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In various biological processes such as endocytosis and caveolae formation, the cell membrane
is locally deformed into curved configurations. Previous theoretical and computational studies to
understand membrane morphologies resulting from locally induced curvature are often limited to
axisymmetric shapes, which severely restricts the physically admissible morphologies. Under the
restriction of axisymmetry, past efforts predict that the cell membrane buds at low resting tensions
and stalls at a flat pit at high resting tensions. In this work, we lift the restriction of axisymmetry by
employing recent theoretical and numerical advances to understand arbitrarily curved and deforming
lipid bilayers. Our non-axisymmetric morphologies reveal membrane morphologies which agree well
with axisymmetric studies—however only if the resting tension of the membrane is low. When
the resting tension is moderate to high, we show that (i) axisymmetric invaginations are unstable;
and (ii) non-axisymmetric ridge-shaped structures are energetically favorable. We further study
the dynamical effects resulting from the interplay between intramembrane viscous flow and induced
curvature, and find the rate at which the locally induced curvature increases is a key determinant
in the formation of ridges. In particular, we show that axisymmetric buds are favored when the
induced curvature is rapidly increased, while non-axisymmetric ridges are favored when the curvature
is slowly increased: The rate of change of induced curvature affects the intramembrane viscous flow
of lipids, which can impede the membrane’s ability to transition into ridges. We conclude that the
appearance of non-axisymmetric ridges indicates that axisymmetry cannot be generally assumed
when understanding processes involving locally induced curvature. Our results hold potentially
relevant implications for biological processes such as endocytosis, and physical phenomena like phase
separation in lipid bilayers.

I. INTRODUCTION

The cell and its organelles are marked by a variety of
strongly curved and dynamic boundaries where local cur-
vature induction is vital. For instance, the cell membrane
forms spherical vesicles as an important means of traffick-
ing [1], and the endoplasmic reticulum maintains but also
dynamically remodels networks of tubules [2, 3]. Endocy-
tosis is another prominent biological process where cur-
vature is locally induced. During endocytosis, proteins
bend the cell membrane through different mechanisms
such as scaffolding and protein insertion [4–7]. Other
processes that can induce spatially varying curvatures
are, for instance, charge deposition on one of the lipid
monolayers [8], spatial variation of the lipid composition
through phase separation [9], as well as the formation of
block liposomes [10]. The examples given above show the
significance of locally induced curvature in synthetic and
biological systems.

While local curvature induction in lipid membranes
is known to play an important role in many biological
systems, the physics underlying such phenomena is not
well-understood. Theoretical and numerical studies are
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required to better understand such processes—however,
the time scale for phenomena involving local curvature in-
duction is often on the order of seconds [11–13] and the
corresponding deformations range over lengths of 100–
1000 nm [5, 11, 14]. Such length and time scales can-
not be resolved using molecular simulation methods, and
hence a continuum approach is often employed to un-
derstand membrane-mediated processes involving locally
induced curvature.

Using a continuum approach, many studies have suc-
cessfully modeled shape changes in lipid membranes. The
continuum model commonly used for lipid bilayers is de-
veloped in the seminal contributions by Canham [15],
Helfrich [16], and Evans [17], and can be considered an
extension of Naghdi’s work on shell theory [18]. Since
these pioneering developments, the model and its ex-
tensions have reproduced many experimentally observed
morphologies of lipid vesicles [19–22], including tubule
formation from giant unilamellar vesicles [23, 24].

Many works also studied the effects of locally induced
curvature on lipid membranes. Continuum models were
used in a variety of contexts, including in the study of
compositional asymmetry during phase separation [25–
29] and protein-induced curvature [30–34]. Biological
processes such as lipid droplet formation [35, 36] and
endocytosis [31, 37–42] were also modeled via locally in-
duced curvature in previous studies. However, due to
the mathematical and numerical complexity of modeling
lipid membrane dynamics, most of the aforementioned
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studies do not allow for arbitrary deformations. Instead
they are often restricted to axisymmetric shapes or small
deviations from fixed geometries such as planes, cylin-
ders or spheres. Such studies do not capture arbitrary
morphological changes occurring between different ge-
ometries. Moreover, many of these studies ignore the
interplay between induced curvature and intramembrane
viscous flow.

