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Abstract 1 

Progressive increases in ethanol consumption is a hallmark of alcohol use disorder (AUD). 2 

Persistent changes in brain gene expression are hypothesized to underlie the altered neural 3 

signaling producing abusive consumption in AUD. To identify brain regional gene expression 4 

networks contributing to progressive ethanol consumption, we performed microarray and scale-5 

free network analysis of expression responses in a C57BL/6J mouse model utilizing chronic 6 

intermittent ethanol by vapor chamber (CIE) in combination with limited access oral ethanol 7 

consumption. This model has previously been shown to produce long-lasting increased ethanol 8 

consumption, particularly when combining oral ethanol access with repeated cycles of 9 

intermittent vapor exposure. The interaction of CIE and oral consumption was studied by 10 

expression profiling and network analysis in medial prefrontal cortex, nucleus accumbens, 11 

hippocampus, bed nucleus of the stria terminalis, and central nucleus of the amygdala. Brain 12 

region expression networks were analyzed for ethanol-responsive gene expression, correlation 13 

with ethanol consumption and functional content using extensive bioinformatics studies. In all 14 

brain-regions studied the largest number of changes in gene expression were seen when 15 

comparing ethanol naïve mice to those exposed to CIE and drinking. In the prefrontal cortex, 16 

however, unique patterns of gene expression were seen compared to other brain-regions. 17 

Network analysis identified modules of co-expressed genes in all brain regions. The prefrontal 18 

cortex and nucleus accumbens showed the greatest number of modules with significant 19 

correlation to drinking behavior. Across brain-regions, however, many modules with strong 20 

correlations to drinking, both baseline intake and amount consumed after CIE, showed 21 

functional enrichment for synaptic transmission and synaptic plasticity. 22 

  23 
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Introduction 1 

Alcohol use disorder (AUD) is a highly significant public health issue. The condition contributes 2 

to over 60 types of diseases, and is responsible for over 2 million deaths worldwide every year 3 

[1, 2]. A hallmark of AUD is progressive, abusive ethanol consumption over time. This increase 4 

in ethanol consumption is thought to be due to neurobiological adaptations induced by ethanol 5 

itself, and the repeated occurrence of ethanol withdrawal [3]. Previous studies in humans and 6 

animal models of chronic alcohol exposure have led to the hypothesis that changes in gene 7 

expression are a major molecular mechanism contributing to physiological and behavioral 8 

alterations accompanying AUD [4-7]. 9 

 10 

Technologies such as microarrays have allowed for the study of the genome-wide effects of 11 

ethanol exposure on mRNA expression [4], and scale-free network analysis provides a means 12 

to organize transcriptome data into networks of co-expressed genes representing functional 13 

pathways [8-12]. Further, gene-phenotype correlations allow for the identification of both 14 

individual genes and gene networks associated with dependent variables such as ethanol 15 

consumption. Using such approaches it may be possible to identify molecular network functions 16 

contributing to increased drinking behavior seen with chronic ethanol exposure, and to pinpoint 17 

candidate genes whose expression correlates with consumption; thus identifying new potential 18 

therapeutic targets for the treatment of AUD. 19 

 20 

Recent studies provide substantial predictive validation of new animal experimental models for 21 

the discovery of therapeutic targets in the treatment of AUD [13-16]. Chronic intermittent ethanol 22 

vapor exposure (CIE) in rodents is one such model, providing long-term intermittent intoxicating 23 

ethanol exposure. As a part of this paradigm, mice or rats experience repeated cycles of high 24 

blood ethanol levels provided by vapor exposure followed by withdrawal, similar to behavioral 25 

patterns seen in alcoholics [17]. The CIE by vapor chamber model has been shown to cause 26 
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neurochemical and structural changes at the synapse and increases in ethanol consumption. 1 

Our laboratories have also previously identified complex brain region-specific temporal patterns 2 

of gene expression changes upon withdrawal from CIE [11, 18]. In mouse models, providing 3 

limited access 2-bottle choice ethanol consumption in between cycles of ethanol vapor 4 

exposure has been shown to more rapidly and significantly increase ethanol consumption [19]. 5 

The molecular mechanisms underlying this combined action of voluntary oral ethanol 6 

consumption and cycles of high dose ethanol withdrawal on ethanol consumption are unknown 7 

but could provide important directions for possible intervention in the progression from social to 8 

abuse drinking [19, 20]. Previous studies of gene expression with CIE in C57BL/6J mice have 9 

focused on differential gene expression during early withdrawal [21], or on RNA networks during 10 

ethanol exposure and withdrawal associated with cell type-specific gene expression [18]. This 11 

current study explores the relationship between high-dose ethanol vapor exposure, intermittent 12 

drinking, and withdrawal in an attempt to identify mechanisms by which this model leads to 13 

progressive increases in ethanol intake. 14 

 15 

This manuscript presents a detailed analysis of gene expression network-level changes caused 16 

by CIE exposure with or without intermittent oral ethanol consumption, across multiple brain-17 

regions using Weighted Gene Correlated Network Analysis (WGCNA) [22]. The brain-regions 18 

studied have been associated in numerous studies with the development of AUD [15, 23, 24]. 19 

By combining statistical analysis for genes regulated by ethanol consumption, CIE, or the 20 

combination, we identify brain-region selective expression networks responding to particular 21 

ethanol exposure models. Specifically we show that prefrontal cortex (PFC) and bed nucleus of 22 

the stria terminals (BNST) showed prominent responses to CIE and drinking, but the nucleus 23 

accumbens (NAC) and hippocampus (HPC) were primarily responsive to high-dose ethanol 24 

vapor exposure alone, while gene expression in the central nucleus of the amygdala (CeA) may 25 

be particularly  altered by ethanol withdrawal. Furthermore, we identified expression networks 26 
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that correlated with increased ethanol consumption caused by cycles of CIE and drinking, 1 

suggesting mechanistic relationships.  We also demonstrate that some of the most strongly 2 

correlated genes are those related to synaptic transmission and synaptic plasticity. Together, 3 

our findings contribute substantial new knowledge to our understanding of brain regional gene 4 

network adaptations contributing to brain plasticity during various stages of AUD. 5 

 6 

Materials and Methods 7 

Animals 8 

Adult male C57BL/6J mice were purchased from Jackson Laboratories (Bar Harbor, ME, USA) 9 

at 10 weeks of age. Mice were kept under a 12-hour light/dark cycle and given free access to 10 

water and standard rodent chow (Harland, Teklad, Madison, WI). Mice were kept on corncob 11 

bedding (#7092a and #7902.25 Harland, Teklad, Madison, WI). All studies were conducted in 12 

an AALAC-accredited animal facility, and approved by the Institutional Animal Care and Use 13 

Committee at Medical University of South Carolina (MUSC). All experimental and animal care 14 

procedures met guidelines outlined in the NIH Guide for the Care and Use of Laboratory 15 

Animals. 16 

 17 

Chronic Intermittent Ethanol (CIE) 18 

Studies were designed to determine genomic responses and interactions between two different 19 

ethanol exposure models: intermittent cycles of ethanol vapor exposure in inhalation chambers 20 

(CIE), and oral consumption of 15% (v/v) ethanol in a limited access (2 h/session) paradigm. 21 

