (bottom). Dots correspond to
individual neurons. Laser intensity 0.5 mW .mm™2.

In ALM and S1 layer 5, the response of the PV population was non-monotonic. For low
laser intensity, the PV population activity paradoxically decreased with the optogenetic
drive, whereas at high photostimulation intensity, activity of the PV neurons began to
increase. In layer 5, there was also a large diversity of responses. Most PV neurons
decreased their activity at low photostimulation intensity. At high laser intensity, a
fraction of PV neurons (6/12 in ALM and 6/10 in S1) had a larger response than
baseline, while the rest remained suppressed. Figure 2 shows the spike rates of PCs
and PV neurons at an intermediate light intensity (0.5 mW .mm™2).

In both ALM and S1 layer 5, the concomitant decrease of the PCs and the PV
population activities were proportional (Fig. 1B). These results reveal different circuit
dynamics across cortical layers, with paradoxical effect present in the deep layers but
not in the superficial ones.
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Network models

To assess the network mechanisms which may account for the experimental responses
in ALM and S1 we first considered models consisting of one excitatory and one
inhibitory population. Since it is well established that cortical circuits involve a variety of
inhibitory subpopulations, we later extended the theory to network models of four
populations of neurons representing PCs and three subtypes of GABAergic
interneurons in cortex. In all our models, neurons are described as integrate-and-fire
elements. The data we seek to account for, were obtained in optogenetic experiments in
which the laser diameter was substantially larger than the spatial range of neuronal
interactions and comparable to the size of the area in which activity was recorded.
Therefore, in all our models, we assume for simplicity that the connectivity is
unstructured. We modeled the ReachR-optogenetic stimulation of the PV population as
an additional external input, 7, , into PV neurons. We assumed that it depends on the

opto

=1, log(1 + rro ) where [, and I\, are parameters

intensity of the laser, T’ as [

(Fig. 3-S1).

opto ’ opto

Two-population model

The two-population network is depicted in Fig. 3A. It is characterized by four recurrent
interaction parameters, J,, and two feedforward interaction parameters, J,

a,p € {E,I} (Materials and Methods).

Results from numerical simulations of the model are depicted in Fig. 3B and C where,
the dependence of the population activities normalised to baseline, are plotted against

the intensity of the laser, T’ Figure 3B shows the response of the network where the

opto *
recurrent excitation, J.., is non zero. The activity of the PV population, r,, varies
non-monotonically with the laser intensity. For small intensities, r, paradoxically
decreases together with the activity of the PCs, r, . This paradoxical effect stems from
the fact that the decrease in the activity of the PCs yields a reduction in the excitation to
PV neurons which is not compensated for by the optogenetic drive. As a result, the net
excitation to PV neurons diminishes yielding a decrease in r,. When r, becomes very
small, this mechanism does not operate anymore and consequently, r, increases as
I, isincreased further. In Figure 3C, J,, is zero, r, monotonically increases with the
light intensity whereas r, monotonically decreases. For small intensities, r, is close to
a constant. It starts to increase appreciably only when r, =0. Therefore, the PV

response is not paradoxical.
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Figure 3. Paradoxical effects in the two-population model. A. The network. B-C.
Responses of PCs and PV neurons normalized to baseline vs. the laser intensity, I’

opto’
for different values of the recurrent excitation, JEE - B:
Jegp =Jpp/ VK =098 uA .ms.cm™2, the network exhibits the paradoxical effect. C:
jge =0, the population activity of PV neurons is almost insensitive to small laser
intensities. Red: PCs. Blue: PV neurons. Thick lines: population averaged responses.
Thin lines: responses of 10 neurons in each population. Firing rates were estimated
over 100s. Parameters: N, =157600, N,=19200, K =500. Other parameters as in
Table 1. Baseline firing rates are: r.=57Hz, r,=11.7Hz (B) and r,=15Hz,
r, =5.7 Hz (C). At the minimum of r, in (B), r, =0.06 Hz.

Qualitatively this model seems to account for our experimental data from both layer 5
and layer 2/3. It would imply that in layer 5, J,. is sufficiently large to generate the
paradoxical effect, while in layer 2/3 this is not the case. On closer inspection however,
there are major discrepancies between the simulation results and the experimental
data. In our recordings in layer 5 of both ALM and S1, the PV population activity
reaches a minimum while the PCs are still significantly active: relative to baseline the
activity is 40% in ALM and 25% in S1. In contrast, in the two-population model, the
minimum of the PV activity is reached (Supplementary Materials, SMB) when excitatory
neurons are virtually completely silenced (Fig. 3B, Fig. 3-S2A). In fact one can show
that for sufficiently large K, when r, is minimum, the activity of the excitatory
population is exponentially small in K. As a result, to account for the data one needs to
assume that K =~ 10.

In addition, in the experimental data the activities of the PC and PV populations in ALM
and S1 layer 5 decrease in equal proportions before the minimum of the PV activity
(Fig. 1B). This cannot be accounted for in a two-population model unless parameters
are fine-tuned (Fig. 3-S3). Analytical calculations (Supplementary Materials, SMB)
supplemented with numerical simulations show that this proportional decrease only
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happens when the determinant of the interaction matrix, J g is close to zero. Moreover,

the external input must also be fine tuned so that the neurons have biologically realistic
firing rates (Fig. 3-S3).

The experimental data from ALM layer 2/3 show that for already small light intensities
the activity of PV neurons increases appreciably. This is in contrast with Fig. 3C. In Fig.
3-S2B, we show that the two-population model can account for this feature only if the
recurrent excitation is very weak in that layer and the connectivity is extremely sparse.

These discrepancies prompted us to investigate whether models with several
populations of inhibitory neurons can account for our experimental data without fine
tuning. We focus on two four-population network models. Both consist of three
populations representing PCs, PV and SOM neurons and a fourth population
representing other inhibitory neurons. The main difference between the two models lies
in the inhibitory populations from which SOM neurons receives inputs.

A four-population model with V1-like architecture (Model 1)

We first investigated the dynamics of a four-population network with an architecture that
is similar to the one reported in layer 2/3 in V1 (Pfeffer et al., 2013) and S1 (Lee et al.,
2013) (Fig. 4A). The model consists of four populations representing PCs, PV, SOM and
VIP neurons. SOM neurons do not interact with each other (Adesnik et al., 2012;
Gibson et al., 1999; Hu et al., 2011). VIP neurons only project to the SOM population
(Jiang et al., 2015; Pfeffer et al., 2013). All neurons except SOM receive inputs from
sources external to the network (e.g. thalamus) (Beierlein et al., 2003, 2000; Cruikshank
et al., 2010; Ma et al., 2006; Xu et al., 2013). The same architecture was considered in
(Litwin-Kumar et al., 2016).

We considered parameter sets such that: 1) At baseline, the network is operating in the
balanced state with all populations active; 2) the activity of the PC population decreases
with the laser intensity as observed in our experiments.

Theory in the large N, K limit.

It is instructive to consider the limit in which the number of neurons in the network, N,
and the average number of connections per neuron, K, go to infinity. In this limit, the
analysis of the stationary state of the network simplifies (Materials and Methods). This
stems from the fact that when interactions are numerous, excitatory and inhibitory inputs
are strong and only populations for which excitation is balanced by inhibition have a
finite and non-zero activity. The average activities of the four populations are then
completely determined by four linear equations, the balance equations, which reflect
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this balance. Solving this system of equations yields the population activities, r,,
o = E,I,S,V , as a function of the external inputs to the network. In particular, when the
laser intensity is sufficiently small, the four populations are active and their firing rates
vary linearly with the current induced by the photostimulation (Supplementary Materials,
SMC).

Figure 4 plots the activities of the populations vs. the optogenetic input into PV neurons,

1, » for two sets of interaction parameters. In Fig. 4B, the activity of the PV population,

r;, increases with / In contrast, in Fig. 4C, r, decreases with I, : the response of

opto * opto

the PV population is paradoxical.

To characterize for which interaction parameters the PV response is paradoxical, we
consider the 4 x 4 susceptibility matrix [y aﬁ] . The element X ap (a, p=E,I,S,V) is the
derivative of the population activity, r,, with respect to a small additional input, into
population 3, /g . Evaluated for small I , x s characterizes by how much r. varies
with an increasing but weak extra input into population . Its sign indicates whether r,
increases or decreases with Iz . The elements of the susceptibility matrix can be

decomposed in several terms corresponding to the contributions of different recurrent
loops embedded in the network (Supplementary Materials, SMC). Using this
decomposition one can show that whether the PV response is paradoxical, depends on
the interplay between two terms. One is the gain of the disinhibitory feedback loop
PC-VIP-SOM-PC and the other is the product of the recurrent excitation, J., with the
gain of the disinhibitory feedback loop VIP-SOM-VIP (Fig. 4-S1). Remarkably, PV
neurons are not involved in these two terms. A straightforward calculation then shows

that the response of PV neurons increases with [ if the recurrent excitation is

opto
sufficiently strong, namely if

Jee > ge = Jypdps [ vs (1)

The denominator in J. is the strength of the connection from the SOM population to
the VIP population. The numerator is the gain of the pathway which connects these two
populations via the PCs. When J,,. >J ., the negative contribution of the disinhibitory
loop PC-VIP-SOM-PC dominates in the expression of y,, . It is the opposite when
Jpp <J - The stability of the balanced state provides other necessary conditions that
the interactions must satisfy (Materials and Methods). In particular, the determinant of
the interaction matrix, J, must be positive.
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Figure 4. Population activities vs. I in Model 1 in the large N, K limit. A. The

network is composed of four populations representing PCs, PV, SOM and VIP neurons.
The connectivity is as in (Pfeffer et al., 2013). B. Parameters as in Table 2.2. The
activity of PV cells increases with [

opto

oo While for the three other populations it

decreases. C. Parameters as in Table 2.3. The activity of SOM neurons increases with
1,,, While for the three other populations it decreases. Right panels in B and C: the

activities are normalized to baseline.