The present study is based on recent theoretical ad-
vances [43–46] and corresponding numerical develop-
ments employing finite element methods [47–51], all
within the framework of differential geometry, which cap-
ture the coupling between elastic out-of-plane bending
and non-equilibrium processes such as intramembrane
fluid flow, intramembrane phase transitions, and chem-
ical reactions on arbitrarily curved and deforming lipid
bilayers. By building on these recent advances, we study
membrane morphologies resulting from locally induced
curvature, without any restrictions on the permissible
membrane shapes. In this work, we identify a novel,
non-axisymmetric mode of deformation at moderate to
high resting tensions where locally induced membrane
curvature leads to the formation of ridges. In contrast,
axisymmetric solutions are only preserved in the case of
low resting tensions. By conducting a parameter study,
we further find that the formation of ridges is influenced
by the magnitude of induced curvature and its rate of
increase. Thus, the assumption of axisymmetry is not
generally valid in studies of locally induced curvature,
and our study contradicts previous studies of membrane
deformations due to locally induced curvature [37–41].
Our results advance the preliminary findings of Ref. [48],
where energetically favorable, non-axisymmetric defor-
mations were first observed.

II. THEORETICAL MEMBRANE MODEL

In this section, we briefly describe our theoretical
model; however the interested reader is referred to the
Supplementary Information (SI) and Ref. [46] for fur-
ther details. Lipid membranes are unique materials in
that they behave like a fluid in-plane yet elastically re-
sist bending out-of-plane. Moreover, lipid bilayers are
practically area-incompressible [52]. We model the lipid
membrane as a single two-dimensional manifold about
the membrane mid-plane.

The elastic membrane behavior is governed by the en-
ergetic penalty for bending, commonly captured with the
Helfrich free energy [16], and the membrane’s areal in-
compressibility. The free energy per unit area is given
by

w = k (H − C)
2

+ kgK +
1

J
λ (1− J) , (1)

where H and K are the mean and Gaussian curvatures,
respectively, k and kg are the corresponding mean and
Gaussian bending moduli, J denotes the relative change

in surface area with respect to a reference configuration,
and λ is the surface tension. In Eq. (1), the first two
terms comprise the Helfrich free energy density and the
last term accounts for the incompressibility constraint.

We model the effects of induced curvature with the
spontaneous curvature C, which makes it energetically
favorable for the membrane to be curved (H 6= 0) when-
ever C 6= 0. However, when the membrane changes
shape, lipid are required to flow in-plane. We model
the in-plane flow as that of a two-dimensional Newto-
nian fluid, which results in additional in-plane viscous
stresses (see SI). Furthermore, we note that in-plane vis-
cous flows are coupled with the out-of-plane membrane
motion [43, 44, 46], leading to an intricate relationship
between surface flows, out-of-plane deformations, and
surface tension gradients [44, 50]. For the length scales
involved in this study, dissipation in the bulk fluid is
negligible compared to the in-plane viscous dissipation
[43, 53, 54]. Hence, we neglect effects of the bulk fluid
surrounding the membrane. We also neglect effects from
intermonolayer slip [43, 53], which are deferred to a fu-
ture study.

III. SIMULATION PROCEDURE

We employ our recent isogeometric finite element for-
mulation [48] to simulate lipid membranes under the in-
fluence of locally induced curvature (see SI for details).
To study the morphologies resulting from locally induced
curvature, we consider a model system consisting of a
large circular lipid bilayer patch of radius L, shown in
gray in Fig. 1. The outer edge is subjected to a uniform

λ0λ0

λ0λ0

C0

t

Ċ0

1

FIG. 1. Top view of the domain used for simulations (up-
per inset). On the outer boundary, a boundary tension λ0

is applied to simulate the resting tension far away from the
location of curvature induction. A non-zero spontaneous cur-
vature of magnitude C0 is applied in the center of the circular
geometry (shown in green), and is linearly increased over time
as shown in the lower inset.
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surface tension λ0, which from now on will be referred
to as the resting tension. We study local curvature in-
duction by imposing a nonzero spontaneous curvature
C = C0 in a chosen region in the center of the circular
patch, shown in green in Fig. 1. The central patch, where
C 6= 0, is hereafter referred to as the coated area, in refer-
ence to a curvature-inducing protein coat as observed in
endocytosis [6]. In all simulations, the spontaneous cur-
vature C0 in the coated area is linearly increased from 0
to Cmax

0 over time, at a rate Ċ0, as shown in Fig. 1. More-

over, we study the effects of varying Ċ0 on the resulting
membrane morphologies.