Mice were divided into 4 treatment groups: the CIE-Drinking group received inhaled ethanol in 22 

the vapor chambers followed by 2-bottle choice ethanol drinking in between vapor exposure 23 

cycles; the Air-Drinking group received only air in the vapor chambers, but had 2-bottle choice 24 

ethanol drinking between CIE cycles; the CIE-NonDrinking group received inhaled ethanol in the 25 

vapor chambers but only water access in between CIE cycles; and the Air-NonDrinking group 26 
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remained ethanol naïve with air exposure in vapor chambers and only water consumption 1 

between CIE cycles. Following a 2-week acclimation period, mice in the CIE-Drinking and Air-2 

Drinking groups underwent 6-weeks of 2-bottle choice drinking to establish baseline drinking 3 

levels. Ethanol and water intake for each individual mouse was measured daily. Following 6-4 

weeks of baseline drinking, mice were placed in Plexiglass inhalation chambers (60x36x60 cm) 5 

16 hours/day for 4 days. Ethanol was volatilized with an air stone submerged in 95% ethanol. 6 

Vapor chamber ethanol concentrations were monitored daily and air flow was adjusted to 7 

ethanol concentrations within 10-13 mg/l air. This ethanol vapor concentration has been shown 8 

to yield stable blood ethanol concentrations (175-225 mg/dL) in C57BL/6J mice [25]. Before 9 

each vapor chamber session, intoxication was initiated in the CIE group by administration of 1.6 10 

g/kg ethanol and 1 mmol/kg pyrazole intraperitoneally (i.p.) at a volume of 0.02 ml/g body 11 

weight. Pyrazole is an alcohol dehydrogenase inhibitor used to stabilize blood ethanol 12 

concentrations. All mice received the same number and timing of pyrazole injections prior to 13 

final removal from the inhalation chambers with control mice receiving saline and pyrazole (i.p.), 14 

also at a volume of 0.02 ml/g body weight, prior to being placed into control vapor chambers. 15 

Control vapor chambers delivered only air without ethanol vapor. After 4 days in the inhalation 16 

chambers, mice underwent a 72-hour period of total abstinence from ethanol. Following the 17 

abstinence period, mice in the CIE-Drinking and Air-Drinking groups were given 2-bottle choice 18 

drinking for 2 hours per day for 5 days. A total of 4 cycles of CIE-abstinence-drinking were 19 

performed. After the end of the 4th cycle mice were sacrificed on the 5th drinking day before 20 

receiving ethanol/water access on that day at the time they received 2-bottle choice drinking all 21 

previous drinking days (Figure 1). 22 

 23 

Tissue Harvesting, RNA Isolation, and Microarray Hybridization 24 

Mice were sacrificed by decapitation, brains were immediately removed from the skull, and 25 

brain-regions dissected as previously described [21]. Tissues were stored at -80°C until RNA 26 
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isolation. Total RNA was extracted using the RNeasy Mini Kit (Qiagen Valencia, CA). Affymetrix 1 

GeneChip® Mouse Genome 430, type 2 arrays were used to measure gene expression. 2 

Sample preparation, hybridization, and array scanning were performed at the MUSC 3 

ProteoGenomics Core Facility according to procedures optimized by Affymetrix (Santa Clara, 4 

CA, USA). Each brain-region was processed separately with treatment groups randomized to 5 

minimize batch effects. Array data was stored in CEL file format, and sent to Virginia 6 

Commonwealth University (VCU) for analysis. 7 

 8 

Microarray Analysis 9 

Affymetrix GeneChip® Mouse Genome 430, type 2 arrays were analyzed with The R Project for 10 

Statistical Computing (http://www.r-project.org/). Microarray quality was assessed by RNA 11 

degradation, average background, percent present probesets, and multi-dimensional scale plots 12 

(first principal component by second principal component). Arrays showing low quality 13 

measures, or that appeared to be outliers, were removed from the dataset. Background 14 

correction using Robust Multi-array Average (RMA) and quantile normalization was performed 15 

using the affy package for R [26, 27]. Each brain-region was normalized separately. ComBat by 16 

RNA hybridization batch was used to correct for any batch effects present in the data [28]. 17 

 18 

CIE and Drinking Responsive Genes 19 

Statistical analysis to identify significantly regulated genes was performed using the limma 20 

package for R [29]. Two factor LIMMA looking at treatment and drinking, as well as interaction, 21 

was used for initial analysis. However, we also ran LIMMA with each treatment group as an 22 

independent variable. This was done based on the fact that, over the course of the study, each 23 

group received a different overall dose of ethanol, number of, and duration of exposure. Each 24 

possible comparison between the 4 treatment groups was performed leading to 6 total 25 

comparisons labeled 1 through 6. Overall significance was also measured by ANOVA. Multiple 26 
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testing was adjusted using the Benjamini and Hochberg false discovery rate method (FDR) [30]. 1 

False discovery rates equal to or less than 0.01 were considered significant. 2 

 3 

Statistical Analysis of 2-Bottle Choice Drinking 4 

Average ethanol intake (g/kg) was calculated across 5 drinking days of each week during the 5 

baseline-drinking period. During the testing cycles, mice also drank for 5 days; therefore 6 

average drinking across these 5 days was calculated to represent drinking during each CIE 7 

cycle. Differences in drinking were determined by Two Way ANOVA with Repeated Measures 8 

using SigmaPlot 12.0 (Systat Software, San Jose, CA, USA). 9 

 10 

Weighted Gene Correlated Network Analysis 11 

Weighted Gene Correlated Network Analysis (WGCNA) was used to perform scale-free network 12 

topology analysis of microarrays [22]. Such scale-free network approaches have been used 13 

previously to identify biological pathways influenced by ethanol exposure in mice [11, 12]. 14 

WGCNA was performed on each brain-region separately using the WGCNA package for R [31]. 15 

Overall significance by one-way ANOVA comparing all groups (FDR equal to or less than 0.01) 16 

was used to select probesets to be included in network analysis. A probeset found to be 17 

significant by ANOVA in any brain region was included to generate the overall probeset list used 18 

for WGCNA across all brain regions. Standard WGCNA parameters were used for analysis with 19 

the exceptions of soft-thresholding power and deep split. Appropriate soft-thresholding powers 20 

were selected using previously described methods [31]. A soft-thresholding power of 6 was 21 

used for all brain-regions except the PFC for which a soft-thresholding power of 8 was used. 22 

WGCNA was performed with deep-split values of 0-3. Deep-split value was selected by a multi-23 

dimensional scaling (MDS) plot, which displayed first and second principal components. Deep-24 

split values were to minimize module overlap on the MDS plot. Deep-split values of 3 were 25 

chosen for the PFC, NAC, and CeA. For the HPC a deep-split of 2 was chosen, and a deep-split 26 
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of 0 for the BNST. Modules were validated based a permutation procedure outlined by Iancu et 1 

al. [32]. Briefly, the average topological overlap of probesets assigned to each module was 2 

compared to the average topological overlap of 100 bootstrapped modules comprised of 3 

randomly sampled probesets. Z-scores of average topological overlap between probesets 4 

assigned to the module, and modules comprised of random probesets were used to calculate p-5 

values and false discovery rates (FDR). Modules with FDR values ≤ 0.2 were considered 6 

validated. 7 

 8 

WGCNA-Drinking Correlation 9 

Modules identified by WGCNA were related to drinking data by Spearman Rank correlation 10 

using the module eigengene as previously described [33, 34]. Individual probesets were also 11 

correlated to drinking data with the Spearman Rank method. These correlations were then used 12 

to identify modules enriched in genes whose expression showed systemic relationships with 13 

drinking behavior across 4 cycles of CIE with 2-bottle choice drinking. 14 

 15 

Bioinformatics 16 

Modules identified by WGCNA were examined for function using publicly available 17 

bioinformatics resources. The Functional Annotation Chart tool from DAVID 18 

(http://david.abcc.ncifcrf.gov/) [35] was used to identify biological pathways highly represented 19 

by genes grouped into each module. Gene Ontology terms were then summarized by semantic 20 

similarity using REVIGO (revigo.irb.hr/). GeneMANIA (http://www.genemania.org) was also 21 

used for functional analysis through use of GO process constituent genes as query lists. 22 