The difference between the behaviors in Fig. 4B and 4C can now be understood as
follows: in Fig. 4B, J,,>J ; and y,=16>0, thus, r, increases with I, ; in Fig.
4C, J,.p <J ;p and %, =—5.1<0 and thus, r, decreases. Remarkably, in both cases
the activities of the PC and VIP populations normalized to baseline, are always equal
(Fig. 4B-C, right panel). This is a consequence of the balance of the excitatory and
inhibitory inputs into the SOM population which implies that r,. and r,, are proportional

(Material and Methods, Eq. 15.3).

In Fig. 4B, the activity of the SOM population decreases with the laser intensity. This
also stems from the fact that J.,>J . (Supplementary Materials, SMC). This
qualitative behavior is therefore independent of parameter sets, provided that inequality
(1) is satisfied. In contrast, for parameters for which J,,. <J ;. the activity of the SOM

population either decreases or increases with [ depending on other parameters.

opto

Moreover, it is straightforward to prove that if J,, >J ;. , the product y ., x ,; is positive
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(Supplementary Materials, SMC). Since we assumed that r, decreases upon
photostimulation of PV neurons, namely y ., <0, this implies that i ,. is also negative.
In other words, in Model 1, a non-paradoxical response of the PV population upon PV
photostimulation implies that the PV activity decreases when PCs are photostimulated.

When 1,,, is sufficiently large, the solution of the four balance equations will contain

one or more populations for which r, <0. Obviously such a solution is inconsistent.
Instead, other solutions should be considered where at least one population has a firing
rate which is zero and the firing rates of the other populations is determined by a new
system of linear equations with lower dimensions (Materials and Methods,
Supplementary Materials SMC). Consistency requires that in these solutions the net
input is hyperpolarizing for the populations with r, =0. As a consequence, the network

population activities are in general piecewise linearin /,,, (Fig. 4-S2).

The large N, K analysis provides precious insights into the dynamics of networks with
reasonable size and connectivity. In particular, we will show that the criterion for the
paradoxical effect, Eq. (1), remains valid up to small corrections. Although it is possible

to treat analytically the dependence of r, on 1, for finite K, these calculations are

opto
very technical and beyond the scope of this paper. Instead here, we proceed with

numerical simulations.
Numerical simulations for J,. > J

Figure 5 depicts the results of our numerical simulations of Model 1 for the same
parameters as in Fig. 4B (Materials and Methods, Table 2). The response of PV
neurons is non-paradoxical: the activity of the PV population increases monotonically
with '), in the whole range (Fig. 5A). Concurrently, the population activities of PC,

(Fig. 5A-B). For sufficiently
PCs become very weakly active and the SOM and VIP populations

SOM and VIP neurons monotonically decrease with I',

large T

opto ’

dramatically reduce their firing rates. The variations with '’ of r,., r,, r¢ and r, are

opto
robust to changes in the average connectivityy, K (Fig. 5-S1) and in qualitative
agreement with the predictions of the large N, K limit (Fig. 4B, Supplementary
Materials SMC, Fig. 4-S2).
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Figure 5. Numerical simulations of Model 1 for J,,. >J ;.. Responses of the neurons
normalized to baseline vs. the intensity of the laser, I', . A. Activities of PCs and PV

neurons: the PV response is not paradoxical. B. Activities of SOM and VIP neurons.
Color code as in Fig. 4. Thick lines: population averaged responses. Thin lines:
responses of 10 neurons in each population. Firing rates were estimated over 100 s.
Parameters: K =500, N =76800. Other parameters as in Table 2.2. The baseline
activities are: r, =33 Hz, r,=65Hz, r=59Hz, r, =35Hz.

To test the robustness of our results with respect to changes in the interaction strengths,
we generated 100 networks with J,; chosen at random within a range of +10% of

those of Fig. 4B. All the networks exhibited a balanced state which was stable with
respect to slow rates fluctuations in the large N, K limit. We simulated those networks
with K =500 and computed the population activity at baseline and for

Ly =007mW .mm=2. For all these networks, the results were consistent with the one

of the control set: for I', =007 mW .mm™*, r, was larger and r,, rg, r, were
smaller than baseline (Fig. 5-S1). However, a small percentage of these networks (10%)
exhibited oscillations with at most an amplitude 20% of their mean in the firing rates.

Apart from that, the results were robust to changes in J .

In contrast to what happens in the large N,K limit (Fig. 4B, right panel), in the results
depicted in Fig. 5 the activity of the PC and VIP populations are not proportional.
Moreover, in the large K limit, PC and VIP neurons are inactivated before the SOM
population is. For K =500, VIP is the first population to be silenced followed by the
SOM and finally the PC population. Simulations with increasing values of K show that
these differences are due to substantial finite K effects (Fig. 5-S2).

Figure 5 also depicts the changes in the firing rates (normalized to baseline) with T’

opto

for several example neurons. These changes are highly heterogeneous across neurons
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within each population. Whereas the population average varies monotonically, individual
cells activity can either increase or decrease and the response can even be

non-monotonic with I“opm }
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Figure 6. Single neuron firing rates in the PC and PV populations upon PV activation for
two values of the light intensity (Model 1 with J,. >J ). A. Single neuron firing rates
at baseline vs. at I, =03 mW .mm™*. B. Same for I, ,, =09 mW .mm™. Top: PCs
(red). Bottom: PV neurons (blue). Scatter plots of 300 randomly chosen PC and PV
neurons. Pie charts for the whole population. The pie charts show the fraction of
neurons which increase (cyan) or decrease (magenta) their activity compared to
baseline. Green: Fraction of neurons with relative change smaller than 0.1 Hz . White:
fraction of neurons with activity smaller than 0.1 Hz upon PV photostimulation. Firing
rates were estimated over 100 s. Neurons with rates smaller than 0.1 Hz are plotted at
0.1 Hz . Parameters as in Fig. 5.

The heterogeneity in the single neuronal responses are also clear in Fig. 6A-B that
plots, for two different light intensities, the perturbed firing rate vs. baseline for PCs and
PV neurons. Remarkably, in both populations a significant fraction of neuron exhibits a
response which is incongruous with the population average. The pie charts in Fig. 6
depict the fraction of PCs and PV neurons which increased, decreased, or did not
change their firing rates. The fraction of neurons whose activity is almost completely
suppressed, is also shown. Remarkably, even for T, =0.9 mW .mm™*, some of the PCs

show an activity increase. Moreover, the fraction of PV neurons whose firing rate
increases is less for '), =09mW .mm™2 than T, =03mW .mm?. It should be noted

opto opto

that in the model all PV neurons receive the same optogenetic input, therefore, the
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heterogeneity in the response is not due to whether or not the PV neurons were
“‘infected”. This heterogeneity is solely due to the randomness in the connectivity.

Numerical simulations for J,. <J
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Figure 7. Numerical simulations of Model 1 for J,, <J ;.. Responses of the neurons
normalized to baseline vs. the intensity of the laser, ', . A. Activities of PCs and PV
neurons: the PV response is paradoxical. B. Activities of SOM and VIP neurons. Color
code as in Fig. 4. Thick lines: population averaged responses. Thin lines: responses of
10 neurons in each population. Firing rates were estimated over 100 s. Parameters:
K =500, N =76800. Other parameters as in Table 2.3. The baseline activities are:
rp=48Hz, r,=112Hz, r¢=71Hz, r, =53 Hz.

Figure 7 depicts the results of our numerical simulations of Model 1 when J, . <J ;.
Parameters are the same as in Fig. 4C (Materials and Methods, Table 3). The
population activities of PCs and VIP neurons, r, and r, , decrease monotonically with
the laser intensity, I', . Conversely, the variations of the activities of the PV and SOM
populations, r, and r¢, are non-monotonic with T For small light intensities, r,
r¢ exhibits the opposite

opto *
decreases and then abruptly increases with larger ngm;
behavior. Remarkably, when r, is minimum, r, is maximum for nearly the same value
of I

opto *
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Figure 8. Single neuron firing rates in the PC and PV populations upon PV activation for
two values of the light intensity (Model 1 with .. <J ;). A. Single neuron firing rates
at baseline vs. at I',, =03 mW .mm™*. B. Same for T, =0.9 mW .mm™>. Top: PCs.
Bottom: PV neurons. Scatter plots of 300 randomly chosen PC and PV neurons. Pie
charts for the whole population. Firing rates were estimated over 100 s simulation time.
Neurons with rates smaller than0.1 Hz are plotted at 0.1 Hz. Color code as in Fig. 6.

Parameters as in Fig. 7.

This behavior is qualitatively similar to the one derived in the large N, K limit (Fig.
4-S3). As suggested by the large N, K analysis, the paradoxical response of the PV
neurons in the simulations, is driven by the positive feedback loop PC-VIP-SOM-PC
(Fig. 4-S1). Remarkably, when the activity of the PV neurons is minimum, the PCs are
still substantially active (40% of baseline level). This is due to finite K corrections to the

large N, K predictions (Fig. 7-S1). These corrections are strong and scale as ﬁ

(Supplementary Materials, SMC). Indeed, even for K as large as 2000, r, is still 25%
of the baseline when r, is minimum.

We checked the robustness of these results with respect to changes in the interaction
parameters as we did for J, . >J ;. We found that for small light intensity all the 100
simulated networks were operating in the balanced state and exhibited the paradoxical
effect (Fig. 7-S2).

Finally, the single neuron responses are highly heterogeneous. Figure 8 plots the
perturbed activities of PCs and PV neurons vs. their baseline firing rates for two light
intensities. In Fig. 8A, the PV response is paradoxical. This is not the case in Fig. 8B.
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Interestingly, the fraction of PV neurons incongruous with the population activity is larger
for I =03mW.mm? than for I =09mW.mm >. For both light intensities the

opto opto
activity of almost all the PCs is decreased.

Four-population network: Model 2

In S1 layer 5, in the range of laser intensities in which the PV response is paradoxical,
the decrease of the PC and PV activity is proportional. This feature of the data can be
accounted for in Model 1 but only with a fine tuning of the interaction parameters (Fig.
7-S3). This prompted us to investigate whether a different architecture could account
robustly for this remarkable property. Our hypothesis is that this property is a direct
consequence of the balance of excitation and inhibition.

