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15 Abstract

16 Evolving in groups can either enhance or reduce an individual’s task performance. Still, 

17 we know little about the factors underlying group performance, which may be reduced to 

18 three major dimensions: (a) the individual’s ability to perform a task, (b) the dependency on 

19 environmental conditions, and (c) the perception of, and the reaction to, other group 

20 members. In our research, we investigated how these dimensions interrelate in simulated 

21 evolution experiments using adaptive agents equipped with Markov brains (“animats”). We 

22 evolved the animats to perform a spatial-navigation task under various evolutionary setups. 

23 The last generation of each evolution simulation was tested across modified conditions to 

24 evaluate and compare the animats’ reliability when faced with change.  Moreover, the 

25 complexity of the evolved Markov brains was assessed based on measures of information 

26 integration. We found that, under the right conditions, specialized animats were as reliable 

27 as animats already evolved for the modified tasks, that interaction between animats was 

28 dependent on the environment and on the design of the animats, and that the task difficulty 

29 influenced the correlation between the performance of the animat and its brain complexity. 

30 Generally, our results suggest that the interrelation between the aforementioned dimensions 

31 is complex and their contribution to the group’s task performance, reliability, and brain 

32 complexity varies, which points to further dependencies. Still, our study reveals that 

33 balancing the group size and individual cognitive abilities prevents over-specialization and 

34 can help to evolve better reliability under unknown environmental situations. 

35 Keywords: Collective behavior, evolutionary algorithms, cognitive science, Markov brains.
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36 Author Summary

37 The ability to adapt to environmental changes is an essential attribute of organisms which 

38 have had evolutionary success. We designed a simulated evolution experiment to better 

39 understand the relevant features of such organisms and the conditions under which they 

40 evolve: First, we created diverse groups of cognitive systems by evolving simulated 

41 organisms (“animats”) acting in groups on a spatial-navigation task. Second, we post-

42 evolutionary tested the final evolved animats in new environments–not encountered before–

43 in order to test their reliability when faced with change. Our results imply that the ability to 

44 generalize to environments with changing task demands can have complex dependencies on 

45 the cognitive design and sensor configuration of the organism itself, as well as its social or 

46 environmental conditions.

47 Introduction 

48 Intelligence is the ability to adapt to changes. According to this prevalent perspective, 

49 possessing general intelligence [1,2] not only enables one to perform a task correctly under 

50 already known conditions, but also to perform well under unexpected conditions. Further, in 

51 natural environments intelligent behavior is not only dependent on the (maybe limited) 

52 intelligence of the individual organism, but also involves interactions with the social and 

53 physical environment [3–5]. In addition to the examples from the animal world, it is also true 

54 in high-reliability organizations (e.g., aircraft carrier or nuclear power plants) that individual 

55 behavior is interrelated with the behavior of the group members. This is necessary to be able 

56 to act correctly in case of an unforeseen event [6–8].

57 While it seems intuitive that there is a triangular relationship between the individual, the 

58 group, and the environment, we discovered a lack of research on how individual behavior 

59 and group behavior are interrelated and depend on spatial attributes of the environment [9]. 

.CC-BY 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted July 2, 2019. ; https://doi.org/10.1101/688598doi: bioRxiv preprint 

https://doi.org/10.1101/688598
http://creativecommons.org/licenses/by/4.0/


PLOS Computational Biology –– FOR REVIEW 4 of 35

60 This limits our understanding of how an individual actor evolves intelligent behavior and 

61 how its physiological abilities, the social setting, and the environment constrain this 

62 evolution. More generally, several studies have investigated intelligence and knowledge on 

63 the group level, and some have modelled groups of individuals as single agents (e.g., [10–

64 14]). These studies have their origins in a variety of disciplines and have in common that they 

65 seek to elucidate the dynamics between group members. 

66 To shed more light on the above-mentioned issue, we wanted to ask which conditions 

67 can promote the evolution of intelligent entities that act in organized groups and can 

68 additionally adapt to environmental changes under simplified conditions in a simulated 

69 evolution experiment. Inspired and motivated by Pinter-Wollman et al. [9], we wanted to 

70 investigate how the behavior and performance of evolved “animats” (simulated agents with 

71 cognitive abilities [15,16]) varies in different task conditions, such as changes in the 

72 proportions of static objects, dynamic objects (group members), and individual cognitive 

73 abilities. This simulation enabled us to manipulate and observe three dimensions which might 

74 influence task performance and reliability: the group size, the animats’ physiology, and the 

75 environmental design. In this study, reliability describes the ability to perform well under 

76 manipulated task conditions that the animat had not been confronted with before.

77 We used a genetic algorithm to let the animats’ behavior evolve under various 

78 evolutionary setups. Specifically, the animats were controlled by Markov brains (MBs) [16], 

79 which consisted of computational units whose functions and connectivity were determined 

80 by the animats’ adaptive genome. The animats’ task was to navigate through a two-

81 dimensional world composed of multiple rooms without colliding with other group members 

82 (see Fig 1). There was a small penalty for each collision and a large reward for crossing gates 

83 between rooms. After an evolution of 10,000 generations, we tested the final animats under 

84 modified task conditions modeled as: a variation in group size, the complexity of the static 
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85 obstacles in the environment, and interaction rules between animats constraining fitness for 

86 the task. An animat was considered reliable if its task performance remained high across 

87 many of these test conditions. 

88 Fig 1. Average movement patterns of six selected conditions. The panel on the left shows the two-

89 dimensional environment including two rooms with 36 start positions occupied (round dots). The 

90 other six panels show example movement patterns. Dark fields indicate high occupancy, and light 

91 fields indicate low occupancy in the corresponding position throughout the trial. Generally, well-

92 performing animat groups evolve a wall following strategy.  indicates the average fitness of 〈EF〉

93 the final generation in the specific condition.

94 A predecessor study focused on the influence of group size on the evolution of group 

95 fitness and reliability [17], while the present work extends the reliability experiments, 

96 includes cognitive and environmental variations in the evolutionary setup, and elaborates the 

97 measurement of brain complexity by applying measures developed within the framework of 

98 the integrated information theory (IIT) to the evolved MBs [18,19]. There are two additional 

99 works which directly relate to our study: First, Konig et al. [20] provided the original 

100 experimental setup. They designed a two-dimensional spatial-navigation task in which a 

101 swarm of robots has to learn to travel between two rooms. Second, Albantakis et al. [19] 

102 showed how single animats evolve in a perceptual-categorization task environment with 

103 dynamic objects under various task difficulties. The primary motivation behind their work 

104 was to investigate the evolution of integrated information [18], which is an indicator for brain 

105 complexity, and its relation to task difficulty and memory capacity. In the following, we 

106 discuss how the complexity of the MBs–evolved in the various experimental setups–is related 

107 to reliability as an indicator for general intelligence.