In our simulations, the coated patch is an ellipse
with principal semi-axes of lengths a = 1.02R0 and
b = 0.98R0, where R0 is a length that can be varied.
The ellipticity breaks the symmetry of the patch, as is
physically the case due to thermal fluctuations and non-
circular aggregations of proteins [48]. We ensure our
findings are independent of the ellipticity by consider-
ing different values of a/b (see SI). We assume that the
coated region is convected with the surface during defor-
mation, and neither grows nor diffuses. The latter as-
sumption is reasonable when the timescale of diffusion
of the curvature-inducing objects is much larger than
the timescale of deformation of the membrane. Further-
more, curvature-inducing proteins [55, 56] and lipids [57]
are known to preferentially aggregate in curved mem-
brane regions instead of diffusing freely. In the case
of clathrin-mediated endocytosis, for example, the diffu-
sion and growth of clathrin-coated pits are negligible [5].
Moreover, during endocytosis, diffusion is further limited
by the underlying actin network [58].

Parameter Symbol Value

bending rigidity k 30 kBT [59]

Gaussian bending rigidity kg −0.83k [60]

radius of model domain L 1000 nm

radius of coated area R0 100 nm [61]

in-plane viscosity ζ 10−8 Ns/m [62]

low resting tension λ0 10−4 pN/nm [63]

high resting tension λ0 10−1 pN/nm [64]

max. spontaneous curvature Cmax
0 0.04 1/nm

rate of spontaneous curvature Ċ0 0.013 1/(nm s) [65]

TABLE I. Baseline parameters used for the results of this
study, unless stated otherwise. The parameters are chosen to
be in biologically relevant regimes. Here, kBT = 4.12 pN nm,
where kB is the Boltzmann constant and T is the temperature.

IV. AXISYMMETRIC VS.
NON-AXISYMMETRIC RESULTS

We now present several observations from our
simulations, including both axisymmetric and non-
axisymmetric results. We begin by using a numerical
method to solve for axisymmetric membrane dynamics
(see SI), and present results which reproduce the results
of several past works [25–28, 31, 35, 37–42, 66]. We
then use our general numerical framework based on fi-
nite element methods [48] and allow arbitrary membrane
deformations. We find that when the resting tension
is high, the non-axisymmetric shapes are significantly
different from their axisymmetric counterparts, and are
lower in energy. We geometrically analyze the resulting
non-axisymmetric shapes and find them to be cylindrical
structures. We end by using energetic arguments to jus-
tify why the non-axisymmetric structures are preferred
over their axisymmetric counterparts, thus indicating the
latter are unphysical in nature under certain conditions.

In all simulations presented in this section, the spon-
taneous curvature C0 is increased from zero to Cmax

0 at
a constant rate, for a given resting tension λ0. All re-
sults shown are instantaneous solutions, i.e. snapshots of
an inherently dynamic process. We choose the rate Ċ0

to be small such that the membrane deforms slowly, the
in-plane viscosity has a negligible effect on the dynamics,
and the membrane generally finds its energy minimizing
configuration. The material and geometric parameters
chosen for our simulations are listed in Table I, which
will be used hereafter unless stated otherwise.

A. Axisymmetric Solutions

We restrict our general continuum theory [46] to
axisymmetry and present a corresponding numerical
method following Ref. [39] in the SI. In the axisymmetric
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FIG. 2. Axisymmetric shapes at different resting tensions. At
a low resting tension λ0 = 10−4 pN/nm, the membrane forms
a bud (C0 = 0.018 1/nm). When the resting tension is high,
λ0 = 10−1 pN/nm, membrane invagination stalls—which re-
sults in a shallow, flat pit (C0 = 0.040 1/nm). The color of
the three dimensional membrane configurations indicates the
mean curvature H.
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(a) mean curvature H at λ0 = 10−4 pN/nm
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(b) mean curvature H at λ0 = 10−1 pN/nm