GeneMANIA mines public database and publication data to identify known associations 23 

between genes and their protein products. Co-expression modules identified in this dataset 24 

were also compared to those identified in corresponding brain-regions in a previously published 25 

study from our laboratory of the time-dependent effects of multiple cycles of CIE by vapor 26 
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chamber [11]. This comparison was performed using WGCNA’s userListEnrichment() function, 1 

utilizing hypergeometric overlap to determine significance of enrichment [31]. Hypergeometric 2 

overlap p-values were adjusted for multiple testing using false discovery rates [30]. Module 3 

overlaps were considered significant at a FDR ≤ 0.05. Since all brain-regions in this study used 4 

RNA from whole tissue samples, modules were also examined for enrichment for genes 5 

expressed in specialized cell-types [36] found in brain (neurons, astrocytes, and 6 

oligodendrocytes) to determine whether any identified modules represented specific cell-type 7 

gene expression changes within a brain-region [37]. The userListEnrichment() function was also 8 

used for cell-type enrichment analysis, with Bonferroni corrected p-values ≤ 0.05 considered 9 

significant. 10 

 11 

Module Disruption 12 

Changes in network structure were measured based on the module disruption method outlined 13 

by Iancu et al. [38]. This method was adapted from the module preservation method [39], which 14 

examines module statistics across randomly selected network nodes (genes). The module 15 

disruption method looked at a set of bootstrap networks (n=200) generated by randomly 16 

selecting a subset of samples without regard to treatment group. Connectivity statistics as 17 

described by WGCNA [39] were then generated for each random network. The average 18 

correlation of each network’s intramodular connectivity (kIM) and total network connectivity 19 

(kME) to that for all other randomly generated networks was calculated. These values were then 20 

compared to the correlation of intramodular connectivity (cor.kIM) and total connectivity 21 

(cor.kME) between two treatment groups. For the purposes of this study, we compared the CIE 22 

Drinking group to the Air NonDrinking group. Difference in correlation between treatment 23 

groups, and all bootstrap networks were quantified using a Z score:  24 

 25 

Z = obs – μ/ σ.  26 
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obs = Correlation between network statistic between treatment groups. 1 

μ = Average correlation between network statistic for comparisons of 200 random networks. 2 

σ = Standard deviation of correlation between network statistic for comparisons of 200 random 3 

networks. 4 

 5 

In accordance with Iancu et al. [38], modules with Z scores less than -2 were considered 6 

significantly disrupted (see Suppl. Table 12). 7 

 8 

 9 

Results 10 

2-Bottle Choice Drinking 11 

Consistent with previous behavioral studies of CIE combined with ethanol consumption [19], 12 

Two Way ANOVA with Repeated Measures revealed significant differences in ethanol intake (p-13 

value ≤ 0.05) between the CIE-Drinking and Air-Drinking groups after the first, third, and fourth 14 

vapor chamber session. After the second vapor chamber cycle, the CIE-Drinking group 15 

decreased ethanol intake compared to the first vapor chamber cycle, therefore, at this time-16 

point, there was no significant difference in amount of ethanol consumed between CIE-Drinking 17 

and Air-Drinking groups. However, after the third and fourth vapor chamber sessions, the CIE-18 

Drinking group drank significantly more ethanol than the Air-Drinking group (Figure 2, Suppl. 19 

Table 1). Interestingly, both the CIE-Drinking and Air-Drinking groups drank significantly more, 20 

compared to baseline, after only one session in the vapor chamber (Figure 2, Suppl. Table 1). 21 

This suggests that exposure to the air inhalation chambers may affect ethanol consumption. 22 

However, animals exposed to ethanol vapor during inhalation chamber sessions consumed 23 

significantly more ethanol, indicating that prolonged exposure to intoxicating levels of ethanol is 24 

the major driver of changes in drinking behavior. 25 

 26 
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Gene Expression with CIE and Drinking 1 

To define molecular mechanisms contributing to the actions of chronic ethanol vapor exposure 2 

and intercurrent oral ethanol intake on escalating ethanol consumption seen in Figure 2, we 3 

performed extensive microarray studies across brain regions implicated in CIE through our prior 4 

genomic studies [11, 21].  Statistical analysis of microarray data with LIMMA found more 5 

significant differences in gene expression when each treatment group was treated as an 6 

independent group (Table 1, Suppl. Table 3). Significant differences in gene expression were 7 

found between each of the four treatment groups in the PFC, suggesting prominent treatment-8 

specific responses in that brain region. Other brain regions, however, showed very different 9 

patterns of differential gene expression. In the NAC, HPC, BNST, and CeA, significant 10 

differences in gene expression were seen only seen with comparisons 1 (CIE-Drinking vs. Air-11 

Drinking), 3 (CIE-Drinking vs. CIE-NonDrinking), and 4 (CIE-Drinking vs. Air-NonDrinking) 12 

(Table 1, Suppl. Table 2). Examining overlap between these comparisons revealed that a 13 

substantial number of genes were significant across all 3 comparisons, or between any 14 

combination of 2 comparisons in the PFC, BNST, and CeA. However, in the NAC and HPC, the 15 

majority of overlap was between CIE-Drinking vs. Air-NonDrinking and CIE-Drinking vs. Air-16 

Drinking (Figure 3). Across NAC, HPC, BNST and CeA, the largest number of differentially 17 

expressed genes was seen between the CIE-Drinking group and the ethanol naïve Air-18 

NonDrinking group (Table 1, comparison 4). These four regions, however, did show significant 19 

differential gene expression in comparison 1 (CIE-Drinking vs. Air-Drinking), and comparison 3 20 

(CIE-Drinking vs. CIE-NonDrinking) (Table 1). This finding indicates an interaction between 21 

prolonged exposure to inhaled ethanol and voluntary intermittent drinking. Unique to the PFC, 22 

large expression differences were seen across all comparisons but comparison 4 (CIE-Drinking 23 

vs. Air-NonDrinking) had the smallest number of changes, in contrast to other brain regions 24 

(Table 1, Suppl. Table 2). 25 

 26 
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Weighted Gene Correlated Network Analysis 1 

To identify networks of coordinately regulated genes that might point to specific biological 2 

functions, we performed WGCNA analysis independently across all brain regions. To limit the 3 

WGCNA input to those genes showing some expression response to ethanol, we combined 4 

LIMMA-positive gene lists across all brain regions as described in Methods and our prior studies 5 