108 Simulating a large set of evolutionary setups and post-evolutionary test conditions 

109 enables us to identify important cognitive and social variables and to evaluate how physical 

110 constraints influence collective movement. Specifically, the results of the simulated 
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111 evolution experiments suggest the following implications: First, animats who evolve in an 

112 environment with a balanced group size evolve better reliability and can compete with 

113 specialized animats (who have already experienced changing conditions). Second, the 

114 integration of motor units into the memory network increases the performance of animats. 

115 Third, the ability to sense adjacent animats is essential for the reliability of animats to perform 

116 the task, even if it is challenging to make statements about the communication between 

117 animats in this setting. Finally, we explored how various sensor configurations influence the 

118 difficulty of dealing with the task and, therefore, the animats’ ability to cope with changes. 

119 Overall, we found that, under the right conditions, specialized animats can be reliable, that 

120 the integration of motor units has an impact on performance and reliability, that animats 

121 benefit from passive interaction, and that more sensors enable reliability with simpler and 

122 less integrated brain structures (which challenges the view that higher generalized 

123 intelligence is necessarily associated with more complex cognitive architectures). On the 

124 whole, our approach also highlights the complexity of the dependencies between the three 

125 dimensions under investigation (properties of the individual, group interaction, and 

126 environmental design), even in the simplified conditions of our simulation experiments, and 

127 thus cautions against hasty generalizations, e.g., across different species or environments. 

128 In the following, we will first present our results on the animats’ task performance, 

129 reliability, behavior, and brain complexity across varying evolutionary setups. After that, we 

130 will discuss the findings in the broader scope of the literature and also how our work 

131 contributes to it. The last part of the work explains the methods and research design.

132 Results 

133 We simulated the evolution of artificial organisms (“animats”) with diverse cognitive 

134 architectures under various conditions for 10,000 generations (see Table 1 for an overview 

135 of all evolution simulations conducted).  
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136 Table 1. Definition of simulation conditions (“evolutionary setups”). Gi indicates the group 
137 condition. The index i specifies the respective evolutionary setup.

Label Gi Group 
Size1
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Design2

Interaction 
Condition3

Sensor 
Configuration2
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138 1 Absolute group size, 72 animats corresponds to 100% coverage of available starting slots. 
139 2 See Methods section for detailed architecture.
140 3 If penalty is active, animats receive penalty for colliding with other animats. If blocking is active, animats 
141 are not able to share the same position, otherwise they can cross over each other.

142 All animats were evolved to travel between two rooms in a two-dimensional 

143 environment, which they shared with other animats of their same type, except in the “single” 

144 condition (see Fig 1(a) and Table 1). Fitness selection positively depended on the average 

145 number of times that the animats stepped through the gate between the two rooms. In 

146 addition, we imposed a small penalty each time they collided with other animats (if not stated 

147 otherwise). A detailed description of the task environments and the evolutionary algorithm 

148 (EA) is provided below in the Methods section. In many evolutionary setups, high final fitness 

149 values (EF > 3) was able to be achieved. 

150 Once evolved, the final generation of animats was the basis for comparing task fitness 

151 (performance in a specific environment), behavior, and reliability (average performance 

152 across all several task environments) across conditions. In this study, we focused on assessing 

153 reliability across two dimensions: (1) the number of co-existing animats and (2) the 
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154 placement of static obstacles compared to the original two-dimensional environment (see Fig 

155 1(a), and the Methods section for details). Additionally, we varied the interaction conditions 

156 between agents as a third parameter to manipulate the agent’s reliability across group sizes.

157 Fig 1(b) displays six different heatmaps visualizing several evolved movement patterns. 

158 It is observable that animat groups with reasonable task fitness (TF) converge towards a 

159 “swarm”-like wall-following behavior, which is driven by both interactions with fellow 

160 animats and interactions with the environment [4,9]. 

161 We organized the presentation of our results into four sections according to the 

162 evolutionary setups thereof, as shown in Table 1 (varying “group size”, “cognitive design”, 

163 “interaction conditions”, and “sensor configuration”, respectively). Each section contains 

164 visualizations displaying the average increase in fitness across generations (“fitness 

165 evolution”), behavioral features, the reliability tests, and a complexity analysis of the evolved 

166 MBs. Since the figures are redundant in their construction, we will briefly introduce their 

167 attributes:

168 Fitness: Fig 2, Fig 5, Fig 8, and Fig 11 show (a) the fitness evolution across generations 

169 and (b) the distribution of evolved fitness values (EF) of the final generation. The shaded 

170 areas in (a) visualize the standard error of the mean (SEM) across the 30 evolution 

171 simulations that we performed per evolutionary setup. The wide bars in (b) visualize the mean 

172 evolved fitness 〈EF〉.

173 Reliability and behavior: Fig 3, Fig 6, Fig 9, and Fig 12 visualize the results of testing 

174 the reliability of fitness values and behavioral features of the final generation of animats 

175 across (1) different group sizes ([0.01389, 0.05, 0.10, … , 0.95, 1.0]) and (2) various test 

176 conditions (changing interactions between animats and environment design). Panel (a) in 

177 Figures 3/6/9/12, shows the mean task fitness 〈TF〉 of testing the animats under different 

178 group sizes, respectively, in the eight different test conditions listed in Table 2. Note that the 
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179 condition under which a group of animats evolved is indicated by their Gi label (see Table 

180 1), and 〈TF〉 is an average across the 30 evolution simulations per experimental setup.

181 Table 2: Overview of the eight environments in which reliability tests were performed. They differ 
182 in environmental conditions and in the complexity of the world design. 

Label Environmental Conditions Environment (see Methods)
Original Active penalty1, no blocking2 See Fig 16(a)

No Penalty No penalty, no blocking
Blocked Active penalty, active blocking

Blocked and no Penalty No penalty, active blocking
See Fig 16(a)

Noisy Corners See Fig 16(b)
Small Gates See Fig 16(c)

4 Rooms See Fig 16(d)
4 Messy Rooms

Active penalty, no blocking

See Fig 16(e)
183 1 If penalty is active, animats receive penalty when colliding into each other. 
184 2 If blocking is active, an animat cannot move onto the location of another animat.