C0 = 0.0040 1/nm C0 = 0.0056 1/nm C0 = 0.0068 1/nm

FIG. 3. Snapshots of membrane shapes at different resting tensions λ0 and different spontaneous curvatures C0 resulting from
non-axisymmetric simulations. In the low resting tension case of λ0 = 10−4 pN/nm, the non-axisymmetric solutions resemble
the corresponding axisymmetric solutions. In the high resting tension case of λ0 = 10−1 pN/nm, the solution branches out into
a non-axisymmetric, elongated structure, unlike its axisymmetric counterparts.

case, the membrane’s radial, axial, and azimuthal veloc-
ities are all required to be independent of the azimuthal
angle. As opposed to most axisymmetric studies of lo-
cally induced membrane curvature [25, 26, 28, 37–41, 66],
we include the viscous forces arising from surface flows
during membrane deformation.

Figure 2 shows our axisymmetric results at low and
high resting tensions. At the low resting tension λ0 =
10−4 pN/nm, as the spontaneous curvature in the coated
area is slowly increased, the membrane forms an invagi-
nation which deepens and eventually deforms into a bud
with a constricted neck, shown in Fig. 2. On the other
hand, at the high resting tension of λ0 = 10−1 pN/nm,
the membrane forms a shallow invagination and deforms
into a flat, circular pit as the spontaneous curvature is
further increased. Our axisymmetric results reproduce
those of earlier studies [39, 41], thus validating our nu-
merical results.

B. Non-Axisymmetric Solutions

We next relax the constraint of axisymmetry, thus al-
lowing general membrane deformations, using the finite
element formulation developed in Ref. [48] (see SI). At
the low resting tension of λ0 = 10−4 pN/nm, the mem-
brane forms a shallow invagination which deepens into a
bud as the spontaneous curvature is increased (Fig. 3a)—

a process qualitatively similar to the axisymmetric case
described above and shown in Fig. 2. In contrast, in the
high resting tension case of λ0 = 10−1 pN/nm, the non-
axisymmetric simulations differ strongly from their ax-
isymmetric counterparts. In particular, after forming an
initially shallow, axisymmetric invagination at low values
of C0, the membrane deforms into a shallow horizontal
ridge (Fig. 3b). The ridge is aligned along the longer prin-
cipal axis of the initially elliptic patch. In what follows,
we characterize the ridge structures geometrically and
then provide energetic arguments why ridges are favored
over the stalled, shallow pits observed in axisymmetric
simulations.

C. Ridge Characterization

A more detailed view of the ridge geometry is shown
in Fig. 4. The elongated ridge structure has a dumb-
bell shape and displays reflection symmetry about the
principal axes of the coated region. It has a long cylin-
drical body and terminates in spherical caps, as shown in
the zoomed-in view in Fig. 4. To further investigate the
ridge geometry and compare it with the spherical buds
observed at low tension, we plot the two principal cur-
vatures κ1 and κ2 for both ridges and buds (Fig. 5). At
low resting tension, κ1/κ2 is of order one in the budded
region, indicating that the bud is nearly spherical.
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FIG. 4. Top (left) and cross-sectional (right) views of the ridges forming at high resting tensions. The vertical axis is scaled
differently from the horizontal axis, where z0 := z(x = 0, y = 0) = 2.6 nm, R0 = 100 nm and L = 1000 nm. While the geometry
is not significantly curved along the longer principal axis (A), it is curved along the shorter principal axis (B), thus, resembling
a cylinder. Furthermore, the spherical shape of the ends of the ridge are visible.

At high resting tension, on the other hand, the two
principal curvatures are of the same order only at the be-
ginning of the simulation, when deformations are small
(Fig. 5b, left panel). As soon as the ridge develops, the
first principal curvature κ1 decays to a value that is one
order of magnitude lower than the second principal cur-
vature κ2. Such a combination of principal curvatures
demonstrate that the ridges are sections of cylindrical
structures.

