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Abstract 

Decreased cost of human exome and genome sequencing provides new opportunities for 

diagnosing genetic disorders, but we need better and more robust methods for interpreting 

sequencing results including determining whether and by which mechanism a specific 

missense variants may be pathogenic. Using the protein PTEN (phosphatase and tensin 

homolog) as an example, we show how recent developments in both experiments and 

computational modelling can be used to determine whether a missense variant is likely to be 

pathogenic. One approach relies on multiplexed experiments that enable determination of 

the effect of all possible individual missense variants in a cellular assay. Another approach is 

to use computational methods to predict variant effects. We compare two different 

multiplexed experiments and two computational methods to classify variant effects in PTEN. 

We distinguish between methods that focus on effects on protein stability and protein-

specific methods that are more directly related to enzyme activity. Our results on PTEN 

suggest that ~60% of pathogenic variants cause loss of function because they destabilise 

the folded protein which is subsequently degraded. Methods that quantify a broader range of 

effects on PTEN activity perform better at predicting variant effects. Either experimental 

method performs better than the corresponding computational predictions, so that e.g. 

experiments that probe cellular abundance perform better at identifying pathogenic variants 

than predictions of thermodynamic stability. Our results suggest that loss of stability of PTEN 

is a key driver for disease, and we hypothesize that experiments and prediction methods 

that probe protein stability can be used to find variants with similar mechanisms in other 

genes. 

Introduction 

Technological advances have made human genome sequencing feasible in routine clinical 

contexts, revealing around 10,000 changes in the protein-coding regions of each individual1, 

of which the majority will be very rare2 and difficult to interpret3,4. We use state-of-the-art 

high-throughput methods for assessment of protein variants and discuss their performance 
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in discriminating pathogenic from non-detrimental changes. This preprint is a summary of a 

submitted manuscript. 

 

PTEN (phosphatase and tensin homolog) is a two-domain protein (Fig. 1A and 1B) with 

dual-specificity phosphatase that acts on both protein and PIP3 lipid substrates. Its lipid 

phosphatase function is important for PTEN’s role as a tumor suppressor where it 

counteracts phosphatidylinositol 3-kinase function5. A number of germline mutations in the 

PTEN gene are associated with various diseases including autism spectrum disorder (ASD) 

and different tumor-risk syndromes collectively known as PTEN hamartoma tumor syndrome 

(PHTS)5,6 (Fig. 1B). 

 

High-throughput genome sequencing combined with assays specific to the function of the 

protein of interest enable highly parallel assessments of the functionality of each individual 

variant7 in so called MAVEs (multiplexed assays of variant effects)8. Briefly explained, a 

MAVE involves creating a large library of variants and subsequently selecting for a property 

of interest9–12. MAVEs have been applied to a substantial number of proteins and domains, 

overall indicating a surprising mutational tolerance as many missense variants retain wild 

type-like function13,14. 

 

In the case of PTEN, two different MAVEs have been performed using different selection 

systems. Mighell et al. evaluated the effects of PTEN variants on lipid phosphatase activity 

in a yeast system15 (Fig. 1C) and were able to discriminate likely pathogenic from benign 

alleles15.  We term this experiment Phosphatase-MAVE. We and others have shown that 

loss of protein stability and subsequent degradation by the cellular protein quality control 

machinery is an important factor that underlie pathogenicity of variants in diverse proteins16–

21.  Matreyek et al. recently introduced VAMP-seq (variant abundance by massively parallel 

sequencing), as a MAVE of variant abundance22. Application of VAMP-seq to PTEN showed 

that many pathogenic variants were of low cellular abundance and that the resulting data 

(Fig. 1D) showed separation between pathogenic variants and common variants in the 

human population. 

 

In the absence of experimental data, computational methods can be used to predict the 

consequences of missense variants. We here complement and contrast the experimental 

Phosphatase-MAVE and VAMP-seq experiments with two computational methods, one that 

assesses sequence conservation through the calculation of an ‘evolutionary sequence 

energy’ (Ẽ) and one that quantifies changes in protein stability (ΔΔG). These methods have 

previously been applied to the identification and classification of pathogenic variants4,23,24. 

Loosely defined, Ẽ-values are conceptually similar to the outcome of the Phosphatase-

MAVE experiment and ΔΔG-values are related to the outcome of the VAMP-seq experiment. 

We use the software Gremlin25 to calculate evolutionary sequence energies (Fig. 1E) and 

the Rosetta software to calculate changes in protein stability26 (ΔΔG-values) (Fig. 1F). Out of 

the 7,638 possible single amino acids, 2,819 could be assessed by all four methods (Fig. 