185 Next, we quantified the reliability across group sizes as the average task fitness R = 

186 〈TF〉GS  in the “Original” test condition (in this case, the average is calculated across group 

187 sizes not simulations as indicated by the subscript “GS”, which stands for group size). Panel 

188 (b) shows the distribution of these reliability values (R) and their dependency on evolved 

189 fitness (EF). Panel (c) shows how the animats’ behavior depends on the relative group size, 

190 evaluating the probability of an animat to stand still (“no movement”), turn, or move forward 

191 in the “original” test environment.

192 Complexity analysis: Fig 4, Fig 7, Fig 10, and Fig 13 show two types of metrics for MB 

193 complexity: (a) the distribution of integrated information (ΦMax) [18,19], and (b) the 

194 corresponding number of concepts ( ) [18] per condition. While there may #Concepts(ΦMax) 

195 be simpler, less computationally demanding options for evaluating the causal complexity of 

196 the evolved MBs (see [15,16,21]), the chosen measures are fairly well established [15,19,22] 

197 and are theoretically motivated as part of the formal framework of integrated information 

198 theory (IIT) [18]. Briefly, a “concept” in IIT is a system subset that has a causal role within 

199 the system—an intrinsic mechanism. A concept causally constraints both the past and future 

200 states of the system, and is irreducible to its parts. The number of concepts (#Concepts(ΦMax

201 ) thus captures the number of internal functions performed by individual system elements ) 
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202 and combinations of elements. ΦMax quantifies how much of the information specified by all 

203 the concepts in a set of elements would be lost under a partition of the system, and it will be 

204 high if the set of elements has many concepts (functional differentiation) that are also highly 

205 integrated. Both measures are evaluated for the most integrated system subset, thus the ‘max’ 

206 superscript. For details please refer to the original publication [18] and to [19] for an 

207 application of these measures to evolve MBs. 

208 Varying group size: Evolution under specialized conditions can produce reliable 

209 agents

210 In a first set of experiments, we compared animats that evolved within groups of fixed 

211 sizes (1-72 animats) (using the original animat and environment design in all cases). 

212 Preliminary results, including a comparison of the reliability of evolution conditions G1.0-

213 single, were presented in [17]. As shown in Fig 2(a) and reported in [17], group size during 

214 evolution does impact the animats’ ability to perform the gate crossing task (“task difficulty”) 

215 (Fig 1(a)), and it influences the final evolved fitness. 

216 In our spatial-navigation task, single animats (group size of 1) frequently find an optimal 

217 solution within 10,000 generations, since colliding is impossible and walls (static obstacles) 

218 may guide the animat towards the gate. Increasing the number of animats in the environment 

219 makes it more difficult to navigate due to the penalty imposed upon colliding with another 

220 agent [17]. In our study, an animat was reliable if it could achieve high fitness under various 

221 conditions which they did not face during evolution. Reliability across group sizes was found 

222 to be high if the animats evolved in an environment where the density of animats was 

223 balanced (G0.5 and G0.25) (see Fig 3(a,b) and [17]). 

224 In our study, we included an additional comparison setup (Grandom), for which group size 

225 varied randomly during evolution, in order to explicitly evolve animats with high reliability. 

226 As shown in Fig 2(b), the final fitness values for Grandom were comparable to those evolution 
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227 setups with fixed, intermediate group sizes (G0.5 and G0.25) (though still significantly different 

228 (p<.05), see Supporting Information S3 for all statistical tests).

229 Fig 2. Fitness evolution and distribution of the final evolved fitness. (a) Gsingle is the condition 

230 which evolves the highest fitness on average. Larger group sizes during evolution impede the 

231 animats’ fitness evolution and lead to lower final evolved fitness values. (b) The evolutionary setup 

232 with randomized group sizes at each generation (Grandom) demonstrates similar properties as those 

233 setups with fixed, intermediate group sizes (G0.25 and G0.5).

234 It is no surprise that Grandom is the most reliable setup across varying group sizes (see Fig 

235 3), since these animats already evolved under the conditions tested in the reliability 

236 evaluations. Notably, however, animats that evolved under specialized conditions with 

237 intermediate group sizes (G0.5 and G0.25) are comparable to animats specifically evolved for 

238 reliability (Grandom) during evolution (see Fig 3). It is necessary to review the reliability tests 

239 in detail to observe differences between those evolutionary setups. G0.50 and Grandom show 

240 similar reliability values R in the original environment setting, particularly for larger group 

241 sizes (> 50%) (see Fig 3(a)). Nevertheless, Grandom animats perform better with smaller group 

242 sizes, leading to comparable but still significantly different average R values (p<.05). 

243 Fig 3. Reliability tests. (a) Overall, only Gsingle fails to generalize across group sizes, as animats 

244 evolved without other group members did not develop strategies to avoid collisions (compare 

245 Original to No penalty test condition, where Gsingle performs well throughout). There is a large 

246 difference in the Blocked environment between Grandom, G0.25, and G0.50, while in other environments 

247 their task fitness is comparable, pointing to somewhat different navigation strategies. (b) On average, 

248 Grandom is the most reliable condition, followed by G0.50 and G0.25. Except for Gsingle, EF correlates 

249 with R in all groups. (c) Note that G0.50 and G0.25 change their behavior more with increasing animat 

250 density compared to Grandom. 

251 Of all test conditions (see Table 2), Blocked (in which animats cannot overlap) suggests 

252 a further difference between G0.50, G0.25, and Grandom (see Fig 3(a)): G0.50 and G0.25 are more 

253 severely affected by this deviation from standard settings in which animats can overlap, albeit 
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254 under a penalty. While animats evolved in Grandom also experienced large group sizes with a 

255 higher likelihood of a penalty during evolution, G0.50 and G0.25 animats consistently faced 

256 only intermediate probabilities of colliding with other animats, which may have led to less 

257 effective strategies for avoiding collisions.

258 In addition to varying group sizes, we also tested the final generation of animats in four 

259 environments with different wall arrangements (Fig 3(a), bottom row). Performance 

260 decreased to similarly low levels in all conditions, but least for evolutionary setups with 

261 larger group sizes.