[11]. WGCNA identified modules of co-expressed genes in all brain-regions. Module sizes 6 

varied from over 3000 probesets to less than 35 (Table 2). Module validation using topological 7 

overlap showed that most modules identified withstood permutation of constituent genes, as 8 

indicated by Z-score false discovery rates ≤ 0.2 (Suppl. Table 11). One module in the CeA, 9 

greenyellow, did not show a significant false discovery rate, indicating that module may be the 10 

result of spurious associations. Additionally, in each brain region, the FDR of topological overlap 11 

Z-scores for the grey modules was 1 as expected, since WGCNA groups all genes which do not 12 

show significant topological overlap with any other module into the grey module. When WGCNA 13 

modules were interrogated by over-representation analysis for LIMMA-positive genes from 14 

various treatment comparisons across brain regions, PFC showed the largest extent of 15 

enrichment for LIMMA-positive genes across modules and these were generally distributed 16 

across multiple treatment comparisons (Figure 4, Suppl. Table 11). In PFC 17 out of 21 17 

modules, excluding the Grey module, were enriched for LIMMA-positive results across at least 18 

one comparison group. These generally included both CIE-Drinking and CIE-NonDrinking 19 

groups. In contrast, other brain regions generally showed few modules enriched for LIMMA-20 

positive genes and these all involved treatment comparisons with CIE-Drinking animals, 21 

although these brain regions also did not have as many LIMMA-positive genes across multiple 22 

treatment groups (Figure 4).  23 

 24 

WGCNA Module Phenotypic Correlations 25 
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To define WGCNA modules functionally related to ethanol drinking behaviors, we calculated 1 

Spearman correlations for module eigengenes with phenotypic data collected across the course 2 

of the experiment (Figures 5 and 8; Suppl. Figures 1-3 and Suppl. Table 5). Across brain 3 

regions, the highest correlation between drinking data and module eigengene expression was 4 

seen with ethanol intake with after CIE cycle 4, and with change in ethanol intake between 5 

baseline and CIE cycle 4. The PFC and NAC showed the largest number of modules with highly 6 

significant correlation to drinking (Figure 5 and 8). The HPC, BNST, and CeA did not show as 7 

many strong correlations to drinking, but certain modules showed module-phenotype 8 

correlations with significant p-values (≤0.05) at specific session time-points (Suppl. Figures 1-3).  9 

 10 

WGCNA Module Disruption in CIE-Drinking vs. Air-Nondrinking Groups 11 

In addition to identifying network modules over-represented for LIMMA-positive genes or 12 

correlating with ethanol behavioral phenotypes as above, we also identified networks showing 13 

the largest degree of network structure disruption caused by CIE. Such metrics can identify 14 

more subtle changes in expression networks caused by a given treatment. For the purposes of 15 

focusing on the presumed most extreme changes, as described in Methods, we performed 16 

network disruption analysis between the Air-NonDrinking and CIE-Drinking groups. Network 17 

disruption was calculated for both the average correlation of intramodular connectivity (cor.kIM) 18 

and total connectivity (cor.kME) with full results in Suppl. Table 12. The Z_cor.kIM values gave 19 

larger numbers of disrupted modules but largely overlapped with Z_cor.kME results, and are 20 

thus discussed further here and shown in Table 3. Larger modules, in general, showed more 21 

significant disruption scores (Pearson r = -0.696, p=0.0013) but there was not a strict 22 

correspondence between the number of modules and their size vs. the number significantly 23 

disrupted by CIE treatment across brain regions. NAc showed the largest number and 24 

percentage of disrupted modules (17/24), followed by CeA (9/18), BNST (5/14), HPC (4/15) and 25 

then PFC (4/21).  Thus, despite NAc only showing two modules with over-representation for 26 
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Air_Nondrinking vs. CIE_Drinking regulated genes, that brain region showed the greatest 1 

percentage of modules with connectivity disrupted by CIE. This suggests a dissociation between 2 

more subtle network-level responses to CIE versus robust CIE-regulation of individual genes. 3 

 4 

Bioinformatics Analysis of WGCNA Modules 5 

Prefrontal Cortex -- As previously noted, the strongest correlations between ethanol intake and 6 

modules in the PFC were seen after the 4th CIE cycle. The strongest correlations between 7 

WGCNA modules and all intake measures were between change from baseline drinking after 8 

CIE cycle 4 and eigengenes for the turquoise module (r=0.8, p-value = 1e-12), the magenta 9 

module (r=0.65, p-value = 6e-7), and the grey60 module (r=-0.72, p-value = 9e-9) (Figure 5). 10 

The magenta and turquoise modules showed Gene Ontology (GO) hits related to neuron 11 

development and synaptic transmission (Suppl. Table 6). Specific genes within these GO 12 

categories include Ngfr, Ppp1r9a, Fgfr1, Sox1, Slc1a3 (turquoise module), and Grin2b, Htt, 13 

Cacna1a, Ppp3ca, Rims1 (magenta module). All of these genes, individually, show significant 14 

correlation with change in drinking between baseline and CIE cycle 4 (Suppl. Tables 4-6). The 15 

green module also showed significant correlation to ethanol intake after CIE cycle 4, and to 16 

absolute and percent change in ethanol intake between CIE cycle 4 and baseline (r=0.49, p-17 

value=6e-4 with ethanol intake, r=0.39, p-value=0.009 with absolute change from baseline, 18 

r=0.35, p-value=0.02 with percent change from baseline) (Suppl. Tables 4-6). This module had 19 

significant enrichment for regulation of neurotransmission as indicated by several GO categories 20 

(Figure 6). In addition, this module was significantly enriched for genes involved in neuron 21 

ensheathment by myelin (GO: 0007272, GO: 0008366, GO: 0042552). Myelin genes within this 22 

module include Cd9, Lgi4, Cldn11, Olig2, Gjc3, Gas3st1, and Mbp (Suppl. Tables 4-6). Using 23 

the myelin-related genes from the green module as an input list, GeneMANIA validated that 24 

those genes have shown co-expression, co-localization, or protein-protein interactions in 25 

previous published studies (Figure 6). The large turquoise module also showed a strong GO hit 26 
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for chromatin modification (GO:0016568). Genes in the turquoise module within this category 1 

include many well-known chromatin modification genes such as Dnmt1, Dnmt3b, Hdac8, Bcor, 2 

Crebbp, Ctcf, Bptf, Smarca5, and Smarcc1 [40-45] (Figure 7). The grey60 module also showed 3 

a significant GO hit for chromatin (GO:0000785). Genes within this category were H1f0, Tcp1, 4 

and Klhdc3 (Suppl. Table 6). Of these genes, Hdac8, Bcor, Crebbp, Ctcf, Bptf, Smarca5, 5 

Smarcc1, H1f0, Tcp1, and Klhdc3 were significantly correlated with change in baseline intake 6 

after CIE cycle 4 or with ethanol intake after CIE cycle 4 (Suppl. Tables 4-6). 7 