Theory in the large N, K limit

We first considered the three-population model depicted in Fig. 9A. It consists of the PC,
PV and SOM populations. SOM neurons receive strong inputs from PCs and PV
neurons, but do not interact with each other and do not receive feedforward external
inputs. In the large N, K limit, the balance of excitation and inhibition of the SOM
population reads (Materials and Methods, Eq. 16.2)

Jsp g —Jg 1 =0 (3)

Therefore, the activities of the PC and PV populations are always proportional.
However, as we show in (Supplementary Materials, SMD) a three-population network
with such an architecture cannot exhibit the paradoxical effect.

We therefore considered a network model in which a third inhibitory population, referred
to as ‘X', is added without violating Eq. (3) (Fig. 9B). This requires that SOM neurons do
not receive inputs from X neurons (Supplementary Materials, SMD). This network
exhibits the paradoxical effect if and only if J¢. J. Jyo >y Jpo I » thatis if the gain
of the positive feedback loop, SOM-X-PC-SOM, is sufficiently strong (Supplementary
Materials, SMD). Obviously, this condition simplifies and reads

Jex Ixs > Ixx s (4)

Remarkably, this inequality does not depend on J ... This is in contrast to what
happens in Model 1 where the paradoxical effect occurs only if J ., is small enough
(see Eq. (2)).
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As in Model 1, we further required that the activity of the PC population increases with
its feedforward external input. This adds the constraint (Supplementary Materials,
SMD):

Jix Ixs > Ixx JI1s ()

Egs. (3-5) do not depend on J,,. For simplicity, we take J,, =0 and refer to the
resulting architecture as Model 2.

w
L

Figure 9. Network models with proportional change in the PC and PV activities upon
photostimulation of the PV population. A. A three-population network consisting of PCs,
PV and SOM neurons. SOM neurons only receive projections from the PC and PV
populations. B. Model 2 consists of four populations: PC, PV, SOM and an unidentified
inhibitory population, X. The population X projects to the PC, the PV population and to
itself. The PC population projects to X. C. Population activities normalized to baseline

vs. 1,,, in the large N,K limit. PC and PV populations decrease their activity with 1

in a proportional manner. Parameters as in Table 4. Baseline firing rates are:
rg=30Hz, r,=67Hz, r¢g=64Hz, ry,=38Hz.

opto

In Fig. 9C, the slope of the PV population activity changes from negative to positive
while PCs are still active. This is because if SOM neurons are completely suppressed,
the loop SOM-X-PC-SOM which is responsible for the paradoxical effect, is not effective
anymore. Interestingly, the analytical calculations also show that, when the SOM
population activity vanishes, the activity of the X population is maximum. Since the SOM
population is inactive before PCs, there is a range of laser intensities where the activity
of the latter keeps decreasing while the activity of the PV population increases. Once

PCs are inactive, the activity of the X population do not vary with /. This is because
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then they only receive a constant feedforward excitation from outside the network which
is balanced by their strong recurrent mutual coupling, J, .

Simulations for finite K
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Figure 10. Numerical simulations of Model 2. Responses of the neurons normalized to

baseline vs. the intensity of the laser, T, . A. Activities of PCs and PV neurons: for

small ', the PV response is paradoxical and the suppression of the PC and PV
population activities relative to baseline are the same. B. Activities of SOM and X
neurons. Color code as in Fig. 9. Thick lines: population averaged responses. Thin
lines: responses of 10 neurons in each population. Firing rates were estimated over
100 s. Parameters: K =500, N =76800. Other parameters as in Table 3. The baseline

activities are: r, =42Hz, r,=68Hz, ry=7T0Hz, ry, =39 Hz.

These features are also observed in our simulations depicted in Fig. 10. For small laser
intensities, the network exhibits a paradoxical effect where the activities of the PC and
PV populations decrease with Fopm and in a proportional manner (Fig. 10A), until the
SOM neurons become virtually inactive (Fig. 10B). At that value, r; is minimum and r,,
is maximum. For larger I',,,, r, increases while r, keeps decreasing and is still
substantial. After r, has vanished, r, saturates but r, continues to increase. All these
results are robust to changes in the connectivity, K (Fig. 10-S1) as well as to changes
in the interaction parameters (Fig. 10-S2). Finally, single neuron responses are very
heterogeneous as shown in Fig. 11.
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Figure 11. Single neuron firing rates in the PC and PV populations upon PV activation
for two values of the light intensity (Model 2). A. Single neuron firing rates at baseline
vs.at T =03mW .mm2.B.Same for I =09mW .mm 2. Top: PCs. Bottom: PV

opto opto
neurons. Scatter plots of 300 randomly chosen PC and PV neurons. Pie charts for the
whole population. Firing rates were estimated over 100 s. Neurons with rates smaller
than0.1 Hz are plotted at 0.1 Hz. Color code as in Fig. 6. Parameters as in Fig. 10.

Discussion

We studied the response of cortex to optogenetic stimulation of parvalbumin positive
(PV) neurons and provided a mechanistic account for it. We photostimulated the PV
interneurons in layer 2/3 and layer 5 of the mouse anterior motor cortex (ALM). In layer
2/3 photostimulation increased PV activity and decreased the response of the principal
cells (PCs) on average. In contrast in layer 5 the response of the PV population was
paradoxical: both PC and PV activity decreased on average. Remarkably, the
suppression of the PC and PV activity was the same relative to baseline. This is similar
to what was reported in layer 5 of the mouse somatosensory cortex (S1) (Li et al.,
2019). To account for these results, we first investigated the dynamics of networks of
one excitatory and one inhibitory population of spiking neurons. We showed that
two-population network models of strongly interacting neurons do not fully account for
the experimental data. This prompted us to investigate the dynamics of networks
consisting of more than one inhibitory population.
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We considered two network models both consisting of one excitatory and three
inhibitory populations. The three inhibitory populations in Model 1 represent PV,
somatostatin positive (SOM) and vasoactive intestinal peptide (VIP) interneurons with a
connectivity similar to the one reported in primary visual cortex (Pfeffer et al., 2013) and
S1 layer 2/3 (Lee et al., 2013). In Model 2, the first two inhibitory populations likewise
represent PV and SOM neurons and the third population, denoted as X, represents an
unidentified inhibitory subtype. The main difference with Model 1 is that here, the third
population does not project to SOM neurons. Depending on network parameters, the
response of PV neurons in Model 1 can be paradoxical or not. To have equal relative
suppression of the PCs and PV activities, however, interaction parameters have to be
fine tuned. In Model 2, the relative changes in the PC and PV activity are the same
independent of interaction parameters.

For a two-population network, the paradoxical effect only occurs when it is inhibition
stabilized (Pehlevan and Sompolinsky, 2014; Wolf et al., 2014). This is because the
mechanism requires strong recurrent excitation. In the four-population networks we
studied, however, the mechanism responsible for paradoxical effect is different. It
involves a disinhibitory loop. In fact, strong recurrent excitation prevents the paradoxical
effect in these networks. Therefore, the observation of the paradoxical effect upon PV
photo-excitation is not a proof that the network operates in the ISN regime.

Strong vs. weak interactions

Cortical networks consist of a large number (N) of neurons each receiving a large
number of inputs (K). Because N and K are large, one expects that a network
behaves similar to a network where N and K are infinite. In this limit the analysis is
simplified and the mechanisms underlying the dynamics are highlighted. When taking
the large K limit one needs to decide how the interaction strengths scale with K. Two
canonical scalings can be used: in one the interactions scale as 1/K (Hansel and
Sompolinsky, 1992; Hennequin et al., 2018; Knight, 1972; Rubin et al., 2015), in the
other as 1/ VK (Darshan et al., 2017; Renart et al., 2010; Rosenbaum et al., 2017; van
Vreeswijk and Sompolinsky, 1996). These differ in the strength of the interactions. For
instance, for K =900, interactions are weaker by a factor 30 in the first scaling than in
the second. Importantly, these two scalings give rise to qualitatively different dynamical
regimes.

When interactions are strong, the excitatory and inhibitory inputs are both very large (of
the order of K. ﬁ = +K ). They, however, dynamically balance so that the temporal

average of the net input and its spatial and temporal fluctuations are comparable to the
rheobase (Van Vreeswijk and Sompolinsky, 2005; van Vreeswijk and Sompolinsky,
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1998), Supplementary Materials SMA). In this balanced regime, the average firing rates
of the populations are determined by a set of linear equations: the “balance equations”.
These do not depend on the neuronal transfer function. For large but finite K, the
network operates in an approximately balanced regime. In this regime, the population
activities are well approximated by the balance equations, interspike intervals are highly
irregular and firing rates are heterogeneous across neurons.

When the interactions are weak, excitatory and inhibitory inputs are both comparable to
the rheobase even when K is large, but their spatial and temporal fluctuations vanish
as K increases. The activity of the network is determined by a set of coupled non-linear
equations which depends on the neuronal transfer function. For large but finite K, the
firing of the neurons is weakly irregular and heterogeneities mostly arise from
differences in the intrinsic properties of the neurons.

In which of these regimes does cortex operate in-vivo ? This may depend on the cortical
area and on whether the neuronal activity is spontaneous or driven (e.g. sensory,
associative, or motor related). There are, however, several facts indicating that the
approximate balanced regime may be ubiquitous. Many cortical areas exhibit highly
irregular spiking (Shinomoto et al., 2009) and heterogeneous firing rates (Hromadka et
al., 2008; Roxin et al., 2011). Excitatory and inhibitory postsynaptic potentials (PSPs)
are typically of the order of 0.2 to 2mV or larger (Levy and Reyes, 2012; Ma et al.,
2012; Pala and Petersen, 2015; Seeman et al., 2018). Model networks with PSPs of
these sizes and reasonable number of neurons and connections exhibit all the
hallmarks of the balanced regime (Amit and Brunel, 1997; Argaman and Golomb, 2018;
Hansel and Mato, 2013; Hansel and van Vreeswijk, 2012; Lerchner et al., 2006;
Pattadkal et al., 2018; Pehlevan and Sompolinsky, 2014; Rao et al., 2019; Roudi and
Latham, 2007; Roxin et al., 2011; Van Vreeswijk and Sompolinsky, 2005). Moreover,
there is experimental evidence of co-variation of excitatory and inhibitory inputs into
cortical neurons (Haider et al., 2006; Shu et al., 2003). Finally, in cortical cultures
synaptic strengths have been shown to approximately scale as 1/ /K (Barral and D
Reyes, 2016). Therefore in this paper we focused on cortical network models in which
interactions are strong, i.e. of the order of 1/ VK .