262 In terms of their behavior (Fig 3(c)), animats in Grandom were less idle and showed fewer 

263 turns and more steps forward in comparison with animats in G0.50, particularly for large group 

264 sizes. This suggests that the behavior in Grandom is more fluid overall. By contrast, the 

265 specialized animats have to be more reactive to stay reliable, displaying larger difference in 

266 behavior across group sizes (see Table 3 for a more detailed explanation of the difference in 

267 behavior). Please refer to [17] for a more detailed discussion of behavioral differences across 

268 evolutionary setups with fixed group sizes G1.0-single.

269 Table 3: Absolute difference between the state transition probability of G0.50 and Grandom. The first 
270 digit describes whether anything (wall or other animat) is sensed (1) or not sensed (0), and the 
271 second digit describes whether the animat moved/turned (1) or did not move/turn (0). Most notably, 
272 Grandom animats performed more movements even in the absence of sensor inputs than G0.50 
273 (“0101”).

00 01 10 11

00 0.0000 -0.0074 0.0000 -0.0001
01 -0.0079 -0.06061 0.0136 0.0088
10 0.0005 0.0100 0.0063 0.0063
11 -0.0001 0.0119 0.0031 0.0157

274 1 Minus values indicate that the transition is more frequent in Grandom, while positive values indicate the 
275 opposite.

276 Fig 4 shows the distribution of ΦMax  and #Concepts(ΦMax) [18,19] as a measure of the 

277 complexity of the evolved MBs across evolutionary setups with different group sizes. While 

278 the most reliable evolutionary setups (Grandom and G0.50) do show the highest average values 

.CC-BY 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted July 2, 2019. ; https://doi.org/10.1101/688598doi: bioRxiv preprint 

https://doi.org/10.1101/688598
http://creativecommons.org/licenses/by/4.0/


PLOS Computational Biology –– FOR REVIEW 13 of 35

279 of ΦMax  and the largest number of concepts (internal mechanisms), differences between 

280 conditions generally do not reach statistical significance (p>.05) due to the large variance in 

281 the complexity values (see Supporting Information S3). It would require more data 

282 (simulation experiments per evolutionary setup) to refine the mean of the intervals enough to 

283 verify the observed trend. In our predecessor study [17], a correlation of high reliability and 

284 task performance with high brain complexity was found using a simplified measure of brain 

285 complexity based on anatomical connectivity only. In addition, the integrated information 

286 measures employed here are sensitive to the causal interactions within the MBs.  In the 

287 present data, significant pair-wise differences could be found between Gsingle and the most 

288 reliable setups (Grandom and G0.50). As explained above, the task environment experienced by 

289 animats in Gsingle is less demanding than for setups with larger group sizes. Our findings are 

290 thus in line with [19], which demonstrated higher ΦMax  and #Concepts(ΦMax) for animats 

291 evolved in more complex environments.     

292 Fig 4. Distribution of brain complexity measures. Differences in (a) ΦMax and (b) the 

293 corresponding number of concepts was found between the most (Grandom and G0.50) and the least 

294 (Gsingle) reliable setups. Due to the large variance in the data and the low sample size (30 simulations 

295 per evolutionary setup), differences in the mean between the remaining conditions did not reach 

296 statistical significance (see Supporting Information S3).

297 Varying cognitive design: Brain size and memory dependencies

298 In a second set of experiments, we used the same evolutionary setup as for G0.50 in all 

299 tested conditions, but varied the number of available computational units in the animats’ 

300 MBs. In the baseline design G0.50, it is possible to integrate motor units as memory units (by 

301 feedback loops to the hidden units, see Methods section). This was disabled in one condition 

302 G!feedback and therefore reduced the absolute capacity for memory from six to four binary 

303 units. Moreover, we designed animats with similarly small memory capacity but with 

304 feedback motors as a reference group (Gsmallbrain). Those animats had only two hidden units 
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305 instead of four but the original type of motors with the possibility of evolving feedback loops. 

306 Again, the possible integration of motor units allows one to utilize information about past 

307 movements directly (e.g., like the sensation of one’s legs). Finally, we included a condition 

308 with larger MBs with eight hidden units and motor feedback (Gbigbrain). 

309 We observed that fitness and reliability across group sizes in the original environment 

310 decreased for animats with fewer computational units (see Fig 5 and Fig 6). However, while 

311 animats in Gsmallbrain still evolved to reasonably high fitness and reliability, G!feedback was 

312 lacking in both. This indicates that motor feedback facilitates evolution in our task 

313 environment. One behavioral difference between these two conditions was the reduced 

314 movement in the animats of Gsmallbrain (see Fig 6(c)). Furthermore, the state transition analysis 

315 shows that the motor units of animats in Gsmallbrain tend to change their behavior more often, 

316 while animats in G!feedback stay in the same state more often (see Table 4). Notably, G!feedback 

317 and, particularly, Gsmallbrain performed better than G0.50 given large changes in the wall 

318 arrangement. 

319 Fig 5. Fitness evolution and distribution of the final evolved fitness. (a) Less capacity for memory 

320 and internal computations impairs fitness evolution. Despite their similar capacity for memory, 

321 Gsmallbrain evolved higher fitness than G!feedback. (b) Ceiling outlier suggest that animats in G!feedback 

322 are generally capable of performing as well as average animats in Gsmallbrain but that this is less likely. 

323 The performance of Gbigbrain is comparable to G0.50 with more distributed outcomes.

324 Fig 6. Reliability tests. (a) Gsmallbrain is more reliable than G!feedback. Considering Gbigbrain, animats in 

325 this group are overall comparable to the baseline condition G0.50, but show worse performance in the 

326 Blocked test condition and some of the modified environments for larger group sizes. (b) Reliability 

327 R correlates with EF for all setups. The lower reliability of Gsmallbrain and G!feedback compared to 

328 baseline can thus be explained by their already lower evolved fitness values. Note, however, that 

329 Gsmallbrain and G!feedback perform better than G0.50 across group sizes in the 4 (Messy) Rooms test 

330 conditions (see (a)). (c) For larger group sizes,  Gsmallbrain remains static more often than G!feedback.
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331 Table 4: Absolute difference between the state transition probability of Gsmallbrain and G!feedback. The 
332 first digit describes whether anything (wall or other animat) is sensed (1) or not sensed (0) and the 
333 second digit describes whether the animat moved/turned (1) or did not move/turn (0). Most notably, 
334 animats in Gsmallbrain switched more often between sensing and moving than animats in G!Feedback 

335 (“0110”, “1001”, but “1111”). 