 8 

Nucleus Accumbens -- Patterns of module-ethanol intake correlations in the NAC were more 9 

scattered than those seen in the PFC, but the strongest correlations were still seen with intake 10 

after the 4th cycle of CIE (Figure 8). These modules were the royalblue (r=0.74, p-value = 3e-10 11 

with ethanol intake, r=0.67, p-value = 6e-8 with percent change from baseline), and salmon 12 

modules (r=-0.79, p-value = 8e-13 with ethanol intake, r=-0.47, p-value = 6e-4 with change in 13 

drinking from baseline). The royalblue module contained probesets for several subunits of the 14 

ribosomal complex (Rps7, Rsp10, Rps13, Rps17, Rps26, Rpl12, Rpl28, Rpl32, Rpl35, Rpl36, 15 

Rpl37a, Fau) indicating this module may play a role in regulation of protein synthesis (Suppl. 16 

Tables 5 and 7). Whereas GO hits for cellular metabolic processes, such as glucose, fumarate, 17 

glutamate, and aspartate processing, were seen in the salmon module (Suppl. Table 7). The 18 

lightyellow and yellow modules repeatedly showed significant correlation with both baseline 19 

drinking, and with drinking after each cycle of CIE. In both of these modules, however, this 20 

correlation decreased following the 4th CIE cycle. Finally, several modules (blue, lightyellow, tan, 21 

magenta, salmon, and yellow) showed very strong correlation to baseline drinking. Of these, the 22 

blue, lightyellow, magenta, and yellow showed GO hits related to synaptic transmission or 23 

synaptic plasticity (Suppl. Table 7). The magenta and tan modules contained genes related to 24 

chromatin modification (Magenta: Ing4, Ing3, Hdac1, Rbbp4, Kat5. Tan: Hdac9, Zbtb16), and 25 

development (Magenta: Rtn4, Sox9, Bmpr1b. Tan: Fgf9, Hdac9, Igfbp3, Zbtb16) (Suppl. Table 26 
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7). Together, these modules indicate that, in addition to alterations in mRNA expression, CIE-1 

induced changes in protein and metabolite populations in the NAC may be involved in the 2 

observed increase in ethanol intake (Figure 2) [19]. 3 

 4 

Hippocampus -- In the hippocampus, a noticeable pattern of module-intake correlation was also 5 

seen in after the 4th cycle of CIE. In the greenyellow, black, purple, and yellow modules 6 

significant correlations were seen with change in intake from baseline to CIE cycle 4. All of 7 

these modules showed significant overlap with GO categories related to synaptic transmission 8 

(black, purple and yellow) or neuron development (purple, greenyellow, and yellow) (Suppl. 9 

Figure 1, Suppl. Table 8). The pink and magenta modules showed significant correlation to 10 

percent change in intake from baseline after CIE cycle 3 (pink module: r=0.4, p-value = 0.009, 11 

magenta module: r=0.42, p-value = 0.006). Significant correlations with intake in CIE cycle 1, 12 

and percent change from baseline intake were also seen in a few modules such as the yellow, 13 

cyan, and brown. Like the yellow module, the brown and magenta modules showed GO hits 14 

specifically for neuron development or synaptic transmission. GO analysis of the pink module 15 

showed many hits related to electron transport chain regulation, and cell motility. However, this 16 

module also showed significant overlap with two GO categories related to dendrite structure 17 

(GO:0043197, GO:0030425) (Suppl. Table 8). Genes from the pink module within these 18 

categories included Ppp1r9a, Fbxo2, and Gria3. Ppp1r9a correlated significantly with ethanol 19 

intake after CIE cycle 1 and percent change from baseline to CIE cycle 1; and Fbxo2 and Gria3 20 

significantly correlated with percent change from baseline to CIE cycle 3 and CIE cycle 4 21 

(Suppl. Figure 1). 22 

 23 

Bed Nucleus of the Stria Terminalis -- Fewer compelling intake correlations were seen in the 24 

BNST compared to other brain-regions. However, the turquoise and black modules showed very 25 

strong correlations to intake after the first cycle of CIE (black module: r=0.57, p-value = 4e-05 26 
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with ethanol intake, turquoise module: r=-0.55, p-value = 9e-05 with ethanol intake). Both of 1 

these modules showed multiple GO hits for synaptic transmission (Suppl. Figure 2, Suppl. Table 2 

9). The black module also contained 4 gene ontology hits related to myelination (GO:0042552, 3 

GO:0008366, GO:0007272, GO: 0019911) (Suppl. Table 9). Genes contained within these 4 

categories included some of the known myelin building blocks such as myelin basic protein 5 

(Mbp), myelin-associated oligodendrocyte basic protein (Mobp), galactose-3-O sulfotransferase 6 

1 (Gal3st1), oligodendrocyte transcription factor (Olig2), and Cd9 (Cd9) [46, 47]. Although most 7 

of these genes correlated with ethanol intake after CIE cycle 1, and with percent change from 8 

baseline to CIE cycle 1 (Suppl. Table 5), very little change in mRNA expression, with any of the 9 

6 comparisons examined, was seen in the BNST (Suppl. Table 4). Compared to other brain-10 

regions, the BNST also showed fewer modules with strong correlations to intake after CIE cycle 11 

4. The red module is a notable exception, with a correlation coefficient of 0.55, and p-value of 12 

7e-05 with change in drinking from baseline. This module also showed significant overlap with 13 

several GO categories for synaptic transmission (Suppl. Table 9). Similar to the myelin-related 14 

genes seen in the black module, however, most of the genes within these GO categories did not 15 

show significant differences in mRNA expression across treatment groups (Suppl. Table 4). In 16 

spite of these relatively level gene expression patterns, certain genes in this module did show 17 

significant correlation with ethanol intake after CIE cycle 4 and percent change in drinking from 18 

baseline to CIE cycle 4 (Suppl. Figure 2). These genes included ionotropic glutamate receptor 19 

subunits: Gria4, Grin2b and Grin3a. Metabotropic glutamate receptor 2 (Grm2) also correlated 20 

significantly with ethanol drinking at CIE cycle 4 and percent change from baseline. 21 

 22 

Central Nucleus of the Amygdala -- Module-drinking correlations seen in the CeA were 23 

sporadic, with few noticeable trends for correlation to a specific drinking measure. The two 24 

strongest correlations observed were correlations between the blue module and percent change 25 

from baseline and CIE cycle 4, and the green module with intake with CIE cycle 4 (Suppl. Figure 26 
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3). Functionally, the blue module contained several genes related to ion-mediated synaptic 1 

transmission such as Gria4, Grin2b, Grin1, Grid2, Kcnma1, Cacnb4, and Cacna1a (Suppl. 2 

Table 10). The green module, however, showed many GO hits related to chromatin 3 

modification. Several of the genes in these categories were the same as those seen in the PFC 4 

turquoise module such as Bcor, Smarcc1, Smarca5, Bptf and Ctcf. Other known chromatin 5 

remodeling genes present in the CeA green module included Smarca4, Ncor1, Rcor1, and 6 

Rbbp4. All of these genes except Bptf, Rcor1, and Rbbp4 strongly correlated with ethanol intake 7 

after CIE cycle 4 (Suppl. Table 10). This finding is, perhaps, not surprising considering the 8 

green module as a whole (as indicated by module eigengene) also significantly correlated to 9 

ethanol drinking during the final CIE cycle (Suppl. Figure 3). 10 

 11 

Discussion 12 

Through a systems biology approach we have characterized the transcriptome level response to 13 

chronic intermittent ethanol by vapor chamber with and without 2-bottle choice drinking, and 14 

identified modules of co-expressed genes in 5 regions of the mesocorticolimbic system and 15 

extended amygdala. The CIE plus drinking model has been shown; both in this study and in 16 

previous ones, to increase ethanol consumption with each successive vapor chamber cycle 17 