D. Energetic Arguments: Buds vs. Ridges

To understand the difference between the axisymmet-
ric and non-axisymmetric simulations, we consider the
total elastic membrane energy

Π :=

∫
P
w da , (2)

where w is the energy density given in Eq. (1) and the
area integral is over the membrane patch P. We can sim-
plify Eq. (2) by recognizing (i) according to the Gauss–
Bonnet theorem, the integral of the kgK term over the
membrane area is a constant if the boundary remains flat,
and in our case can be ignored, and (ii) the membrane is
area-incompressible, such that the area stretch J = 1 ev-
erywhere. In this case, we can redefine our overall energy
to be

Π =

∫
P
k (H − C)

2
da , (3)

where we only need to take into account the difference
between the mean and spontaneous curvatures when an-
alyzing the membrane energetics.

We now consider the energetics of the axisymmetric
and non-axisymmetric membrane shapes, which are plot-
ted in Fig. 6. In the low resting tension case, the axisym-
metric and non-axisymmetric energies are almost identi-
cal (Fig. 6), and in both cases a bud forms. However,
in the high resting tension case, the axisymmetric and
non-axisymmetric energies only agree at low values of
C0. At higher spontaneous curvatures a ridge develops,
which is lower in energy than the axisymmetric stalled
pit (Fig. 6).

At this point, we provide arguments as to why ridges
are possible structures—in addition to closed buds. We
begin by splitting the total membrane energy (3) into
its contributions from the coated and non-coated areas,
where

Πcoat =

∫
Pcoat

k (H − C)
2

da , (4)

and Pcoat is the coated region of the membrane patch.
In the coated region, we observe that H ≈ C0 around
the resting tension and spontaneous curvature where the
membrane first transitions from shallow pits to either
buds or ridges. We recognize that the coat energy can be
minimized when H = 1

2 (κ1 + κ2) ≈ C0 in two different
ways:

κ1 ≈ κ2 ≈ C0 (Spherical buds) , (5)

κ1 ≈ 0, κ2 ≈ 2C0 (Cylindrical ridges) . (6)
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(b,1) first principal curvature κ1 at λ0 = 10−1 pN/nm

(b,2) second principal curvature κ2 at λ0 = 10−1 pN/nm

C0 = 0.0040 1/nm C0 = 0.0056 1/nm C0 = 0.0068 1/nm

FIG. 5. Plots of the principal curvatures κ1 and κ2 at different resting tensions λ0 resulting from the non-axisymmetric problem
setup. In the low surrounding surface tension case of λ0 = 10−4 pN/nm, the two principal curvatures match in the region of
the bud, which indicates a spherical shape. In the high resting tension case of λ0 = 10−1 pN/nm, the first principal curvature
is one order of magnitude lower than the second principal curvature, indicating a cylindrical shape.

Both choices are available to non-axisymmetric simula-
tions, while only Eq. (5) is compatible with the require-
ment of axisymmetry. Equation (5) leads to spherical
buds and is preferred at lower tensions in both the ax-
isymmetric and non-axisymmetric cases. On the other
hand, Eq. (6) leads to cylindrical ridges and is preferred
at high tensions—as seen in Fig. 5. The transition from
invaginations into spherical buds or cylindrical ridges is
marked by an instability (see SI). While the existence
of this instability is deduced entirely from numerical ex-

periments with the aforementioned heuristic arguments,
we aim to present a detailed theoretical stability analysis
in a future contribution. In particular, we seek to un-
derstand when non-axisymmetric simulations will branch
into spherical buds or cylindrical ridges, as both are en-
ergy minimizing solutions (see Eqs. (5) and (6)).

Additionally, at high resting tensions, axisymmetric
simulations result in shallow pits (Fig. 2), for which
H ≈ 0 and the coat energy Πcoat ≈ k C2

0Acoat (see
Eq. (4))—which is considerably larger than the energy
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FIG. 6. Comparison of the elastic energy Π defined in Eq. (2)
for the axisymmetric and non-axisymmetric cases. The sec-
ond and third subfigures show close-ups of sections of the top
figure. At a low resting tensions of λ0 = 10−4 pN/nm, the
stored energies in the two cases match closely. At a high
surface tension of λ0 = 10−1 pN/nm, the non-axisymmetric
branch deviates from the axisymmetric case and follows a
path with a significantly lower energy than the axisymmet-
ric solution. The line markers merely indicate that the plots
are generated from discrete datapoints, where, for clarity, the
number of line markers is much less than the number of dat-
apoints.

of a ridge (see Fig. 6). Accordingly, as a much lower
non-axisymmetric energy state exists, the axisymmetric
results previously found at high tension [39, 41] are un-
stable and unphysical.