00 01 10 11

00 0.0000 0.0001 0.0000 0.0000
01 0.0000 -0.01671 0.0237 -0.0046
10 0.0000 0.0194 0.0011 0.0029
11 0.0001 -0.0004 -0.0015 -0.0241

336 1 Minus values indicate that the transition is more frequent in G!feeback, while positive values indicate the 
337 opposite. 

338 By contrast, more hidden units (Gbigbrain) do not improve average fitness or reliability in 

339 any of the tested conditions (see Fig 5 and Fig 6). While Gbigbrain overall seems very similar 

340 to the baseline setup G0.50, differences can be observed in the Blocked and Small Gate test 

341 conditions (see Fig 6(a)). In principle, more computational units allow for better 

342 performance. However, the larger space of possible solutions may also impede fitness 

343 evolution (note the larger variance for Gbigbrain compared to G0.50 in Fig 5(b) and Fig 6(b)).

344 Considering brain complexity, the evolutionary setups with smaller MBs (Gsmallbrain and 

345 G!feedback) have significantly lower ΦMax and fewer concepts than the baseline condition 

346 (G0.50). Between those two conditions, Gsmallbrain shows significantly higher ΦMax and more 

347 concepts as compared to G!feedback (see Fig 7). This correlates with the larger evolved fitness 

348 values of Gsmallbrain in Fig 5 and its associated higher reliability in Fig 6. Note that calculating 

349 ΦMax and the corresponding number of concepts was not possible for Gbigbrain since 

350 exhaustive evaluations across many systems and states are not currently feasible when using 

351 the pyphi software package to compute measures of integrated information theory for 

352 networks of that size (>10 units) [23].

353 Fig 7. Distribution of brain complexity measures. Compared to the baseline, the smaller MBs 

354 (Gsmallbrain and G!feedback) have lower ΦMax and fewer corresponding concepts. Animats in Gsmallbrain 

355 show higher ΦMax and have more corresponding concepts compared to G!feedback animats, many of 
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356 which have ΦMax = 0. Due to computational reasons, the brain complexity of Gbigbrain could not be 

357 calculated (see text). 

358 Varying interaction conditions: Evolution of beneficial interaction

359 In our evolution simulations, the fitness function used for selection depended on the 

360 average task fitness of all animats in the group. Moreover, individuals received penalties for 

361 colliding with other group members. Since it is hardly possible to directly observe 

362 cooperative interactions, we used a third set of simulations to manipulate aspects of the 

363 fitness function and physical interaction between animats to identify to what extent these 

364 features influence both the fitness and the reliability. For this purpose, we considered four 

365 different evolutionary setups besides the baseline setup G0.50: Gsingle (same as above), G!penalty, 

366 Gblocked, and Gblocked/!penalty (see Table 1 for a detailed description). Grandom is also included in 

367 the figures for comparison.  

368 Among the novel setups, only animats in Gblocked were subject to the collision penalty 

369 during evolution, whereas later, during the Original reliability tests, all conditions were 

370 subject to a penalty. Not being able to share the same position (as in Gblocked) hardly 

371 influenced the final fitness, reliability, or behavior of the evolved animats (Fig 8 and Fig 9, 

372 compared to the baseline condition). G!penalty, where reacting to other animats had no direct 

373 effect on the fitness evolution, showed very similar fitness evolution, reliability curves, and 

374 behavior to Gsingle. Considering the reliability tests in Fig 9(a), the top row shows the 

375 reliability across group sizes in the Original environment, and under varying interaction 

376 conditions: No Penalty, Blocked, and both Blocked and no Penalty (from left to right). In the 

377 bottom row of Fig 9(a), animats are evaluated under the same interaction rules as they 

378 evolved in while only facing a modified environment. 

379 Fig 8. Fitness Evolution and distribution of the final evolved fitness. The animats in conditions 

380 without a penalty (Gblocked/!penalty and G!penalty) evolved to relatively high fitness levels. In particular, 
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381 G!penalty evolved like Gsingle, since animats in both conditions were not impacted at all by other 

382 animats. Similarly, Gblocked seemed equivalent to the baseline setup G0.50, while Gblocked/!penalty evolved 

383 to slightly higher fitness values, comparable to Grandom.

384 Fig 9. Reliability Tests. (a) There was a significant difference between animats in Gblocked/!penalty and 

385 animats in G!penalty. Being blocked was essential for retaining some reliability if no penalty was given. 

386 (b) G!penalty showed similar reliability as Gsingle, whereas Gblocked showed similar reliability as G0.50.  

387 (c) These similarities were also reflected in the animats’ behavior. The behavior of animats in 

388 Gblocked/!penalty was more reactive to changing group size than G!penalty.

389 Comparing the reliability tests of Gblocked/!penalty, Gblocked and G!penalty (Fig 9), we observed 

390 significant differences between the setups, which let us assume that there is implicit 

391 cooperation. In this context, we want to highlight that G!penalty performs relatively poor for 

392 larger group sizes in the environment designs with large modifications (in 4 (Messy) Rooms) 

393 as compared to the other setups. This is an indicator for the evolution of beneficial 

394 interactions between group members in evolutionary setups with a collision penalty and/or 

395 blocking. The decline in task fitness of Gblocked/!penalty for higher group sizes under test 

396 conditions with a collision penalty showed that these animats did not avoid physical 

397 interactions with their group members, while Gblocked animats were generally comparable to 

398 G0.50.  However, even Gblocked/!penalty animats had an advantage compared to G!penalty in the 4 

399 (Messy) Rooms environment, which may be due to some implicit form of cooperative 

400 behavior. 

401 Considering the brain complexity of animats in Gblocked and Gblocked/!penalty, we can report 

402 similar values to G0.50 (see Fig 10). Whether animats received a penalty for crossing each 

403 other, or whether crossing was prohibited to start with, did not significantly affect their 

404 evolved fitness, reliability, behavior, or brain complexity. Likewise, the brain complexity 

405 measures for G!penalty were comparable to those of Gsingle, in line with the behavioral results 

406 above.
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407 Fig 10. Distribution of brain complexity measures. In evolutionary setups where crossing each 

408 other was not possible (Gblocked and Gblocked/!penalty), the brain complexity was comparable to the 

409 complexity of G0.50. By contrast, animats in setups where the reaction to fellow animats had no 

410 reasonable effect on their performance (Gsingle and G!penalty) showed lower brain complexity. Still, 

411 there was high variance in the data of brain complexity.