(Figure 2) [19, 48]. 18 

 19 

Differential expression analysis with LIMMA showed that both CIE and drinking affect gene 20 

expression in the PFC. Through overlap analysis between all comparisons of all 4 treatment 21 

groups, our results further suggested that gene expression changes in the NAC and HPC are 22 

primarily regulated by CIE, whereas in the PFC, BSNT, and CeA an interaction effect between 23 

CIE and drinking is seen (Table 1, Figure 3). Differences across treatment categories might 24 

simply reflect a linear or non-linear response to the total amount of ethanol exposure. However, 25 

the nature of the CIE and drinking model also raises the possibility that withdrawal time 26 
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influences gene expression differences between the 4 treatment groups. The drinking groups, at 1 

time of sacrifice, have been abstinent from ethanol for 22 hours, whereas the non-drinking 2 

groups have been abstinent for roughly 8 days. 3 

 4 

Network analysis with WGCNA revealed specific patterns of correlated gene expression in each 5 

brain region used in this study. This network-centric approach also allowed us to correlate both 6 

individual genes and modules of co-expressed genes directly to ethanol drinking. The strongest 7 

correlations between gene co-expression modules and drinking were seen in the PFC and NAC. 8 

These results suggest that these brain regions may have the strongest influence on the 9 

increase in drinking seen with CIE (Figure 2). The influence of the prefrontal cortex on behaviors 10 

associated with alcohol use disorders such as increased ethanol consumption and uncontrolled 11 

intake have been associated with this brain region’s role in impulse control and compulsivity [49, 12 

50]. The nucleus accumbens, however, has been hypothesized to impact ethanol drinking 13 

behavior due to its involvement in reward [51, 52]. Therefore, ethanol-responsive gene 14 

expression changes in areas of the brain that control impulsivity and reward are implicated by 15 

network analysis in the increase in drinking seen following repeated exposure to intoxicating 16 

levels of ethanol. 17 

 18 

One particularly striking finding was that those modules most strongly correlated with drinking 19 

after CIE exposure were consistently overrepresented for genes involved in synaptic 20 

transmission and synaptic plasticity (Suppl. Tables 6-10). This finding is not unexpected, as 21 

ethanol exposure has previously been shown to affect synaptic transmission, and synaptic 22 

architecture in several of the brain regions studied in these experiments [15, 23, 24, 53, 54]. 23 

These findings build on previous investigations into the molecular mechanisms of ethanol 24 

response in the brain, to suggest that the effect of repeated, prolonged ethanol exposure on 25 

synaptic transmission and synaptic architecture may have a direct influence on behavior both in 26 
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animal models and human alcoholics. Specifically, correlated changes in expression of genes 1 

involved in synaptic remodeling in the mesocorticolimbic system and extended amygdala, in 2 

response to repeated cycles of CIE by vapor chamber, may underlie the observed increase in 3 

voluntary ethanol intake (Figure 2). In fact, recent research utilizing neuroimaging technologies 4 

have explored the effect of alcohol addiction on brain structure and function, and the relation to 5 

drinking behavior in humans [55, 56]. These studies have linked reduced grey matter volume in 6 

the medial PFC with increased risk of relapse in people with AUD [57]. SPECT and PET 7 

scanning have also shown correlations between decreased basal activity in the medial PFC 8 

during alcohol abstinence, as indicated by blood flow and glucose metabolism respectively, with 9 

poor AUD treatment outcome [58, 59]. Neuroimaging studies in mouse models are fewer; 10 

however, it is hypothesized based on previous comparative research, including those of the 11 

gene expression and behavioral response to ethanol [8, 24], that neuroplasticity changes in 12 

response to chronic ethanol exposure are highly conserved between species. Indeed, such a 13 

hypothesis has been employed in recent work using neuroimaging in rodent models to study the 14 

effect of ethanol exposure during gestation on fetal brain structure [60-62]. The results of our 15 

microarray analyses, therefore, may help shed light onto the molecular mechanisms underlying 16 

both the sustained increase in drinking observed with the CIE model, and, potentially, 17 

neuroadaptations observed in the brains of humans. Further study is needed to establish such 18 

mechanisms, and will be the topic of future research by this group. 19 

 20 

Network analysis also identified modules in both the PFC and BNST enriched for myelin-related 21 

genes (Figure 6, Suppl. Tables 6 and 9). In the prefrontal cortex, the green module showed 22 

significant overlap with 3 GO categories related to myelination. Previous studies at our 23 

laboratory, as well as anatomical observations of the brains of human alcoholics, have 24 

suggested a role for myelination in the PFC in response to both acute and chronic ethanol 25 

exposure [13, 63-66]. Fewer studies have taken place on myelination in the BNST; however, our 26 
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analyses identified the BNST black module as one with significant correlations to ethanol intake 1 

after the 1st and 2nd CIE cycles. Although the BNST is a lesser-studied brain region in the myelin 2 

field, this region has previously been associated with the negative reinforcing properties of 3 

alcohol [24, 67]. Our findings suggest that repeated exposures to intoxicating ethanol may also 4 

have an effect on myelination in other brain regions that have, up to this point, not been 5 

examined as often as other regions more commonly associated with ethanol related 6 

demyelination, and that changes in myelin gene expression may be another mechanism 7 

underlying increased drinking. Future avenues of study will involve examining the effect of CIE 8 

by vapor chamber on myelination in implicated brain regions, and on the effect of induced 9 

demyelination on voluntary ethanol intake with repeated exposures to prolonged levels of 10 

intoxicating ethanol. 11 

 12 

Bioinformatic analysis also pointed to chromatin remodeling as a potential regulator of the 13 

transcriptomic response to CIE. The PFC turquoise module and CEA green module both 14 

contained genes involved in both DNA methylation [68] and members of known chromatin 15 

remodeling complexes [69-71]. Smarcc1 has been associated with ethanol response in mouse 16 

whole brain meta-analyses [72], and Smarca5 was found to be associated with alcohol 17 

response in network analysis of post-mortem brain tissue from human alcoholics [8]. Indeed, 18 

ethanol’s effects on epigenetic modifications to chromatin have been an area of intense study, 19 

both in humans and rodent models, during recent years [8, 73-75]. These included a study from 20 

Dr. Jennifer Wolstenholme at the Miles laboratory which found that chromatin modification 21 

genes correlated with individual variation in ethanol consumption in C57BL/6 mice [75]. Based 22 

on our findings in the other brain-regions studied, we hypothesize that this reflects the 23 

transcription level response in the brain to chronic ethanol exposure leading to downstream 24 

transcriptional regulation such as the observed changes in genes related to synaptic 25 

transmission, synaptic plasticity, and myelination. 26 
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 1 

In summary, differential gene expression and scale-free network analysis of microarray data 2 

after multiple cycles of CIE with and without intermittent access drinking has revealed brain 3 

region and treatment specific changes. Differential expression in the PFC, CEA, and BNST 4 

indicated an interaction effect between CIE and drinking; where as in the NAC and HPC, the 5 

primary effect came from CIE. Analysis of drinking patterns across multiple cycles of CIE 6 

showed that both CIE and air control mice increase their drinking, however, mice exposed to 7 