1G), however below we focus only on the smaller subset of 71 variants that are either known 

to be pathogenic (42) or that are found in the gnomAD database27 (29). 
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Figure 1: Overview of PTEN and the available single-variant data. A: We show the 3-

dimensional structure of PTEN (PDB:1D5R (ref. 7)) with the phosphatase domain in 

yellow and the C2 domain in pink. B: PTEN domain architecture (top) and labels for 

gnomAD variants that are not singletons (bottom, details see main text). Purple bars 

indicate positions where pathogenic variants have been described. C-F: Experimentally 

and computationally determined scores for single site variants. Green indicates wild-type-

like fitness/stability, magenta indicates low fitness/stability, gray indicates missing data. C: 

Phosphatase-MAVE8, D: VAMP-seq9, E: evolutionary sequence energies10, F: Rosetta 

cartesian ΔΔG (ref. 11). G: Venn diagram illustrating the availability of scores from each 

method and their intersections. 
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Results and Discussion 

As a source for pathogenic PTEN variants, we extracted 87 pathogenic missense variants 

from ClinVar28 (review criteria provided and no conflicting annotations; accessed August 

2018). We turned to gnomAD27 to examine whether there are variants that are sufficiently 

common in the population to make it likely that they do not cause disease15,22,27. Of the 80 

PTEN variants we analyse 29 after removing those absent from the experimental and 

computational data (Fig. 1). Of these, A79T and M205V are found at allele frequencies of 

1·10-4 and 2·10-5, respectively, in gnomAD, that suggest they are likely benign. 

 

We analysed the distribution of scores for the gnomAD and pathogenic variants as obtained 

by the four different methods (Fig. 2) and find that all four methods show a clear difference in 

averages and distribution of values across the gnomAD and pathogenic variants. We then 

performed a ‘receiver operating characteristic’ (ROC) curve analysis of each of the four 

methods two quantify their ability to separate pathogenic from the gnomAD dataset (Fig. 3). 

The ‘area under the curve’ (AUC) show that two experimental approaches perform better 

than the corresponding purely computational method (Fig. 3), and that the two methods that 

probe a wider range of functionally-relevant properties (Phosphatase-MAVE and 

evolutionary sequence energies) are able to capture variant effects more accurately than 

those that focus more directly on protein stability. Nevertheless, the high AUCs for the 

methods that probe only stability but not other aspects contributing to protein function 

(VAMP-seq and Rosetta) suggest that loss of stability and resulting decrease in cellular 

abundance is a key driver for PTEN-associated diseases in line with previous 

computational4,29–31 and experimental18–21,32 studies. 

 

We show two-dimensional plots of the change in stability (VAMP-seq or Rosetta (ΔΔG) and 

“activity effects”  (Phosphatase-MAVE or evolutionary sequence energies) (Fig. 4) and 

separate the plots into four quadrants19,21 (Methods). Through this analysis we find that 27 of 

the 42 pathogenic variants fall in the unstable-and-non-functional quadrant in the 

experimental analysis (Fig. 4A) and 24 of the 42 variants fall in the corresponding quadrant 

in the computational analysis (Fig. 4B), suggesting that about 60% of disease-causing 

variants in PTEN cause disease via loss of stability and cellular abundance. The observation 

that most unstable variants are non-functional, but that not all non-functional variants are 

unstable is also reflected in the distribution of scores (Fig. 2) and ROC analysis (Fig. 3). 

Thus, if we examine the ROC curves in the region of high specificity (10% false positive rate) 

we reach a relatively high sensitivity (true-positive rate) for all methods (Phosphatase-

MAVE: 0.90, VAMP-seq: 0.66, Gremlin: 0.66, Rosetta 0.53). Thus, one can find ~60% of the 

pathogenic variants at a relatively low false discovery rate, simply by examining loss of 

stability. 
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Figure 2: Distributions for pathogenic and gnomAD variants. Distributions of scores from 

each of the four methods for ClinVar pathogenic (mauve) and gnomAD (green) variants, 

shown as Raincloud plots33. Boxes illustrate the 25th-to-75th percentile, with the median 

indicated by a horizontal line. Whiskers extend to minimum and maximum value though at 

most 1.5 times the distance between the 25th and 75th percentile (“interquartile range”) 

away from the box boundaries. As described in the main text, pathogenic variants were 

removed from the gnomAD set. A79T and M205V are specifically highlighted (crosses), 

as these are the most common PTEN variants in gnomAD, and thus the most likely to be 

benign. Only variants for which each of the four methods provide data are included (see 

also Figure 5.1g). Axes are oriented such that values near the bottom correspond to 

detrimental variants, while values near the top are wild-type-like. 
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Figure 3: Receiver Operating Characteristic (ROC) curves for each method. ROC curves 

describe how well each method separates the ClinVar pathogenic variants from the 

gnomAD variants. As expected, methods assessing overall PTEN function perform better, 

with Phosphatase-MAVE experimental data (blue, AUC 0.94) exceeding evolutionary 

sequence energies (green, AUC 0.86) in overall sensitivity and specificity. Assessment of 

stability alone correctly identifies most pathogenic and gnomAD variants as well, again 

with experimental data (VAMP-seq, orange, AUC 0.81) exceeding performance of 

Rosetta ΔΔG calculations (red, AUC 0.73). The insert shows the AUC values and 

changes in AUC when moving between experimental and computational methods, and 

between methods that capture activity broadly or methods focused on stability. 
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Conclusions 