412 Varying sensor configuration: Sensory capacity influences reliability and intrinsic 

413 complexity

414 Finally, we manipulated the ability of dealing with the task (task difficulty) by changing 

415 the sensor configuration of the animats. In addition to the baseline architecture, we designed 

416 animats with sensors on three sides G3sides (front, left and right), without an agent sensor 

417 G!agent and with a universal sensor Gw=a (sensing wall and agent as indiscriminate obstacles). 

418 Fig 11 reveals that it is necessary to have the ability to sense nearby animats, and be able to 

419 differentiate between walls and animats, in order to achieve reasonable fitness values. 

420 Generally, it was an advantage to be equipped with sensors on more sides for both high task 

421 fitness and high reliability. 

422 Fig 11. Fitness Evolution and distribution of the final evolved fitness. The average evolved fitness 

423 showed that animats in evolutionary setups without specific sensors for other animas (G!agent and 

424 Gw=a) achieved no reasonable fitness. By contrast, animats in G3sides outperformed G0.50, and Grandom, 

425 but also had more outliers with lower fitness and performed worse than the baseline condition in 

426 early generations (up to ~10k generations). 

427 Regarding reliability, we would first like to highlight animats in the G3sides condition. 

428 They consistently outperformed the animats in other groups except in two test conditions: 

429 Blocked and Noisy Corners (see Fig 12). This shows that animats which are equipped with 

430 more sensors do have an advantage on average, but they may also perform worse than animats 

431 with fewer sensors under some circumstances. The sensory signals in these specific 
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432 environments might have been too different from the information patterns the animats 

433 evolved in and were thus specialized for. 

434 Fig 12. Reliability Tests. (a-b) The G3sides condition was the most reliable in most test conditions, 

435 except in Blocked and Noisy Corners. In terms of reliability, sensing everything (Gw=a) with one 

436 sensor is still better than only sensing the walls due to a missing animat sensor (G!agent). (c) Setups 

437 with few sensors evolved no general behavior (high variance of movement between the 30 different 

438 evolutions, shaded area). The G3sides setup becomes more reactive as soon as the animat density starts 

439 to rise. 

440 Fig 13. Distribution of brain complexity measures. Animats in the G3sides condition showed the 

441 lowest brain complexity of all setups despite having the highest evolved fitness and reliability. By 

442 contrast, animats with limited sensor information (G!agent and Gw=a) had lower than baseline 

443 complexity values, but also low evolved fitness (EF , see Fig 11).

444 Opposite behaviors can be observed for the animats in Gw=a and G!agent. In this case, 

445 animats were not evolving to reasonable fitness values. Nevertheless, we could observe 

446 differences between the two conditions from their reliability values. While Gw=a animats had 

447 only one sensor which does not discriminate between the wall and other animats, G!agent was 

448 missing the animat sensor completely. G!agent  showed better task fitness than Gw=a in test 

449 conditions with small group sizes and without a penalty. Considering the evolved behavior, 

450 Gw=a animats (Fig 12(c)) were not reactive to other animats, which suggests that they did not 

451 evolve the capacity to differentiate between the animats and the walls internally, e.g., through 

452 memory. 

453 Analyzing the brain complexity showed that animats equipped with fewer, but also with 

454 more sensors than in the baseline setup G0.50 evolved MBs with lower complexity (see Fig 

455 13), albeit for different reasons. Based on the very low evolved fitness for Gw=a and G!agent 

456 (see Fig 11) we can conclude that their MBs did not develop the necessary structure and 

457 mechanisms to solve the task, as reflected by their low brain complexity. By contrast, animats 
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458 in G3sides achieved high performance and reliability, but did not evolve any integrated 

459 information (ΦMax = 0) in many cases. This observation was in line with previous findings 

460 on the relation between sensory capacity and internal complexity [19] and suggested that 

461 high brain complexity in cognitive systems depends on a need for internal memory and 

462 computation, which may decrease if an animat is equipped with more sensors. Please refer 

463 to the next section for a general discussion about the relationship between task performance, 

464 reliability, and brain complexity.

465 Discussion 

466 The evolution of cooperative multi-agent systems might be the next frontier in the 

467 context of evolving artificial agents, in which context not much is yet known about conditions 

468 that give rise to cooperative behavior and the complex inter-dependencies between individual 

469 and group goals [24]. For example, there might be many factors that influence whether the 

470 individuals either bow to the group or act by egoistic rules [25]. In this study, we used animats 

471 equipped with MBs (introduced by Edlund et al. [21]) to study how group performance and 

472 its reliability under modified conditions depended on the individual, interactions between 

473 individuals, as well as specific features of the MBs’ evolution. 

474 Prior work investigating group evolution

475 Earlier research that implemented groups of MBs concentrated on predator-prey 

476 environments and showed that animats can (co-)evolve swarm behaviors [26–28]. The 

477 animat design in this work was generally based on a design in Marstaller et al. [15], who 

478 evolved individual MBs with the goal of solving perceptual-categorization tasks. Another 

479 method of simulating swarm behavior is neuro-evolution, i.e., the evolution of artificial 

480 neural networks (ANN) [29–31]. As in Olson et al. [27], these neuro-evolution experiments 

481 produced agents which evolve in a swarm to solve a predator-prey task. 
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482 Other researchers have investigated the effect of group size in the evolution of groups of 

483 simulated agents beyond predator-prey scenarios in a more general context. They find that 

484 the behavior of the group of agents and the individual agent is dependent on the group size 

485 [32,33]. In another study which changed the group size during evolution, the authors show 

486 that it can be easier for smaller groups than larger ones to organize themselves [5]. 

487 The effect of changing swarm sizes has also been investigated in the context of natural 

488 biological systems: Brown [25] examined which factors are decisive for the individual to 

489 either join a swarm or behave egoistically. The study focused on experimenting with 

490 environmental qualities and swarm size. Brown defined optimal swarm size as the best trade-

491 off between the advantage of balancing costs between individuals in the swarm and the 

492 disadvantage of sharing the resources (energy/food) with the whole swarm. In an earlier 

493 study, Pacala et al. [4] report that swarm size constrains information transfer and task 

494 allocation. They argue that the information exchange varies and the task allocation changes, 

495 depending on the swarm size of ant-colonies. Pacala et al. [4] also argue that swarm behavior 

496 is the product of social interaction, individual interaction, and the interaction with the given 

497 environment. In a more recent work [34], we found arguments that swarm behavior arises if 

498 there is sufficient density within the swarm.  