Model 1 accounts for non-paradoxical effect in ALM layer 2/3

In ALM layer 2/3, the activity of the PV population increases with the light intensity while
the activity of the PC decreases on average. In Model 2, the activity of the PC and PV
populations vary identically upon light stimulation, hence, this model cannot account for
this response. Remarkably, our experiments showed that the increase in the PV activity
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was already substantial for small light intensities, where the PCs were still significantly
active. The two-population model cannot account for this feature.

In Model 1, whether the network exhibits a paradoxical effect depends on the value of
the ratio @ =Jpg /Jpp where Jpp = JypJgs/Jys. Here, J g, o.p € {E,S,V}, is the
strength of the connection from population f to population o . When o> 1, the PV
response is non-paradoxical and its activity increase can be substantial well before
suppression of the PC activity. Thus, Model 1 accounts for our experimental findings in
ALM layer 2/3 provided that J ., is sufficiently strong.

Model 2 accounts for the paradoxical effect in layer 5 of ALM and S1 while Model
1 requires fine tuning

In ALM and S1 layer 5 the activity of the PV population initially decreased with the light
intensity together with the activity of the PC population. As the light intensity is further
increased, the PV activity reaches a minimum after which it increases. This already
occurs when the PC activity is still substantial. This rules out the two-population model
in which the PV activity can only reach its minimum when the PCs are virtually
completely silent. In contrast, in Model 1 with o < 1, the PV response is paradoxical and
the PV activity reaches its minimum for light intensities at which the PCs are still
substantially active. This would suggest that the difference between layer 2/3 and layer
5 is that in the first case ¢ > 1 and in the second @ < 1. Note that this does not mean
that J,., is larger in the former layer as compared to the latter. The interactions J, .,
Jps and J, ¢ are likely to be layer dependent (Jiang et al., 2015) and therefore so is
the value of o.

In both ALM and S1 layer 5, however, the relative suppression of the PC and PV activity
is the same for low light intensity. Model 1 can account for this feature but this requires
fine tuning of the interaction parameters. In contrast, in Model 2 the co-modulation of
the PC and PV activities stems from the architecture. Furthermore, it can equally well
account for the fact that the PV activity reaches its minimum for finite activity of the PC
population. In layer 5 (VIP) neurons are known to be very scarce (Tremblay et al.,
2016), we therefore assumed in Model 2 that population X is not the VIP population.
Chandelier cells that do not express the PV marker (Jiang et al., 2015) or Calretinin
positive neurons known to target the SOM population only in the superficial layers
(Callaway, 2016) could be good candidates for X.

Thus, whereas Model 1 implies a fine tuning of the parameters such that the relative
change in the PC and PV activity with stimulation is the same, in Model 2 this is not the
case. We therefore discarded Model 1 as a model for both ALM and S1 layer 5.
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Models 1 and 2 account for the heterogeneity of single neuron responses

The responses of PCs and PV neurons in the experimental data are highly
heterogeneous across cells. Indeed in ALM and S1 layer 5, PV neurons on average
show a paradoxical response but at the single neuron level the effect of the laser
stimulation is very diverse. Moreover, the firing rate of a neuron can vary monotonically
or non-monotonically with the laser intensity. For instance, when stimulated, the firing
rates of many PV neurons increase, although, on average the activity is substantially
smaller than baseline. Conversely, for some PV neurons the paradoxical effect is so
strong that the laser completely suppresses their activity.

We observed a similar diversity in single neuron responses in our simulations of Model
1 and 2. We should emphasize that in the simulated networks all the neurons were
identical and the cells in the same population received the same feedforward constant
external input. The only possible source of heterogeneities therefore comes from the
randomness in the network connectivity. The effect of this randomness on the network
recurrent dynamics is however non-trivial: one may think that the effect of the
fluctuations in the number of connections from neuron to neuron should average out
since in the models the number of recurrent inputs per neuron is large (K =500 or
more). This is not what happens because in our simulations populations which are
active operate in the balanced excitation/inhibition regime (Roxin et al., 2011; van
Vreeswijk and Sompolinsky, 1998, 1996). In this state, relatively small homogeneity in
the number of connections per neuron is amplified to a substantial inhomogeneity in the
response. Thus, strong heterogeneity in the response of neurons is not a prima facie
evidence for the heterogeneity of the level of Channelrhodopsin expression in the cells
nor is it for the diversity of the single neuron intrinsic properties.

Limitations

In our experiments we expressed ReaChR in all PV neurons and in all layers in ALM. In
particular, all PV neurons in layer 2/3 and layer 5 were simultaneously affected by the
photostimulus. Principal cells in layer 2/3 project to layer 5 and receive feedback from
the latter (Hooks et al. 2011, Naka and Adesnik, 2016). Interlaminar interactions are
likely to also contribute to the effect of the photostimulation.

In our models we did not take into account such interactions. Including strong
connections from layer 2/3 PCs to neurons in layer 5 and/or feedback connections from
layer 5 neurons to layer 2/3, could alter our interpretations. In the absence of data that
reveal the nature of interlaminar interactions, extending our model to incorporate these
is impractical given the large number of parameters to vary. Experiments in ALM and S1
where the optogenetic marker is expressed in only one layer at a time would constraint
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models which include interlaminar interactions and facilitate their analysis (Moore et al.,
2018).

There is a large amount of experimental evidence indicating that different synapses can
exhibit diverse dynamics depending on their pre and postsynaptic populations (Ma et
al., 2012). For instance, recent studies have shown that PCs to PV synapses are
depressing while the PCs to SOM synapses are highly facilitating (Karnani et al., 2016;
Xu et al.,, 2013). Synaptic facilitation and depression mechanisms could give rise to
dynamics which will make the network responses depend on the duration of the
photostimulation. Here, we did not take into account short term plasticity.

Mice neocortex mostly comprises PV, SOM and 5HT3aR expressing interneurons.
There is a growing amount of experimental evidence indicating that these populations
include different subtypes which may have distinct connectivity patterns (Naka and
Adesnik, 2016; Nigro et al., 2018; Tremblay et al., 2016). In the present work, we only
considered three populations of identical interneurons: PV, SOM and VIP or X. As the
number of populations increases, the number of interaction parameters increases
quadratically, making it a great challenge to uncover even simple mechanisms that
could underlie the network responses.

Comparison with previous theoretical work

The paradoxical effect was first described in (Tsodyks et al., 1997) and (Ozeki et al.,
2009) for weak interactions using coarse grained two-population rate models (Wilson
and Cowan, 1972). These models were extended in (Rubin et al., 2015) to a spatially
structured network to explain center-surround interactions and other contextual effects
in primary visual cortex. They found that these effects can be accounted for if the
neuronal transfer function is supralinear and the network is operating in the inhibition
stabilized regime (ISN). With supralinear transfer functions, whether or not the network
exhibits a paradoxical effect depends on the background rate of the inhibitory neurons.
These models were further extended by (Litwin-Kumar et al., 2016) to networks
consisting of PC, PV, SOM and VIP neurons with an architecture similar to (Pfeffer et
al., 2013). They studied the effect of photostimulation of the different inhibitory
populations on the responses and orientation tuning properties of the neurons. In a
recent study (Sadeh et al., 2017) have investigated the effects of partial activation of PV
neurons upon photostimulation in an ISN. They argued that depending on the degree of
viral expression, the average response of the infected neurons can decrease or
increase with the light intensity: it decreases only if a large proportion of the population
is infected. (Del Molino et al. 2017) showed that due to the non-linearity in the neuronal
transfer function, the response of the network to stimulation can be different for different
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background rates. In particular, they showed that it can reverse the response of SOM
neurons to VIP stimulation.

All these works considered inhibition stabilized networks in which the total recurrent
excitation is so strong that the activity would blow up in the absence of inhibitory
feedback. With our notations, this means that G, j,.. > 1/K, where G, is the gain of the
noise average transfer function (f-I curve) of the excitatory neurons. In fact, in these
models all the interactions j,, are of order 1/K so they are weak in our sense.

Moreover, these studies considered networks that are so small that it is impossible to
extrapolate their results to mouse cortex size networks.

Here we studied large network models (N = 76800) with strong interactions, i.e., Jop are

of order 1/+/K, and showed that paradoxical effect can be present or not depending on
the interaction parameters. However, since we used static synapses, changes in the
background rates cannot reverse the paradoxical effect in our models. This is because
with static synapses the balance equations are linear. One can recover this reversal if
one introduces short-term plasticity which will make the balance equations nonlinear.
We did not consider partial expression of channelrhodopsin in the PV population
because our goal was to account for experimental data where virtually all neurons were
infected. These effects have been studied in (Gutnisky et al., 2017; Sanzeni et al., 2019)
in strongly coupled networks of two populations yielding to the same conclusions as
(Sadeh et al., 2017).

Predictions

Our theory (Model 1) predicts that in ALM layer 2/3 the activity of the SOM and VIP
populations will decrease upon PV photostimulation (Fig. 4B). It also predicts that upon
PC photoinhibition, the PV activity will increase whereas the activity of the SOM and VIP
populations will decrease (Fig. 12A). This is because in Model 1 when the PV response
is non-paradoxical (%, >0) the product ¥, %,z is also positive (Supplementary
Materials, SMC). Furthermore, in ALM layer 2/3 the population activity of PCs
decreases upon PV photostimulation, y,, <0. Hence, y,, is negative. The balance of
the PC and the VIP inputs into SOM neurons implies that VIP and PC activity covary.
Finally, in Supplementary Materials SMC we show that if y,. >0 and x,, <0 then
necessarily . >0. Thus, upon PC photoinhibition, the SOM population activity should
decrease in ALM layer 2/3 (Fig. 12A).
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Figure 12. Predictions of the theory. A. In ALM layer 2/3, the activity of the PV
population decreases upon photoinhibition of the PCs. B. In ALM layer 2/3,
photostimulation of VIP neurons increases the activity of the PV population. C. In layer
5, PV and PC activity decrease proportionally upon photoinhibition of the latter. D. In
layer 5, the PC and PV responses are not proportional upon photoinhibition of the SOM
population. E. In layer 5, upon photostimulation of PV neurons and photoinhibition of the
SOM population with a constant input, the PV response is paradoxical but PC and PV
responses are no longer proportional.