V. MORPHOLOCIAL “PHASE” DIAGRAMS

All of the results presented thus far were generated for
a single coat radius R0, with the spontaneous curvature
ramped up at a single rate. In this section, we explore
the different morphologies accessible to lipid membranes,
for a range of parameters, in both axisymmetric and non-
axisymmetric settings. In particular, we study morpho-
logical “phase” diagrams, for which we consider systems
(i) with different coat radii R0, (ii) over a range of resting
tensions λ0, and (iii) with different rates of change of the

spontaneous curvature Ċ0. We find that increasing the

spontaneous curvature quickly can lead to an interplay
between in-plane viscous forces and out-of-plane defor-
mations, which prevent the membrane from reaching its
lowest energy configurations—thus affecting the transi-
tions from buds to ridges described previously. A clas-
sification of the morphologies observed in simulations is
provided in Table II.

A. Geometry Effects: R0 vs. C0

We first examine how different coat radii can affect
membrane morphology. As shown in Fig. 7, the coat ra-
dius does not qualitatively affect the observed membrane
shapes. At high resting tensions, the non-axisymmetric
simulations go from shallow pits to cylindrical ridges,
while the axisymmetric simulations always stall at flat,
shallow pits. We note that the spontaneous curvature at
which the transition occurs is almost independent of the
coat radius. At low resting tensions, both axisymmetric
and non-axisymmetric simulations transition from shal-
low pits to deep invaginations, and then to buds.

At low resting tension, we can also predict the onset
of bud formation by considering the geometric deforma-
tion of the coated area. We reported above that for a
bud, H ≈ C0 in the coated area (see Sec. IV D), which
implies the initial coated area deforms into a spherical
bud. Equating the initial and final surface areas, we find
πR2

0 = 4πR2
bud = 4π/(Cbud

0 )2, from which we approxi-
mate

Cbud
0 ∼ 2

R0
, (7)

where Cbud
0 is the spontaneous curvature at which a bud

is observed. Equation (7) is plotted as the dashed line in

Number Name Description Pictograph

I pit
shallow, axisymmetric

deformation

II
deep

invagination

deep, axisymmetric
deformation with
z(x = 0) > R0

III closed bud
deep invaginations with

constricted necks

IV ridge
non-axisymmetric, flat

cylinders

TABLE II. Classification of the morphologies observed in nu-
merical simulations of locally induced curvatures. The pic-
tographs will be used in the morphological “phase” diagrams
to indicate the respective morphology. The same pictographs
are used in both the axisymmetric and non-axisymmetric case
for clarity.
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FIG. 7. Morphological “phase” diagrams: radius of coated area R0 vs spontaneous curvature C0 at different values of the resting
tension λ0 at the lowest considered rate of spontaneous curvature Ċ0

0 . The shaded areas of the diagrams are not accessible with
our current numerical framework. In the low resting tension case, an inversely proportional relation between coated area and
spontaneous curvature required for closed buds is found. The dashed line shows the relationship in (7), where the proportionality
was replaced by an equality. The morphological “phase” diagrams from the axisymmetric and non-axisymmetric setup agree
well. In contrast to the low resting tension case, there is only a mild dependence on the size of the coated area when the resting
tension is high and ridges can form. The axisymmetric simulations yield shallow pits at all spontaneous curvatures.

Figs. 7a,1 and 7a,2, and reasonably predicts bud forma-
tion. Accordingly, bud formation at low resting tension
is a geometrical phenomenon.

B. Resting Tension Effects: λ0 vs. C0

Thus far, we presented simulation results for two ex-
treme cases of the resting tension: λ0 = 10−4 pN/nm
and λ0 = 10−1 pN/nm. However, resting tensions in
lipid membranes range from 10−1 pN/nm in yeast cells
[39] to 3 · 10−3 pN/nm in blebbing cells [64, 67], and to
even lower values in giant unilamellar vesicles [63]. Ac-
cordingly, we study axisymmetric and non-axisymmetric
membrane morphologies over a wide range of resting ten-
sions. Our results are captured in the morphological
“phase” diagrams in Figs. 8a,1 and 8a,2, which show
membrane morphologies as the spontaneous curvature
is increased, for each value of the resting tension. In
Figs. 8a,1 and 8a,2, the spontaneous curvature is in-

creased slowly, such that our simulations correspond to
quasi-static equilibrium configurations (Figs. 8b and 8c),

discussing rate effects associated with changing Ċ0, are
addressed in the subsequent section).