499 Factors that impact task performance and reliability

500 In line with the variety of dependencies identified in these earlier studies,  our simulation 

501 results suggest that group performance and reliability under modified conditions are complex 

502 multidimensional phenomena. Our work is illustrative, as it shows that there is high 

503 complexity even in the simplified experimental setting of small artificial organisms evolving 

504 within a particular evolutionary setup which is completely controlled by the experimenter. 

505 Nevertheless, by creating a variety of environments and animats, we were able to identify 

506 several factors that influence fitness evolution and post-evolutionary reliability. 
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507 Generally, task difficulty (the ability to evolve high fitness in a given task environment) 

508 depends on the complexity of the environment, but also on the animats’ architecture (see also 

509 [19]). In the specific evolutionary setup investigated here, evolved fitness negatively 

510 correlated with group size as a result of the imposed penalty for collisions (see Fig 2). On the 

511 other hand, animats evolved in fixed, intermediate group sizes are most reliable to changes 

512 in group size, and, in fact, comparable to animats evolved for reliability that experienced 

513 random group sizes during evolution (Fig 3(b)). Yet animats evolved in large groups 

514 performed slightly better in modified environments (Fig 3(a), bottom row). A similar trade-

515 off can be observed for different animat architectures: animats with less capacity for memory 

516 (Gsmallbrain and G!feedback) evolved to lower fitness levels than the baseline condition (G0.50) 

517 (Fig 5), and were less reliable under changes in group sizes but still showed better 

518 performance in some of the modified environments (Fig 6(a)). More hidden units (Gbigbrain) 

519 did not provide further advantages compared to G0.50. Finally, more sensors (G3sides) proved 

520 advantageous for both evolved fitness and reliability under almost all modified test 

521 conditions. However, even G3sides performed worse than the baseline in one of the modified 

522 environments (Noisy Corners). Within most specific environmental setups, reliability to 

523 changes in group size was, moreover, correlated with evolved fitness (Figs 3/6/9/12 (b), right 

524 panel).

525 Overall, we found that the right balance is essential: If the environmental design is 

526 balanced to the animats’ architecture (having the right sensor setup, memory capacity, and 

527 motor setup), animats evolved consistent reliability, even if it was not specifically trained for. 

528 In other words, animats that were well-equipped for dealing with their original task 

529 environment (and thus achieved high evolved fitness) were generally also able to remain 

530 reliable given small modifications to task conditions. However, evolutionary setups that seem 

531 less adapted (lower evolved fitness) overall may still have advantages under some conditions.
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532 Interactions between individuals in the group

533 In this study, we did not explicitly implement any form of direct communication between 

534 animats. Nevertheless, through triangulation, we can partly answer whether the evolutionary 

535 setup we employed here may have led to the evolution of implicit cooperation between group 

536 members. To that end, we have shown that it was necessary for animats to perceive their 

537 fellow group members, and that they use this information to achieve reasonable evolved 

538 fitness and reliability (Fig 11 and  Fig 12). Moreover, animats evolved in large groups showed 

539 an advantage across group sizes in modified environments (Fig 3(a), bottom), while animats 

540 that evolved without a collision penalty  (G!penalty) performed worse in some of the modified 

541 environments, even if tested without a penalty (Fig 9(a), 4 (Messy) Rooms).  

542 Hypothetically, this type of implicit interaction between animats is less related to verbal 

543 communication, but it may relate more to communication through behavior (e.g., like bees 

544 performing their dance). As we know from previous studies, swarm behavior in nature can 

545 also be the result of simple reactions to local neighbors [3,35]. We argue that animats are 

546 interdependent in this way, even if there is no explicit information exchange between them. 

547 The observed instances of cooperative behavior can thus be viewed as an emergent 

548 phenomenon of the evolutionary process.

549 Relation between brain complexity, task performance, and reliability

550 Previous studies applying measures of integrated information to adaptive animats 

551 equipped with MBs [19,21,36] have observed that ΦMax and related measures on average 

552 increase over the course of evolution, which correlates with increasing task performance (see 

553 Table S6 in Supporting Information S2). Moreover, as demonstrated in [19], this increase 

554 depends on the complexity of the task environment relative to the animats’ sensor capacity: 

555 MBs that evolved in task environments which required more memory and internal 

556 computation developed, on average, higher ΦMax values and a higher number of concepts.
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557 For the evolutionary setups with the standard animat architecture as in G0.50, we found 

558 the highest values of ΦMax and  for medium group sizes G0.50, and Gblocked, #Concepts(ΦMax)

559 and for Grandom. These setups were also among the most reliable across group sizes (see also 

560 [17] for similar results using a simplified measure of brain complexity). By contrast, 

561 significantly lower ΦMax values were found for Gsingle and G!penalty, the two setups in which 

562 task fitness during evolution did not depend on interactions with other animats. As argued 

563 above, Gsingle and G!penalty thus effectively evolved within a simpler task environment than 

564 G0.50, Gblocked, and Grandom, which explains their lower ΦMax.

565 Compared to G0.50, evolutionary setups with altered animat architectures showed 

566 consistently lower values of ΦMax and . Limiting the animats’ sensor #Concepts(ΦMax)

567 capacity (G!agent and Gw=a) or the number of available memory units (Gsmallbrain and G!feedback) 

568 interfered with their capacity for successful evolution in the spatial navigation task. Their 

569 lower performance was thus accompanied by less developed MBs with lower ΦMax and fewer 

570 concepts. Given more time to evolve (more generations), both their performance and their 

571 brain complexity might still increase. By contrast, more sensors allowed for better 

572 performance based on high amounts of external information, which effectively decreased the 

573 need for internal complexity (memory and computations) and thus may also lead to low ΦMax, 

574 as observed here for G3sides. 

575 In theory, high fitness in any given environment could be achieved without information 

576 integration (e.g., by a system with a large feed-forward architecture [18]), and information 

577 integration can be high even if there is no reasonable fitness, which partially explains the 

578 large variance in the brain complexity measures (see, e.g., outliers for G!agent in Fig 13) 

579 However, given a certain requirement for memory and context sensitivity, constraints in the 

580 number of sensors and hidden elements may give rise to an empirical lower boundary on the 

581 amount of integrated information necessary to perform a given task [19,21,36,37].
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582 In summary, for a given MB architecture, higher brain complexity seems to be related to 

583 better performance and reliability. However, future work should explore under which 

584 environmental conditions additional sensors, or more internal units, become more 

585 advantageous for the evolution of higher task performance and reliability.