In auditory and prefrontal cortex (Pi et al., 2013) as well as in S1 (Lee et al., 2013),
photostimulation of VIP neurons, activates them (y,,, >0) and disinhibits the PCs (
Xgy > 0) through an inhibition of the SOM population (%, <0). If this is also true in
ALM layer 2/3, our model predicts that photostimulation of VIP neurons increases the
PV activity (y,, >0) (Supplementary Materials, SMC, Fig. 12B).

In ALM and S1 layer 5 our theory (Model 2) predicts that the PC and PV activities will
proportionally decrease upon PC photoinhibition (Eq. (3), Supplementary Materials,
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SMD, Fig. 12C). Photostimulation of the SOM neurons modifies Eq. (3) and
consequently, the changes in PC and PV activity no longer covary (Fig. 12D). Thus, our
theory can be tested by photostimulating PV neurons as in our experiment, while also
photostimulating SOM neurons with a second laser with constant power. In this case,
the model predicts that ALM and S1 layer 5 will still exhibit the paradoxical effect but
that the responses of the PC and PV populations will no longer be proportional (Fig.
12E).

Perspectives.

We only considered response of the neurons for a large radius of the laser beam. In a
recent study (Li et al.,, 2019), Li et al. have investigated the spatial profile of the
response and its dependence on the light intensity. Our theory can be extended to
incorporate spatial dependencies. Studying the interplay between the connectivity
pattern and laser beam width in the response profile of the networks will provide further
constraints on cortical architectures.

Due to the strong interactions in our models, the nonlinearity of the single neuron f-I
curves hardly affects the population average responses. However, it influences the
response heterogeneity that naturally arises in our theory (Figs. 6-8-11). An alternative
model for the paradoxical effect is the supralinear stabilized network (SSN) (Rubin et al.,
2015) which relies on an expansive non-linearity of the input-output transfer function of
the inhibitory populations. Whether this mechanism can account for our experimental
data is an issue for further study. In particular, it would be interesting to know whether
the SSN scenario can account for the strong heterogeneity in the responses and for the
proportionality of the PC and PV population activities in layer 5. Answering these
questions may provide a way to discriminate between the balance network and SSN
theory.
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Material and Methods

Animals and Surgery

The experimental data is from 9 PV-Ires-Cre x R26-CAG-LSL-ReaChR-mCitrine mice
(age > P60, both male and female mice) (Hooks et al., 2015). 3 mice were used for
photoinhibition in somatosensory cortex (S1). 6 mice were used for photoinhibition in
anterior lateral motor cortex (ALM). All procedures were in accordance with protocols
approved by the Janelia Research Campus and Baylor College of Medicine Institutional
Animal Care and Use Committee.

Mice were prepared for photostimulation and electrophysiology with a clear-skull cap
and a headpost (Guo et al., 2014a, 2014b). The scalp and periosteum over the dorsal
surface of the skull were removed. A layer of cyanoacrylate adhesive (Krazy glue,
Elmer’s Products Inc) was directly applied to the intact skull. A custom made headbar
was placed on the skull (approximately over visual cortex) and cemented in place with
clear dental acrylic (Lang Dental Jet Repair Acrylic; Part# 1223-clear). A thin layer of
clear dental acrylic was applied over the cyanoacrylate adhesive covering the entire
exposed skull, followed by a thin layer of clear nail polish (Electron Microscopy
Sciences, Part# 72180).

Photostimulation

Light from a 594 nm laser (Cobolt Inc., Colbolt Mambo 100) was controlled by an
acousto-optical modulator (AOM; MTS110-A3-VIS, Quanta Tech; extinction ratio 1:2000;
1us rise time) and a shutter (Vincent Associates), coupled to a 2D scanning galvo
system (GVSMO002, Thorlabs), then focused onto the brain surface (Guo et al., 2014a).
The laser at the brain surface had a diameter of 2 mm. We tested photoinhibition in
barrel cortex (bregma posterior 0.5 mm, 3.5 mm lateral) and ALM (bregma anterior
2.5mm, 1.5 mm lateral).
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To prevent the mice from detecting the photostimulus, a ‘masking flash’ pulse train (40
1ms pulses at 10 Hz) was delivered using a LED driver (Mightex, SLA-1200-2) and 590
nm LEDs (Luxeon Star) positioned near the eyes of the mice. The masking flash began
before the photostimulus started and continued through the end of the epoch in which
photostimulation could occur.

The photostimulus had a near sinusoidal temporal profile (40 Hz) with a linear
attenuation in intensity over the last 100-200 ms (duration: 1.3 s including the ramp).
The photostimulation was delivered at ~7 s intervals. The power (0.5, 1.2, 2.2, 5, 12 mW
for S1 photostimulation; 0.3, 0.5, 1, 1.5, 2, 3.3, 5, 8, 15 mW for ALM photostimulation)
were chosen randomly. Because we used a time-varying photostimulus, the power
values reported here reflect the time-average.

Electrophysiology

All recordings were carried out while the mice were awake but not engaged in any
behavior. Extracellular spiking activity was recorded using silicon probes. We used
32-channel NeuroNexus silicon probes (A4x8-5mm-100-200-177) or 64-channel
Cambridge NeuroTech silicon probes (H2 acute probe, 25 ym spacing, 2 shanks). The
32-channel voltage signals were multiplexed, digitized by a PCI6133 board at 400 kHz
(National Instruments) at 14 bit, demultiplexed (sampling at 25,000 Hz) and stored for
offline analysis. The 64-channel voltage signals were amplified and digitized on an Intan
RHD2164 64-Channel Amplifier Board (Intan Technology) at 16 bit, recorded on an
Intan RHD2000-Series Amplifier Evaluation System (sampling at 20,000 Hz) using
Open-Source RHD2000 Interface Software from Intan Technology (version 1.5.2), and
stored for offline analysis.

A 1 mm diameter craniotomy was made over the recording site. The position of the
craniotomy was guided by stereotactic coordinates for recordings in ALM (bregma
anterior 2.5mm, 1.5 mm lateral) or barrel cortex (bregma posterior 0.5 mm, 3.5 mm
lateral).

Prior to each recording session, the tips of the silicon probe were brushed with Dil in
ethanol solution and allowed to dry. The surface of the craniotomy was kept moist with
saline. The silicon probe was positioned on the surface of the cortex and advanced
manually into the brain at ~ 3 um/s, normal to the pial surface. The electrode depth was
inferred from manipulator depth and verified with histology. Putative layer 2/3 units were
above 450 uym and putative layer 5 units were below 450 pm.
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Data analysis

The extracellular recording traces were band-pass filtered (300-6 kHz). Events that
exceed an amplitude threshold (4 standard deviations of the background) were
subjected to manual spike sorting to extract single units (Guo et al., 2014a).

Our final data set comprised of 204 single units (S1, 95; ALM, 109). For each unit, its
spike width was computed as the trough to peak interval in the mean spike waveform
(Guo et al., 2014a). We defined units with spike width <0.35 ms as FS neurons (31/204)
and units with spike width >0.45 ms as putative pyramidal neurons (170/204). Units with
intermediate values (0.35 - 0.45 ms, 3/204) were excluded from our analyses.

To quantify photoinhibition strength, we computed “normalized spike rate” during
photostimulation. For each neuron, we computed its spike rate during the photostimulus
and its baseline spike rate (500 ms time window before photostimulus onset). The spike
rates under photostimulation were divided by the baseline spike rate. The “normalized
spike rate” thus reports the total fraction of spiking output under photostimulation.

Network models

All the models we consider consist of strongly interacting leaky integrate-and-fire
neurons. We first study networks of one excitatory (E) and one inhibitory (1) population.
We then investigate two models comprising three inhibitory populations, namely
parvalbumin positive (PV or |), somatostatin positive (SOM or S) and a third population
either corresponding to the vasoactive intestinal peptide positive (VIP or V) neurons
(Model 1) or to an unidentified population denoted by X (Model 2).

In all models the total number of neurons is N =76800. In the two population model,
75% are excitatory and 25% inhibitory. In the four-population networks, 75% are
excitatory and the number of cells is the same, N/12, for all GABAergic inhibitory
population.

The data we seek to account for, were obtained in optogenetic experiments in which the
laser diameter was substantially larger than the spatial range of neuronal interactions
and comparable to the size of the cortical area were the recordings were performed.
Therefore, in all models we assume for simplicity that the connectivity is unstructured:
neuron (i,a), (a=E,I,S,V/X), is postsynaptically connected to neuron (j,f3) with
probability
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For simplicity, we take K. the same for all populations, Kp=K.

Neuron dynamics: The dynamics between spikes of the membrane potential of the
neuron (i,a) is given by

Cu dvd.f(t) = e Vi) = Vi) +HIN() + AL+ AY (2)

ext opto

Here, I%.(¢) is the net recurrent input into neuron (i,a), A% represents inputs from

ext

outside the circuit (e.g. thalamic excitation) to population o, and A% s the

opto

optogenetic input into neuron (i, a).

We assumed that the capacitance, C,,, is identical for all neurons and the leak
conductance, 8 is identical for all the cells in the same population. We take
Cy = 1uF.cm™2, g{eak =0.1mS .cm™? and giak = giak = g}éﬁf =0.05mS .cm™2.

Equation (2) has to be supplemented by a reset condition: if at time ¢ the membrane
potential of the neuron (i,a) crosses the threshold V(") =V, = -50mV , the neuron
fires a spike and its voltage is reset to the resting potential V(") =V, =-70mV .

Recurrent inputs: The net recurrent input into neuron (i,a) is
ai _ , af «op
Irec(t) - 62,1 JQB Eﬁ Cl] Sl (t) (3)

where C*® is the connectivity matrix between (presynaptic) population B and
(postsynaptic) population o, such that C;ﬁ =1 if neuron (j,p) projects to neuron (i,a)
and C;‘.B =0 otherwise. The parameter j.z , is the strength of the interaction from

neurons in population  to neurons population a.We assumed it to depend on the pre
and postsynaptic populations only. The polarity (excitation or inhibition) of the interaction
is denoted by €, . Therefore if § = £, g =1 and g; =— 1 otherwise.