The non-axisymmetric simulations shown in Fig. 8a,1
again reveal there exist two paths for morphological tran-
sitions. At resting tensions below a threshold value of
λ0 ≈ 3 · 10−4 pN/nm, membranes transition from shal-
low pits to deep invaginations and then to spherical buds,
with the final morphology compatible with the spher-
ical energy minimization criterion of Eq. (5). Above
this threshold, on the other hand, membranes transition
from shallow pits to ridges—with the latter satisfying the
cylindrical energy minimization criterion of Eq. (6). In
stark contrast, the axisymmetric simulations shown in
Fig. 8a,2 do not have access to the second path to form
cylindrical structures; consequently, the simulations stall
at shallow pits at resting tensions above 3 · 10−4 pN/nm.

We note that at low resting tensions, below λ0 ≈
3 ·10−4 pN/nm, the axisymmetric and non-axisymmetric
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FIG. 8. Morphological “phase” diagrams: Resting tension λ0 vs spontaneous curvature C0 at different values of the rate of
spontaneous curvature Ċ0. With increased rate of spontaneous curvature, the resting tension at which ridges are observed
increases. The shaded areas of the diagrams are not accessible with our current numerical framework.

morphological “phase” diagrams are nearly indistinguish-
able, including the transitions from pits to invaginations
to buds. In particular, for a given resting tension, the
spontaneous curvatures at which a shallow pit becomes
a deep invagination is nearly identical between the two
types of simulations. The same is true for the onset of
bud formation as well.

C. Rate Effects: Varying Ċ0

In biological and artificial lipid membrane systems, the
rate of curvature induction varies in different settings.
For example, curvature-inducing proteins can assemble
at different rates—thus inducing local curvature at dif-
ferent rates as well [13, 14]. In this section, we study rate

effects by changing Ċ0, the rate of change of spontaneous
curvature, on lipid membrane morphologies as a function
of the resting tension λ0. We find that at high resting
tensions, higher rates lead to additional viscous stresses
in the membrane, and as a result the observed membrane
morphology may not be the lowest energy configuration.

The results of changing the rate of change of sponta-

neous curvature, Ċ0, are presented in Fig. 8. At low
resting tensions, in both the axisymmetric and non-
axisymmetric cases, membrane morphologies are unaf-
fected by changes in Ċ0: the transitions from shallow
pits to deep invaginations, and then to buds, are inde-
pendent of Ċ0. At high resting tensions, the axisymmet-
ric results are largely independent of Ċ0. However, for
non-axisymmetric simulations at moderate to high rest-
ing tensions, Ċ0 strongly affects membrane morphologies,
as shown in Figs. 8a,1, 8b,1, and 8c,1. In particular, with
increasing rates, the resting tension and spontaneous cur-
vature at which ridges form shift toward higher magni-
tudes. Hence, the non-axisymmetric results increasingly
resemble the axisymmetric ones when the rate of spon-
taneous curvature is increased (see Figs. 8c,1 and 8c,2).

To understand why the spontaneous curvature rate af-
fects our non-axisymmetric results, we first describe the
difference between axisymmetric shapes and ridges quali-
tatively. At high resting tensions and low rates of change
of spontaneous curvature Ċ0, ridges are low energy struc-
tures, and in order to form require an in-plane shear flow
of lipids. Axisymmetric shapes, on the other hand, only
draw in lipids radially—thus forming shallow, flat shapes
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which are energetically unfavorable due to their large
bending costs. We quantify the relative importance of
lipid rearrangements and the forced membrane deforma-
tions by defining two relevant time scales:

τf :=
ζ

λ0
and τc :=

1

R0Ċ0

, (8)

where ζ is the two-dimensional intramembrane viscosity,
τf denotes the time scale associated with out-of-plane de-
formations and in-plane shear flows [50, 68], and τc is a
loading time scale associated with the rate of imposed
spontaneous curvature. When τf � τc, the lipids can
quickly rearrange in-plane such that the membrane can
find the lowest energy configurations—which, at high ten-
sion, are ridges. When τf � τc, on the other hand, lipids
are unable to rearrange and access the in-plane shear-
ing modes—and the resulting flow occurs radially in re-
sponse to the changing isotropic spontaneous curvature.
As the lipids cannot access the in-plane shearing modes,
ridges cannot form and the membrane forms axisymmet-
ric shapes—which are the only available option.