We have here taken advantage of the availability of both Phosphatase-MAVE and VAMP-

seq data for the human protein PTEN to analyse how well these methods are able to classify 

known pathogenic variants, and have compared the results to computational methods. Our 

results show that all four methods we tested are able to provide relatively accurate 

classifications of variant effects with AUCs ranging from 0.74-0.94 (Fig. 3). Here we remind 

the reader that we in our selection of pathogenic variants have combined disease-causing 

variants for different diseases (ASD and PHTS) although it has been suggested that ASD 

results from variants with milder effects compared to those that give rise to PHTS15. 

Similarly, we note that we have used also rare variants from gnomAD as a proxy for benign 

variants, and that some of these may indeed give rise to ASD or PHTS. With these caveats 

in mind we highlight two observations regarding prediction accuracies. First, the 

experimental methods give rise to AUCs that are about 0.1 unit higher than the 

corresponding computational method (Phosphatase-MAVE (0.94) vs. evolutionary sequence 

energies (0.86) and VAMP-seq (0.81) vs. Rosetta (0.73)). Second, the methods that probe 

function more generally give rise to AUCs that are about 0.1 unit higher compared to those 

that probe only protein stability (Phosphatase-MAVE (0.94) vs. VAMP-seq (0.81) and 

evolutionary sequence energies (0.86) vs. Rosetta (0.73)). One advantage of the methods 

 
 

Figure 4: Two-dimensional landscapes integrating changes in stability and fitness. 

Combining scores from assessment of stability and function shows that most gnomAD 

variants (green) are wild-type-like, while most pathogenic variants (purple) are correctly 

identified by one, and often both metrics. Comparing the landscape based on 

experimental data (left) to that based on predictions (right) shows that availability of 

experimental data leads to better separation of pathogenic variants, but also that the 

predictions will provide a good starting point at substantially lower cost. The dashed lines 

correspond to cut-off values derived from the ROC curves, as those values that give rise 

to the point on the ROC curve closest to the upper-left corner (TPR=1, FPR=0). 
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that focus on protein stability is that they provide a more direct mechanistic model for how 

the variants cause disease. Indeed, our two-dimensional analysis of stability and ‘function’ 

reveal that many, but not all, disease-causing variants appear to cause loss of function 

because the variants cause loss of stability and decreased cellular abundance (Fig. 4). We 

conclude that at the current stage, experimental methods still perform better than the 

corresponding computational approaches, although the latter perform well on many variants 

too. Further, we note that many, but not all, pathogenic variants in PTEN appear to give rise 

to disease via loss of stability and cellular abundance. 

Methods 

Rosetta ΔΔG Calculations 

We used the “cartesian_ddg” application in Rosetta with the ‘beta_nov_16’ variant of the 

Rosetta energy function to perform the ΔΔG calculations26 using (PDB ID 1D5R) and Babel34 

to parameterise the ligand. To accomodate for the missing loop in the crystal structure 

(residues 281 to 313), we added the flag “-missing_density_to_jump” during relaxation of the 

structure.  

 

When calculating ΔΔG we used three iterations, which were subsequently averaged. The 

resulting difference in stability was finally divided by 2.9 to bring the ΔΔG values from 

Rosetta energy units onto a scale corresponding to kcal/mol (Frank DiMaio, University of 

Washington; personal correspondence). 

Evolutionary sequence energies (Ẽ) 

We used HHblits35 to create a multiple sequence alignment based on the UniProt sequence 

of PTEN (UniProt AC P60484) and used Gremlin25 to to calculate the log odds score 

between each single residue variant and the wild type. 

 

Phosphatase-MAVE and VAMP-seq Data 

The VAMP-seq data can be accessed and downloaded at: 

https://abundance.gs.washington.edu/shiny/stability/.  

The Phosphatase-MAVE data can be accessed in the supplementary material of the online 

article from Mighell et al.15 

 

ROC-derived thresholds 

Thresholds for separating likely pathogenic from likely benign variants are calculated for 

each metric by determining the point on the ROC curve that is closest to (0,1), the optimum 

where perfect specificity and sensitivity would be achieved. In this case we give comparable 

weight to detection of pathogenic and benign variants, but note here that, depending on the 

application, different choices of threshold may be most suitable. 

 

Analysis scripts 

The scripts used in the analyses and for making the figures of this manuscript are available 

at https://github.com/KULL-Centre/papers/tree/master/2019/PTEN-variants-Jepsen-et-al. 
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