The function S;.‘B(t) is
af o~ k
§;H(0) = % Jap(t=13)) (4)

where t]éj is the time at which neuron (j,) has emitted its k" spike, the sum is over all
the spikes emitted by neuron (j,[3) prior to time ¢ and
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Fop0) = et (5)

Top

where 1., is the synaptic time constant of the interactions between neurons in
population f and a.

External and optogenetic inputs: The feedforward input, A7 , into the neurons in

population a is described by inputs from 2 K external neurons with constant firing rate
r, =5 Hz and an interaction strength j , , therefore, A7 = 2Kj ,r,.

We model the ReachR photostimulation as an additional external constant input to the

stimulated population. For simplicity, we assume that this input, Ag‘;m =A,, is the

same for all stimulated neurons. Unless specified otherwise, we only consider
A=A and A® =0 for a #1 .

opto opto opto

In qualitative agreement with Fig. 3 in (Hooks et al., 2015) we take

Aopio = A Tog(1 + ) (6)

opto
where T, is the laser intensity and A, and I, are parameters.

Architectures of the four-population models: The network of Model 1 is depicted in Fig.
4A. In line with the results of (Pfeffer et al., 2013), there are no connections from PV to
SOM, VIP to PC and VIP to PV neurons. There is no mutual inhibition between SOM as
well as between VIP neurons. All the populations except SOM receive feedforward
external input.

The interaction matrix of the network is
UO.B] = (]EEJEIJES 0 ; jIEjIIjIS 0 ; jSE 0 OjSV ;jVEjVIjVS 0 ) (7)

The network of Model 2 is depicted in Fig. 9B. SOM only receives projections from PCs
and PV neurons. X neurons are recurrently connected and project to PCs and PV
neurons. The PC and SOM populations project to the population X. All the populations
except SOM receive feedforward external input.

The interaction matrix is
Uapl = Uge Jer Jes Jexs Jie Jidis Jixs Jse Jsi 005 Jxg Odxs Jxx) (8)

Numerical simulations: The dynamics of the models was integrated numerically using a
second-order Runge-Kutta scheme (Press et al., 1986) without spike time interpolation.
Unless specified otherwise the time step was Ar=0.01 ms and the temporally averaged
firing rates were estimated over 100 s.
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The balance equations

We consider recurrent networks of strongly interacting neurons (van Vreeswijk and
Sompolinsky, 1996) in which order +/K excitatory synaptic inputs are sufficient to bring
the voltage above threshold. To understand the behavior of such networks, it is
imperative to analyse how it behaves when K goes to infinity. To this end, we scale the
interactions as

Jup = P (9)
where J ¢ does not depend on K . Since a neuron receives on average K inputs from
each of its presynaptic populations, the total interaction from population  to a neuron
in population a is \/?JQB . To keep the relative strength of the optogenetic input, Agpm ,
as K increases we take

Ao =T VK (10)

where 7~ depends on the intensity of the laser:

T
o _ (03 opto
1. = Iy log(l+ T ) (11)

opto
We take: Iy =1, =8nA and Iy =T, =0.5mW .mm 2.

The net input into the neurons must remain finite in the infinite K limit. This implies that
up to corrections which are of the order of LK ,

2Jaor0+lgpm+%fal3 Eﬁr[?):() (12)

In a n-population network, these n equations determine the n firing rates
ro,» @ €{1,...,n}.

This set of linear equations express the fact that, for the population activities to be finite,
excitatory and inhibitory inputs to the neurons must compensate. These “balance”
equations have a unique solution (unless the determinant of the matrix Jop is zero). To
be meaningful the solution must be such that all population activities are positive. This
constrains the feedforward and recurrent interaction parameters.

The stability of this balanced solution further constraints the interaction parameters and
synaptic time constants. A necessary condition for the stability is that det [J o] >0. This

condition guarantees that the “balanced state” is stable with respect to divergence of the
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firing rates. A complete study of these constraints for our LIF networks is beyond the
scope of this paper.

In all the models, we study parameter ranges in which, at baseline (Igpm =0), the
network operates in a stable balanced state. For Igpm sufficiently large, it may happen

that one or more population activity reaches zero. In this case, the network evolves to a
partially balanced state in which the rates of the populations that remain active satisfy a
reduced set of balanced equations. For example, if we consider a solution were the rate
of population y, r, is zero and all other rates are positive, the reduced balance
equations are

2Ja0r0+]gpm+ Z]aﬁiﬁrﬁzo (13)
By

for a #vy

Consistency of this solution leads to the requirement that the input into population vy is
hyperpolarizing.

2JYOr0+IZPIO+B§ JY[S Eﬁ rﬁ<0 (14)
PFY

Note that they may be multiple self-consistent solutions which are partially balanced.

Upon photostimulation of PV, in Model 1, the balanced equations are

2J oo ¥ Jgptp =gy —Jps s =0 (15.1)
2010t oo+ e =y 1 = d 57 =0 (15.2)
Jprpg—Jgy 1y, =0 (15.3)
2Jyoto v yprg—Jy,r=Jygrg =0 (15.4)

In particular, Eq. 15.3 implies that r,. and r,, are always proportional (J,, J¢, >0).
Similarly, in Model 2, the balanced equations are
200t ¥ pp eI g 1 ps Ts—JIpx Ty =0 (16.1)
2,0 ro 1 AT eI =T T T =0 (16.2)

opto

Jsg =577 =0 (16.3)
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2Jyoto+yvpTe=dysTs—Ixx Ty =0 (16.4)

Equation 16.3 implies that in this network r, and r, are always proportional
gps S5 >0).
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Parameters of the two-population model

Table 1.1 Connection strength matrix (rows: postsynaptic populations; columns:
presynaptic populations)

Jop (RA . ms .cm~2)| Feedforward | PC PV
PC 17 29 30
PV 17 36 36

Table 1.2 Synaptic time constants

Top (ms)| E |

E 4 2
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Default parameters of Model 1

Table 2.1 Synaptic time constants

T,p (ms) PC | PV SOM | VIP
PC 4 2 2 N/A
PV 2 2 4 N/A
SOM |2 N/A N/A |4

VIP 4 2 4 N/A

Table 2.2 Connection strength matrix for J,., > J,. (rows: postsynaptic populations;
columns: presynaptic populations)

Jop (WA .ms .cm™?) | Feedforward | PC PV SOM VIP
PC 34 20 26.4 41 0
PV 27 44 28 35.6 0
SOM 0 24 0 0 14
VIP 39 12 35.2 35 0

Table 2.3 Connection strength matrix for J,., <J,, (rows: postsynaptic populations;
columns: presynaptic populations).

Jop (WA .ms . cm™?] Feedforward | PC PV SOM VIP
PC 52 17.4 34.4 32.8 0
PV 39 36.6 29.2 28.8 0
SOM 0 24.2 0 0 16.8
VIP 30 31.2 31 14.6 0
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Default parameters of Model 2

Table 3.1 Synaptic time constants in Model 2

T, (ms) PC [PV |SOM |X
PC |4 |2 2 4
PV |2 |2 4 4
soM |2 |2 NA | N/A
X 2 |[NA |4 N/A

Table 3.2 Connection strength matrix (rows: postsynaptic populations; columns:
presynaptic populations).

Jop (HA . ms .cm™?)| Feedforward | PC PV SOM X
PC 48 20 30 32 36
PV 29 40 28 16 32
SOM 0 26 12 0 0
X 24 24 0 36 22
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Supplementary Material: Theory of strongly interacting networks with
multiple inhibitory populations.

A. Mean field theory

Let us consider a network consisting of P populations (e.g. P =4) receiving
feedforward input, A, from an external population with constant firing rate, r,, and

an optogenetic input, A‘O‘pm (Materials and Methods). The total input into neuron (i, ) is

190 =I5 () + AL, + AL (SM1)

0, opto

If the size of the network, N, and mean connectivity, K, are large and the synaptic
time constants are sufficiently small compared to the membrane time constants, one
can take the diffusion approximation and neglect the temporal correlations and write

120 = g + A C¢+~[Ba 140 (SM2)

where (7 is an i.i.d. Gaussian with zero mean and unit variance, and n?(t) is a
Gaussian white noise with zero mean and unit variance. The mean input, «,, is

ug =[<Ip ) >1= Ao +AL +KY jog egrg (SM3)
B

tot ext opto

where the population average firing rate of population B is r; = [rf’] and rf’ is the
firing rate of the neuron (j,B). Here <.> denotes temporal average (i.e. over n?(t))

and [.] is the average over the quenched disorder (7). The latter stems from
heterogeneities in the in-degree of the inputs into the neurons.

In Eq. (SM2), 4, is the variance of the quenched disorder which is given by

Au=kam>kw@=K%ﬁﬁ% (SM4)

while B, is the variance of the temporal fluctuations (Van Vreeswijk and Sompolinsky
2005)

By =& tim LIM™ar () - <1a@) > V] =k & > Jis 75 (SM5)

T At—0

In Eq. (SM4), ¢, = [()].
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Equations (SM4-5) have to be supplemented with the expression of the input-output

transfer function which relates the average firing rate, r, to the statistics of I, (1),

= qu +~Ay () Ba) (SM6)
ro = [ DG ®g(ua +Au G, Ba) (SM7)
4y = IDC ®q(ua + 40§, Ba) (SM8)

where D{ = %ﬂ e s dg,and @, is given by (Capocelli and Ricciardi 1971)

Dy(x,y) = {’\/? I))g dw e erfc(w)}_1 (SM9)

x—g* Vv x=g* Vo C . .
where X, = #R , Xy = #ﬂ and 1% = =L is the membrane time constant of

leak

the neurons in population a.

With j,g = i—]_g A% = 2VK J,ry and A% =1 VK (Materials and Methods), we

opto opto
obtain
g =VNK (24070 + 120+ X Jop & 7p) (SM10)
B
Ag =% Jiﬁ qp (SM11)
By = i% Jog Tp (SM12)

For finite, but large K, the average activity of population o is

ro = Wolug, g, Byl (SM13)
where ¥, is the right hand-side of Eq. (SM7).