Our arguments on the formation of ridges and axisym-
metric shapes can also explain the threshold resting ten-
sion, λthresh0 , which separates ridge formation from the
formation of axisymmetric shapes. This threshold is the
resting tension where “phases” I, II, and IV meet (see
Figs. 8a,1, 8b,1 and 8c,1). We assume the threshold
value occurs when τf and τc are comparable, such that
(see Eq. (8)) λthresh0 ∼ ζR0Ċ0. Accordingly, increasing

Ċ0 by a constant factor should increase λthresh0 by the
same factor, as ζ and R0 are constant. Figs. 8a,1, 8b,1,
and 8c,1 show that when Ċ0 increases by a factor of 10,
λthresh0 increases roughly by a factor of five. Our simple
time scale argument thus predicts the correct trends for
the threshold resting tension in this highly nonlinear dy-
namical problem. However, a detailed understanding of
the effects of Ċ0 and the changes in the morphological
“phase” diagrams requires a rigorous stability analysis,
again involving ridge formation. We leave such an anal-
ysis to a future study.

VI. CONCLUSIONS AND
EXPERIMENTAL IMPLICATIONS

In this work, we studied lipid membrane morphologies
resulting from locally-induced curvature. We found ax-
isymmetric solutions at low resting tensions, while non-
axisymmetric ridges were observed at high resting ten-
sions. We therefore conclude that simulations which are
limited to axisymmetric shapes may not provide phys-
ically meaningful results, as they cannot access lower-
energy, non-axisymmetric shapes. For example, several
previous studies considered the effects of locally induced
spontaneous curvature as a means of studying endocyto-
sis [39, 41]. Such works are restricted to axisymmetric
shapes, and describe a snap-through instability at high
tension. Our current work, however, contradicts such

findings, which neglect lower energy non-axisymmetric
membrane morphologies.

The non-axisymmetric lipid membrane shapes ob-
served in the present study have implications in under-
standing biological processes and related phenomena. In
relation to endocytosis, for example, experimental stud-
ies observe both buds at low resting tensions [12, 69] and
shallow pits at high resting tensions [70, 71]. While the
extended cylindrical ridges we observe at large resting
tensions and spontaneous curvatures have not been ex-
plicitly reported in stalled endocytic events, there appear
to be signatures of such structures in experimental stud-
ies. For example, clathrin is capable of forming cylin-
drical ridge-like cages in focal adhesions [72], and ridge-
like polymerized structures appear to exist in clathrin-
mediated endocytosis, under hypotonic conditions [71].

Ridge-like structures have also been experimentally
observed on eisosomes of yeast cells [73], which gen-
erally are under high membrane tension. While eiso-
somes are linked to BAR proteins [73], which induce
an anisotropic curvature due to their shape, our results
demonstrate that even isotropic spontaneous curvatures
lead to anisotropic cylindrical structures.

Additionally, a recent study found that cholera toxin
subunit B (CTxB) binds to the lipid bilayer, and induces
bud formation [56]. The same study suggests that bud
formation is inhibited at increased resting tension, and
reports ridges induced by CTxB as well [56]. However,
the correlation between such ridges and the magnitude
of the resting tension is not yet known.

Finally, consider morphological changes during the
phase separation of biological membranes. During such
processes, budding transitions were found as a result
of the different spontaneous curvatures of the phase-
separating components [9, 74], similar to the structures
we found at low resting tension. Furthermore, there
is a striking similarity between the ridge-shaped phase
separated domains in lipid bilayers [9, 11], and the
high resting tension ridge structures presented in our
study. We speculate that such structures, as observed
in Refs. [11, 75, 76], arise due to the membranes being in
a high resting tension state.
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