CIE drink significantly more than control. These results are in line with previous studies [19], and 8 

indicate that the CIE paradigm consistently produces progressive, lasting increases in voluntary 9 

ethanol intake in response to chronic high dose ethanol exposure. Furthermore, we have used 10 

the capabilities of network analysis through WGCNA to attempt to bridge the gap between gene 11 

expression and behavior by identifying co-expressed networks of genes in each brain region, 12 

and then correlating those networks to ethanol drinking. This strategy revealed that the most 13 

highly drinking correlated modules were seen in the PFC and NAC. In both brain-regions, as 14 

well as those with fewer significant drinking correlations, those modules with the strongest 15 

correlations to drinking, particularly after the 4th CIE cycle, were enriched for genes involved in 16 

synaptic transmission or synaptic plasticity. Modules from the PFC and BNST also indicated 17 

that changes in myelin gene expression also strongly correlate to changes in drinking. These 18 

results are of particular interest as previous studies from our group have observed significant 19 

changes in myelin gene expression with acute ethanol exposure [4]. Our results also suggest a 20 

role for chromatin remodeling, particularly in the PFC and CEA, in the gene expression 21 

response to chronic, prolonged ethanol exposure. Future studies will further explore the link 22 

between chromatin remodeling and altered synaptic transmission, possibly leading to structural 23 

changes in the brain, such as altered myelination. Such changes may be mechanistically 24 

important in the drinking behavior response to chronic intermittent ethanol exposure.  25 

  26 
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Figure Legends 1 

 2 

Figure 1: Schematic representation of CIE and drinking experimental design. 3 

 4 

Figure 2: Ethanol intake in CIE and air control mice. Statistical difference in ethanol intake 5 

measured by two-way ANOVA with repeated measures, * p-value ≤ 0.05, ** p-value ≤ 0.01. 6 

 7 

Figure 3: Overlap between 3 treatment/drinking group comparisons in all brain-regions. 8 

Overlap venn Diagrams of differentially expressed genes in PFC, NAC, HPC, BNST, and CeA 9 

between comparison of the CIE Drinking group and CIE control (CIE Non-Drinking), drinking 10 

control (Air Drinking), and ethanol naïve control (Air Non-Drinking). Significant differential 11 

expression: LIMMA FDR ≤ 0.01. 12 

 13 

Figure 4: Overlap between WGCNA modules and all 6 treatment/drinking group 14 

comparisons in all brain-regions. Cell numbers indicate number of overlapping probsets 15 

between module and significantly differentially expressed genes for each comparison (LIMMA p-16 

value ≤ 0.05). Cell color indicates significant of overlap. Significant overlap:  p-value ≤ 0.05. 17 

 18 

Figure 5: Heatmap of correlation between PFC modules and ethanol intake. Eigengene 19 

values (1st principal component of gene expression) were correlated to ethanol intake 20 

measures. Cell color indicates strength of correlation (green = negative correlation, red = 21 

positive correlation). 22 

 23 

Figure 6: Eigengene expression for each sample in PFC green module, Gene Ontology 24 

enrichment, connectivity of myelin genes. A) Eigengene (1st principal component) value from 25 

each PFC sample. Red=CIE Drinking, Blue=Air Drinking, Pink=CIE Non-Drinking, Light blue=Air 26 
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Non-Drinking. B) Gene Ontology biological processes significantly enriched in the PFC green 1 

module, grouped by biological theme using REVIGO. C) GeneMANIA network generated from 2 

PFC green module genes involved in myelination. 3 

 4 

Figure 7: Eigengene expression for each sample in PFC turquoise module and 5 

connectivity of chromatin modification genes. A) Eigengene (1st principal component) value 6 

from each PFC sample. Red=CIE Drinking, Blue=Air Drinking, Pink=CIE Non-Drinking, Light 7 

blue=Air Non-Drinking. B) Connectivity, represented by expression correlation, between genes 8 

involved in chromatin modification for each group. Line thickness and opacity represent strength 9 

of connectivity between genes. 10 

 11 

Figure 8: Heatmap of correlation between NAC modules and ethanol intake. Eigengene 12 

values (1st principal component of gene expression) were correlated to ethanol intake 13 

measures. Cell color indicates strength of correlation (green = negative correlation, red = 14 

positive correlation). 15 

 16 

Table Legends 17 

 18 

Table 1: Significantly differentially expressed probsets and genes between all 19 

comparisons of 4 treatment groups. Cells contain number of significant probesets and 20 

number of genes in parenthesis. Significant differential expression: LIMMA group comparisons, 21 

FDR ≤ 0.01. 22 

 23 

Table 2: Module names and sizes for each brain region. Module size shown in number of 24 

probesets. Module names are arbitrary colors assigned by WGCNA and do not indicate similar 25 

modules across brain regions. 26 
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 1 

Table 3: Combined analysis of WGCNA module responses to ethanol. Results show 2 

modules significant for Module Disruption (Z_cor.kIM ≤ -2), correlation with Ethanol 3 

Consumption (p<0.01 for percent change vs. baseline after CIE cycle 4), or over-representation 4 

for ethanol responsive genes by LIMMA analysis of Air Nonddrinking vs. CIE Drinking 5 

(FDR<0.01). Overlap is indicated for modules present in at least two analyses (bolded module 6 

names). Module names are arbitrary colors assigned by WGCNA and do not indicate similar 7 

modules across brain regions. 8 

 9 

Supplementary Figure Legends 10 

 11 

Supplementary Figure 1: Heatmap of correlation between HPC modules and ethanol 12 

intake. Eigengene values (1st principal component of gene expression) were correlated to 13 

ethanol intake measures. Cell color indicates strength of correlation (green = negative 14 

correlation, red = positive correlation). 15 

 16 

Supplementary Figure 2: Heatmap of correlation between BNST modules and ethanol 17 

intake. Eigengene values (1st principal component of gene expression) were correlated to 18 

ethanol intake measures. Cell color indicates strength of correlation (green = negative 19 

correlation, red = positive correlation). 20 

 21 

Supplementary Figure 3: Heatmap of correlation between CeA modules and ethanol 22 

intake. Eigengene values (1st principal component of gene expression) were correlated to 23 

ethanol intake measures. Cell color indicates strength of correlation (green = negative 24 

correlation, red = positive correlation). 25 

 26 
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Supplementary Table Legends 1 

 2 

Supplementary Table 1: Statistical results for drinking comparisons. Two-way repeated 3 

measures ANOVA comparing ethanol intake in g/kg between CIE and air control (ctrl). 4 

Significance: p-value ≤ 0.05 5 

 6 

Supplementary Table 2: Detailed results of linear models for microarray analysis 7 

(LIMMA). Results include log-ratio (coefficients), t-statistics for each comparison with p-values 8 

and FDR adjusted p-values. F-statistics from one-way ANOVA, F-statistic p-values, F-statistic 9 

FDR adjusted p-values, and RMA values. 10 

 11 

Supplementary Table 3: Summary of results of linear models for microarray analysis 12 

(LIMMA). Significant differential expression: LIMMA two-factor model, FDR ≤ 0.01. 13 

 14 

Supplementary Table 4: Connectivity statistics of WGCNA modules for each brain-region. 15 