In the limit where u, —— o, it can be shown that

ug?

Walta, Aw, Ba] ~ = i oo € T (SM14)
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In the large K limit, the activities, r,, have to satisfy a set of P linear balance
equations (Eq. (12), Materials and Methods) and are given by

_ 1 p
Fa= —&g % [J 7] ap ( 25070 +10pm) (SM15)

We define the susceptibility matrix, op » @S the derivative of the activity, r,, with
respect to Igpm,

Yop = —Ea [ Top (SM16)

At baseline (IEpm =0), the positivity of r,, Vo imposes conditions on the recurrent and
feedforward interaction strengths, J,, and J . The requirement that there are no

“partially” balanced solutions for which one or more of the P populations is inactive or
saturates and the stability of the balanced solution imposes further constraints.

B. Two-population model
Large K limit

For a two-population (one excitatory E and one inhibitory 1) network, solving Eq.
(SM13) gives for a perturbation, 7 upon |,

opto

2y I =) o e Ioplu
rp = d (SM17)

_ 2 Jpo=JEEJ10) ro ~ I L

n e (SM18)

Ty
where A = J,., J,p = Jpp Iy -

The requirement that at baseline the network state is fully balanced and stable implies
that

Jeo < Jer < JrE
£ > AL > SRR SM19
Jio Ju o i ( )

Therefore, A> 0.

The susceptibilities with respect to a perturbation of | are

e = — & (SM20)
Wy = - (SM21)
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which both are negative. Therefore, r, and r; decrease linearly with /,,,, i.e., the
response of the | population is paradoxical.
It is useful to consider the susceptibilities normalised to baseline rate

Ter = — Ja1 SM22

Ker = 2WUpJdeo=JE1d10) 7o ( )

— J

X]l - 21eJdEo fl::]EEJIO) To (SM23)

Eq. (SM19) implies that, \;‘(E,~ is larger than ‘XH‘.

Moreover, whereas 7, is independent of J.., ¥, dependson J.,. When J.. =0,

% 1s zero: the PV activity is insensitive to 7, .

The identity of the two normalised susceptibilities can only be achieved with a
fine-tuning of the interaction parameters such that A = 0 for

Jep = I J gy (SM24)
Concurrently, as J, — J, J,;/J,;, the activity of the two populations diverge as 1
with a constant ratio equal to % Thus, to keep the activities finite,

2y dge = I o @and 2, Iy — S J,0) y Must also tend to zero.

Finally, if 1 =1 =2(Jgo ! Jpr= Jio) 1o, re vanishes (Fig. 3-S1). When

opto opto

Lyw>1,,,, the balance  between the total external  excitatory

(optogenetic+feedforward) and recurrent inhibitory inputs into | implies that », linearly

increases with /,,, and the slope is 1/, .

*

Finite K corrections to r, and r; near I

When K is finite, », starts to increase with /=~ when r, is exponentially small in K.

opto
%

To show that, we have to derive the leading order correction to the activities near 7, .

We make the ansatz that when /,,, = I’;pw +31 \/% , T = Vg \/% + corrections

and 1, =r7+v, \/"’gKﬂ +corrections, where v, and v, are O(l) and
ry =2Jgyro/ Jg is the inhibitory firing rate at 7, = Izpm in the large K limit.

To leading order:

r® =W [\Iog(K) (31 +J ;v — Jyv)), A7, BY] (SM25.1)


https://doi.org/10.1101/688002

bioRxiv preprint doi: https://doi.org/10.1101/688002; this version posted July 2, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Vg ’\’ log% = \PE[\/IOg(K) VeeVe — Jevo) AE?O’ B?Eo] (SM25.2)

where 4; and B, a € {E,I}, are the variance of the temporal and quenched noise
in the large K limit (Eqs. SM11-SM12).

Equation (SM25.1) implies that
SI+J vy — IV, = O(W) (SM26)

Together with Eq (SM25.2) one obtains

Ve B~ - (T 81 + v AWTog(®) [y, A7 BE] (SM27)

where A=J ., J,.—JppJy; -

Forlarge K,
2
_ (JE:M;_:_/E@A) log(K)
\Vj—% = J% g dl+tvgA)e P07 (SM28)
where 0 = - ;

TNT (24%+ BEY?
Since v, must be positive, (J,, 6/+v,A) must also be positive, Eq. (SM28) then
implies that to leading order

»  B;
vp=x(Jy, \/AE + =L —Jp; 81) (SM29)

Hence, v, is

[~ B:
v, = i(J,E Ap +=£ = J g 81 (SM30)

Therefore, both v, and v, decrease with 87. This holds for 6/< JJ—;’I\/AE + B—E . Beyond

this range r, is exponentially small, v, = & and r, increases with /

Ji opto *

In conclusion, when the response of the | population is minimum the firing rate of the
excitatory population is exponentially small in K .

C. Four-population model: Model 1
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Large K limit

In Model 1, the population susceptibilities in response to a perturbation of the PV
population are given by Eq. (SM14)

Xer = sy Upp Jys = Jps Ty 1A
(SM31)

Y = Jsy Uge Jys —Jgs Jyp) /A
(SM32)

Xs1 = Jsy Ugr Jyg—Jge Jyp) 1 A
(SM33)

Isg
Iy XEl

Xvi
(SM34)

where A =det(J).

Interestingly, for stable solutions (A > 0), if x,, <0 and yx,, >0 necessarily x,, > 0.
Similarly, if y,. >0 and y,, <0 necessarily x,, >0.

Let us consider a particular set of parameters for which a stable balanced solution
exists when J,.. =0 (A(0)>0).
The susceptibility x,, as a function of J . is

Jys Jeg —JveJE
) JSVW (SM35)

AJyp) = = Kpp Jep + AO) (SM36)

where % oz = %pp - AU ) =I5y U1 ds — 1) 5 is the numerator in the
susceptibility ¥, .

In our models, we assumed y,, > 0. When J.,. =0, A(0) is positive thus, x,,(0) <0.
As J increases, the sign of x,,(J,,) depends on the order relationship between two
quantities. The first one, J;;, is the value of J,. for which the numerator in Eq.
(SM35) changes sign

Ty = T (SM37)

The second one, Jy, , is defined by A(J.;) =0
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Je, =20 (SM38)
Therefore, for J . > Jy., the dynamics is unstable. Two cases can be distinguished:

1) I Jpp <J%p,
and becomes positive for J,, > J . .
2) If J. >J5., %, is adecreasing function of J,,. and is negative in all the region

where the dynamics is stable.

then y,, is an increasing function of J . It is negative if J,.. <J.

The derivative of y,,, (Eq. (SM35)), with respect to J,, , has the same sign as y,, % -
Therefore, y;, x, is positive in the first case and negative in the second.

Experimental data shows that the activity of the PC population decreases upon PV
photostimulation, i.e., x,, <0. Therefore, if y,, >0 as in ALM layer 2/3, y,, must be
negative, i.e., the activity of the PV population decreases upon PC photostimulation.

Finite K
When [, is sufficiently strong, a fully balanced solution (r, >0, Vo) no longer exists

(inour case r, =r, =0). To understand the network behavior after this point we need
to consider finite K corrections.

Since the PC and VIP population activities decrease with /

opio» When 1 is sufficiently

large and due to the balance of the SOM input, », and r, will both be at most O(%K).

Let us write: , =+ and r, = = where v, and v, are at most O(1).
One should consider four cases:
1) v and v, are O(1).

In this case, the average net input into the SOM population, ug=Jg, v, —Js, v, , is
O(1) and the temporal fluctuations, B, and heterogeneities, A, are negligible. If u
is larger than the rheobase, (V, — V) /gfeak, rg is also O(1). Otherwise, r, =0.

Because v, and v, are O(1), uy and u, are o(1NK) . Thus, to leading order,
200~ Jg 7~ Jpsts =0 (SM39)
2Jy0r0 =Sy, 1= Jyg T =0 (SM40)

Moreover, the balance of the PV population implies that

2J0r0t 1

opto
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Thus, there are three linear equations (Egs. (SM39-40-41)) for two unknowns (r, and
r¢) . These cannot be satisfied and hence, in this case, there is no consistent solution.

2) vp=o(l) and v, = O(1).

Here, to leading order, u, =—-J,,v, <0, while 4;=B;=0. As a result, to leading
order, rg = 0. The activity of the PV population is then

rp=QJpry + 1

opto

)/ J (SM42)
Because v, is O(1),

2JV0 o~ Jyp rIZO
(SM43)

Eqgs. (SM42, SM43) cannot both be satisfied. This solution is also inconsistent.
3) vy =0(1) and v, =o(1).
In this case u, = J, v, >0 and therefore r¢ can be O(1). Egs. (SM39) and (SM41)
imply
2Jp0r0—Jg 1y~ Jpgrg =0 (SM44)

2000t 1

opto

_J][ I’I—JISVSZO (SM45)

which determine r, and r. Provided that the parameters are such that they are
positive, v, is given by

rg= Y5l Jgp Vg, 0,0] (SM46)
Finally, since v, = o(1) consistency implies that
2Jy010=Jy; 1 Iy g <0 (SM47)

Detailed calculations show that they are parameters such that this solution is

consistent for a finite range of 7, .

4) vy =o(1) and v, =o(l).

Here, ug=A4,=B;=0 and thus, r,=0. This solution exists only for sufficiently large

L opio such that »; and u, are O(\/I?) and negative. Therefore, PV is the only active

population and r, is given by Eq. (SM40).
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In conclusion, in this model at the minimum of »,, r, is of order 311? in contrast to the

two-population case where r,. is exponentially small in K .

D. Four-population model: Model 2
Large K limit

To get insights on the network architecture that could explain the proportional
paradoxical effect observed in layer 5 of ALM and S1, we first considered a
three-population network consisting of the PC, PV and SOM populations (Fig. 9A).

In this network, the population activities are

2Wgs 10~ Jis Jpo) ro + ks ]Uptt)

re=Jg 4 (SM48)

=75 (SM49)
2(ydsgigds) I~ (I Jsg —Jpp Js1 ) ~ e Jdse = JeeIs) Lopo

]"S — ( ( 117 SE Y IE Sl) EO ( EI Y SE Ez SI ) 10 ) To ( EI Y SE EE Sl) opi (SMSO)

where A = (J; Jgp = Jip Jg) Jps + (g Jsp = Iy Jsp) J15> 0.
The full balance of the network activities implies

J 2J50 T, J
S Zlmn o Ju (SM51)
Jis 2010t Jir

opto

Therefore, r; and r, are proportional (Eq. SM49) and increase with L opio - As a

consequence, the network never exhibits the paradoxical effect.

In this three-population network, the proportionality of r, and r, stems from the
balance of inputs into the SOM population. To account for the proportional paradoxical
effect, we consider a network model with an additional inhibitory population, denoted X
(Fig. 9B). Because in this network the SOM neurons only receive inputs from PCs and
PV neurons, here, the balance of the SOM input also ensure the proportionality of r,
and r,.

The susceptibilities upon PV stimulation are

Xer =Jsi Ugs Iyx —Jpx Iys) 1 A
(SM52)

X~ % XEI (SM33)
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Xs1 :(JEE Jsi Ixx =Ixe Jsi Ixe =Jpr Ise JXX) /A
(SM54)

XX] =(JES JS[ JXE+JE1 JSE JXS_JEE JSI JXS) / A
(SM55)

where A = det(J) (Material and Methods).

Paradoxicality implies that

s Txx (SM56)

£3
Jex > gy = =5

The susceptibilities upon PC stimulation are

tee =Jsi Uiy Jxs =g Jyx) 1 A

(SMS57)
JSE
XIE — Tg XEE
(SMS58)

XSE - (JIX JS] ‘]XE + JI] JSE JXX o J[E JS] JXX) /A (SM59)
tve =g JsIxs ~JisIsiIxe = JudsgIxs) I A (SM60)
Therefore, the PC population activity increases upon PC stimulation if
JIX JXS > JIS JXX (SM61)
One can find a range of parameters (e.g. Fig. 9C) such that:

1) The relative decrease in the SOM population is larger than that in the E and |

populations. As a consequence, as Lopio is increased, rg¢ approaches zero when the

PC and PV activities are still finite.

2)As I

opto is increased further, the network settles into a partially balanced state were

rg, r; and ry are finite and r; increases with 7, while r; continues to decrease.

opto’

Thus, r, reaches its minimum value when r,. is finite even in the large K limit.
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Supplementary Material (Figures)

0 1 2 3
r  (mW/mm?)

opto

Figure 3-S1. Current, / v.s. laser intensity, I' . Parameters are /, =8 n4,

L, =05mW.mm?2.

opto ? opto

A1.2< B 34
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opto Iopto

Figure 3-S2. Effects of K on the responses of a two-population network to
photoactivation of the inhibitory population. A. J., =22 p4 .ms.cm™?, the inhibitory
population activity always recovers when the PCs are silenced. B. J., =0, as K
increases, the response of the inhibitory population becomes more and more
insensitive to the perturbation. Cross: K =50; triangles: K =100; circles: K =500.
Color code and parameters as in Fig. 3. Baseline firing rates: A. K =50: r, = 10.8 Hz,
r, =168 Hz; K=100: r, =88 Hz, r,=147Hz; K=500: r,=57Hz, r,=11.7Hz;
K=ow: r,=39Hz, r,=85Hz. B. K=500: rp=19Hz, r,=3.6Hz; K=100:


https://doi.org/10.1101/688002

bioRxiv preprint doi: https://doi.org/10.1101/688002; this version posted July 2, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

rp=2Hz, r,=48Hz; K=500: rp,=15Hz, r,=57Hz; K=oo. r,=14Hz,

r;=9.1Hz.
A B

1.8 1.8 30 . 30
~ 1.6 ~ 1.6 ~ 1.
N N N
§ 14 § 14 5
[ B} ]
£ 12 \_ £ 12 =, E 1.
< =< - <
s 1 S 1 =
b b i
— 0.8 0.8 o

0.6 0.6 .

(p A.ms.cm 2) (,u A.ms.cm 2) (;z A.ms.cm 2)

Figure 3-S3. Two-population model. The response of the PC and PV populations upon
stimulation of the latter are proportional only if parameters are fine tuned. A. %, /¥,
where ¥, = (r¢"”"/r, —=1)/T,,, (Supplementary Materials SMB) estimated for

Lo =0.03mW.mm=>. The ratio is close to one only if Jy.=J;J,/J,
=30pd .ms.cm 2. B. Approximate proportionality of the response together with
reasonable activities can be achieved only in a very small region of the parameter

space (red star). Parameters as in Fig. 3. K =500.
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Figure 4-S1. Graphical representation of the population susceptibilities upon
stimulation of PV in Model 1 (large N, K limit). Note that y,, = %’ XE] -
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Figure 4-S2. Population activities vs. L oio in Model 1 (large N, K limit). The activities

are normalized to baseline. A. Parameters as in Table 2.2. The activity of the PV (blue)
population increases with Lopio - For PC (red cross), SOM (green) and VIP (gray) the

activity decreases. B. Parameters as in Table 2.3. In the shaded region, the network is
bistable. In one stable state all the four populations are active. In the other stable state,
only the PV population is active. A third state in which only the PV and SOM
populations are active exists in this range of laser intensity (dotted-dashed line). This
state is unstable. Baseline firing rates as in Fig. 4.
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Figure 5-S1. Model 1 with J,,. > J7, . Robustness to a change of +10% in the
interaction parameters. A. Distribution of the population activities. B. Distribution of the
activity changes upon stimulation for Lopio =0.07mW. mm~% . Color code as in Fig. 5.

Rates are averaged over 10s.
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Figure 5-S2. Model 1 with J,, > J7. . Robustness with respect to change in the
average connectivity, K. Triangles: K = 500; cross: K = 1000; circles: K =2000.

N, =10000 neurons per population. Baseline firing rates: K =500: r. =3.3 Hz,
r,=65Hz, rg=59Hz, r,=35Hz; K=1000: r,=3.0Hz, r,=6.6 Hz, r¢=5.6 Hz,
r, =37Hz; K=2000: r,=29Hz, r,=67THz, r¢=54Hz, r, =38 Hz. Rates are
averaged over 10 s. Color code and parameters as in Fig. 5.
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Figure 5-S3. Model 1 with J ., > J7. . Firing statistics at baseline. A. Distribution of the
firing rates (mean: r, =33 Hz, r,=6.5Hz, rg=59 Hz, r, = 3.5 Hz). B. Distribution
of CV. Color code as in Fig. 5. Parameters as in Fig. 5. Individual rates are averaged
over 100 s with a threshold at 0.05 Hz. CVs are computed over 30s.
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Figure 7-S1. Model 1 with J, <J%, . Robustness to a change of +10% in the
interaction parameters. A. Distribution of the population activities. B. Distribution of the
=0.07 mW. mm? . Rates are averaged over

activity changes upon stimulation for T’

opto

10 5. Color code as in Fig. 7. Parameters as in Fig. 7.
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Figure 7-S2. Model 1 with J, <J7, . Robustness with respect to change in the
average connectivity, K. Triangles: K = 500; cross: K = 1000 ; circles: K =2000.

N, =10000 neurons per population. Baseline firing rates: K =500: r. =4.7 Hz,
r,=112Hz, rg=71Hz, r, =52Hz; K=1000: r,=41Hz, r,=103 Hz, rg=7.6 Hz
, 1y, =47 Hz; K=2000: r,=37Hz, r,=97Hz, r¢=78Hz, r, =44 Hz. Rates are
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averaged over 10 s. Color code and parameters as in Fig. 7.
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Figure 7-S3. Model 1 for J,, <J . . Proportionality of the PC and PV activity requires
fine tuning. A. The response of the PV population is paradoxical for small L oo and is
proportional to the PC response. B. Responses of the SOM and VIP neurons. Baseline
firing rates: r, =64 Hz, r,=122Hz, ry=65Hz, r, = 11.0 Hz. Color code as in Fig.

7. Parameters as in SM Table 1.
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Figure 7-S4. Model 1 with J, <J7 . Firing statistics at baseline. A. Distribution of the
firing rates (mean: r, =4.8 Hz, r, =112 Hz, r¢=7.1 Hz, r,, = 5.3 Hz ). B. Distribution
of CV. Individual rates are average over 100 s with a threshold at 0.05 Hz. CVs are
computed over 30 s. Color code as in Fig. 7. Parameters as in Fig. 7.
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Figure 9-S1. Model 2. Graphical representation of y,, (large N,K limit). Note that
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Figure 10-S1. Model 2. Robustness with respect to change in the average
connectivity, K. Triangles: K =500; cross: K =1000; circles: K =2000. N, = 10000
neurons per population. Color code and parameters as in Fig. 10. Baseline firing rates:
K=500:r,=42Hz, r,=70Hz, r¢=70Hz, ry,=40Hz; K=1000: r, =4.0 Hz,
r,=68Hz, ry=68Hz, r,=38Hz; K=2000: r,=3"7Hz, r,=68Hz, r¢=6.7Hz,
ry = 3.8 Hz . Rates are averaged over 10s.
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Figure 10-S2. Model 2. Robustness to a change of +10% in the interaction
parameters. A. Distribution of the population activities. B. Distribution of the activity
changes upon stimulation for Lopio =0.07mW. mm~% . Rates are averaged over 10s.
Color code as in Fig. 10.
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Figure 10-S3. Model 2. Firing statistics at baseline. A. Distribution of the firing rates
(mean: r, =45Hz, r,=106 Hz, ry =72 Hz, r, = 4.9 Hz). B. Distribution of CV.
Individual rates are average over 100 s with a threshold at 0.05 Hz . CVs are computed
over 30 s. Color code and parameters as in Fig. 10.
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Parameters used in Figure 7-S3

Table SM1. Connection strength matrix (rows: postsynaptic populations; columns:
presynaptic populations).

Jop (1A . ms . cm ?) feedforward | PC PV SOM VIP
PC 40 20 32 22 0
PV 31 36 30 20 0
SOM 0 26 0 0 12
VIP 22 28 24 12 0
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