Connectivity measures, WGCNA module assignment, RMA values, log-ratios, and F-statistics 16 

from one-way ANOVA, module membership (gene expression correlation to module eigengene) 17 

and module membership p-values for all genes used for WGCNA. 18 

 19 

Supplementary Table 5: Gene-trait correlation statistics for all probesets to ethanol 20 

intake. Spearman rank correlation and p-values for all baseline and CIE drinking measures for 21 

all genes used in WGCNA, and Spearman rank correlation and p-values in parenthesis for all 22 

WGCNA modules (modules as a whole represented by 1st principal component). 23 

 24 

Supplementary Table 6: Significant DAVID functional annotation for each WGCNA 25 

module in the PFC. Gene Ontology categories, overlapping genes and significance values are 26 
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shown for all categories with uncorrected significance of p-value ≤ 0.05. Also shown are Revigo 1 

ordering statistics for the same GO categories. 2 

 3 

Supplementary Table 7: Significant DAVID functional annotation for each WGCNA 4 

module in the NAC. Gene Ontology categories, overlapping genes and significance values are 5 

shown for all categories with uncorrected significance of p-value ≤ 0.05.  6 

 7 

Supplementary Table 8: Significant DAVID functional annotation for each WGCNA 8 

module in the HPC. Gene Ontology categories, overlapping genes and significance values are 9 

shown for all categories with uncorrected significance of p-value ≤ 0.05. Also shown are Revigo 10 

ordering statistics for the same GO categories. 11 

 12 

Supplementary Table 9: Significant DAVID functional annotation for each WGCNA 13 

module in the BNST. Gene Ontology categories, overlapping genes and significance values 14 

are shown for all categories with uncorrected significance of p-value ≤ 0.05. 15 

 16 

Supplementary Table 10: Significant DAVID functional annotation for each WGCNA 17 

module in the CeA. Gene Ontology categories, overlapping genes and significance values are 18 

shown for all categories with uncorrected significance of p-value ≤ 0.05. Also shown are Revigo 19 

ordering statistics for the same GO categories. 20 

 21 

Supplementary Table 11: Topological overlap statistics and results of overlap analysis 22 

between WGCNA modules and LIMMA significant results. Topological overlap statistics 23 

include module topological overlap, resampled topological overlap, Z-score, p-value and FDR. 24 

Overlap results feature number of overlapping probesets, p-values, and Bonferroni corrected p-25 

values. 26 
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Supplementary Table 12: Module disruption results for all WGCNA modules. Module 1 

disruption results include module size in probesets, correlation of total connectivity between the 2 

CIE drinking group and the Air Non-Drinking group (mod.cor.kME), mean correlation of total 3 

connectivity between all bootstrap networks (mean.boot.cor.kME), standard deviation of 4 

correlation of total connectivity between all bootstrap networks (sd.boot.cor.kME), Z-score of 5 

correlation of total connectivity between CIE drinking group vs. Air Non-Drinking group and 6 

mean of bootstrap networks (Z_cor.kME), correlation of within module connectivity between the 7 

CIE drinking group and the Air Non-Drinking group (mod.cor.kIM), mean correlation of within 8 

module connectivity between all bootstrap networks (mean.boot.cor.kIM), standard deviation of 9 

within module connectivity between all bootstrap networks (sd.boot.cor.kIM), Z-score of 10 

correlation of within module connectivity between CIE drinking group vs. Air Non-Drinking group 11 

and mean of bootstrap networks (Z_cor.kIM). 12 

 13 
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Brain Region Module Color Module Size Module Color Module Size 
PFC 
(n=22) 

Black 250 Lightyellow 40 
Blue 1926 Magenta 108 
Brown 1588 Midnightblue 66 
Cyan 71 Pink 192 
Darkred 33 Purple 98 
Green 513 Red 422 
Greenyellow 87 Royalblue 37 
Grey 1828 Salmon 74 
Grey60 49 Tan 81 
Lightcyan 64 Turquoise 1943 
Lightgreen 43 Yellow 771 

     
NAC 
(n=25) 

Black 304 Lightgreen 63 
Blue 1406 Lightyellow 52 
Brown 1369 Magenta 212 
Cyan 103 Midnightblue 97 
Darkgreen 40 Pink 220 
Darkgrey 33 Purple 204 
Darkred 42 Red 490 
Darkturquoise 38 Royalblue 44 
Green 975 Salmon 118 
Greenyellow 192 Tan 127 
Grey 550 Turquoise 2339 
Grey60 66 Yellow 1107 
Lightcyan 96   

     
HPC 
(n=16) 

Black 276 Midnightblue 45 
Blue 1856 Pink 184 
Brown 1735 Purple 179 
Cyan 54 Red 422 
Green 461 Salmon 93 
Greenyellow 165 Tan 115 
Grey 1451 Turquoise 2415 
Magenta 184 Yellow 630 

     
BNST 
(n=15) 

Black 387 Pink 239 
Blue 1451 Purple 180 
Brown 1087 Red 808 
Cyan 57 Salmon 72 
Green 829 Tan 150 
Greenyellow 174 Turquoise 2653 
Grey 901 Yellow 1080 
Magenta 201   
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CeA 
(n=19) 

Black 251 Magenta 187 
Blue 2010 Midnightblue 59 
Brown 1202 Pink 245 
Cyan 70 Purple 125 
Green 931 Red 755 
Greenyellow 96 Salmon 72 
Grey 802 Tan 89 
Grey60 35 Turquoise 2205 
Lightcyan 43 Yellow 1035 
Lightgreen 34   
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Brain 
Region

Module Disruption by 
Ethanol

Ethanol 
Consumption

Correlated

Over-represented 
Ethanol 

Regulated Overlaps
PFC Brown, Green, LightYellow, 

Turquoise
Grey60, Lightgreen,

Magenta, Midnightblue, 
Pink, Red, Salmon, 

Tan, Turquoise

Black, Darkred,
Turquoise

Turquoise

NAc Black, Blue, Brown, Darkgreen, 
Darkred, Green, Grey60, 
Lightgreen, Lightyellow, 

Magenta, Midnightblue, Pink, 
Purple, Royalblue, Tan, 

Turquoise, Yellow

Darkred, Lightcyan, 
Royalblue,

Turquoise, Yellow

Salmon, Turquoise Darkred, 
Royalblue, 
Turquoise, 

Yellow

HPC Blue, Salmon, Tan, Turquoise Black, Greenyellow, 
Purple, Turquoise, 

Yellow

Green, Turquoise Turquoise

BNST Black, Blue, Brown, Green, 
Yellow

Red Blue Blue

CeA Black, Blue, Brown, Green, 
Purple, Red, Tan, Turquoise, 

Yellow

Blue Blue, Green Blue, Green

Table 3: Combined Analysis of WGCNA Module Responses to Ethanol

Results show modules significant for Module Disruption (Z_cor.kIM ≤ -2), correlation with Ethanol Consumption (p<0.01 
for %change vs. baseline after CIE cycle 4), or over-representation for ethanol responsive genes by LIMMA analysis of 
Air_Nondrinking vs. CIE_Drinking (FDR<0.01). Overlap is indicated for modules present in at least two analyses (bolded 
module names). Module names are arbitrary colors assigned by WGCNA and do not indicate similar modules across brain 
regions. Primary data is from Suppl. Tables 5,11,13 and 14.
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