586 Limitations

587 Our work modeled one particular, small-scale scenario. Future work should consider 

588 other task environments which may strengthen the generality of our results. Moreover, further 

589 evolution or training scenarios for artificial organisms should be considered as well. 

590 While the measures that we employed to assess the complexity of the evolved MBs are 

591 theoretically motivated [18], they are also computationally very complex. This made it 

592 difficult to evaluate a larger number of evolution simulations in order to achieve better 

593 statistical power. This is why alternative, approximate measures should be considered, too. 

594 For instance, the largest strongly connected component (and other graph metrics) can be used 

595 as a proxy for system integration and thus brain complexity [17]. Efficient approximations 

596 would also enable investigation into how brain complexity develops across generations. 

597 Moreover, ΦMax, and the associated number of concepts, are causal measures that assess the 

598 degree to which the mechanisms within a MB are differentiated and integrated. Future work 

599 should also consider and explore alternative informational or dynamical measures  [e.g., 38–

600 40]. In this study, we concentrated on the reliability tests, so the brain complexity analysis 

601 was not the subject of more in-depth investigation. 

602 Conclusion

603 It is challenging to remain reliable in a dynamic and volatile world while also trying to 

604 succeed in a given task. So, investigating the characteristics of this reliability might help to 

605 develop implications and strategies for improving reliability. We showed that reliability is a 
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606 complex concept to investigate, especially when considering not only individuals but an 

607 organized group. Yet we were able to isolate essential influencing factors to better understand 

608 the positive and negative effects of changing group size, environment design, and individual 

609 cognitive ability on task reliability. This research asserts that task efficiency and effectiveness 

610 is not the only goal; task reliability is also worth striving for. We have also offered a 

611 computational approach for investigating this concept. 

612 Materials and Methods

613 We used an EA to generate simulated animats evolving in groups, and defined and tested 

614 various animat architectures and evolutionary environments to evolve animats having 

615 heterogeneous behavior, fitness, and reliability. Afterwards, we conducted post-evolutionary 

616 tests to assess the reliability of the different evolutionary setups. This section explains the 

617 animat designs, the environment, the evolutionary simulations, and the experiment setup. We 

618 used MABE (Modular Agent-Based Evolver) [41] as a computational evolution framework 

619 with the same parameters as in previous work [17] (see Table S7 in Supporting Information). 

620 As we state in the introduction, we studied the changes in behavior and task performance 

621 of evolved animats while manipulating environmental and cognitive conditions, which also 

622 changed the ability to achieve the goal of the task (task difficulty). The idea was that the 

623 individual animat had to solve a two-dimensional spatial-navigation task, thus forcing 

624 individuals to react to other animats in order to reach a high fitness value. This task was a 

625 redesign by Fischer et al. [17] of a task environment initially developed by Koenig et al. [20]. 

626 An animat can usually differentiate between static (borders and walls) and dynamic objects 

627 (animats) in the environment through two distinct sensors. This design allowed for the 

628 evolution of social behavior based on passive interactions between animats (we observed, 

629 e.g., “waiting”, or “following” behavior).
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630 Animats Architecture

631 The EA evolves animats with MBs, which contain a set of discrete, binary computational 

632 units (“neurons”). Each unit has its own update rules receiving inputs from and sending their 

633 output to other units. In this study, the decision system (the connectivity between units and 

634 their update-rules) was implemented by Hidden Markov Gates (HMGs). The HMGs connect 

635 the nodes of the MB indirectly. Fig 14 visualizes a simple example, in which an HMG is 

636 connected to four units. The decision system inside an HMG can be diverse. In this research, 

637 we evolved discrete lookup tables. The lookup tables translate the states of the connected 

638 input units at t to the new states of connected output units at t+1. The motor or memory units 

639 can represent the output units of the HMG. In this study, the EA evolved genomes with a 

640 string of natural numbers. The individual numbers encoded the HMGs: the number of HMGs, 

641 the lookup tables, the connected input units, and the connected output units. The EA mutated 

642 the genomes in each generation. Each locus in the genome mutated with a certain probability. 

643 In addition, larger sections could be deleted or added to the genome [21,42] (again, all 

644 parameters are listed in Table S7 within the Supporting Information). 

645 Fig 14. Example of an MB. An MB [21] has three components: (1) Units with a binary states (“1”-

646 “4”), (2) HMGs and (3) the connections between the binary units and the HMGs. The connections 

647 between the units can be derived from the connections to the HMGs. HMGs contain the mechanism, 

648 e.g., a probabilistic lookup table, to transform the brain state of units at t to the state at t+1. 

649 All units in the animat’s MB have binary states, either 1 or 0,  e.g., a sensor turns 1 if an 

650 obstacle is detected and a motor switches to 1 if it is active. Two motors provide the ability 

651 to turn 90 degrees left or right, and to move forward (if both motors are in state 1). Since the 

652 units within a MB can be interconnected in a recurrent manner, they have the potential to 

653 create internal memory. We evolved animats with five different animat designs. Fig 15 gives 

654 a schematic overview of all animat designs. In addition to the baseline cognitive architecture, 

655 which was introduced already in [17], further deviations were designed to investigate the 
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656 influence of different cognitive setups on the resulting evolved behavior, task performance, 

657 and reliability. The sensors had a detection range of one unit. Typically, the motor units could 

658 also feedback to the hidden and motor units, thus acting as additional brain capacity, since 

659 knowledge about previous motor states is directly available for computing the next state. 

660 Additionally, we designed an animat without motor feedback (G!feedback). 

661 Fig 15. Schematic architecture of the five different animat designs. The animats have two motor 

662 units (grey triangles), four hidden units (dark grey circles) and one to six sensor units (black/red 

663 shapes). (a) Baseline design as in [17]. (b) Animat with sensors on three sides. There is an animat 

664 sensor and a wall sensor on each side. (c) Animat without feedback motors (motors cannot be part of 

665 the memory network). (d) Animat with a single sensor unit, measuring wall and animat 

666 simultaneously. (e) Animat without an animat sensor. Note that the architectures depict the maximal 

667 amount of units available. Whether any given unit is actually used depends on the evolved 

668 connectivity and logic function. Animats are initialized without connections between units.

669 Design of the 2D Environment

670 All experiments simulated a two-dimensional environment. The world has 32*32 units 

671 (see Fig 16). All animats started on one of 72 predefined, uniformly distributed, starting 

672 positions. The selection for the starting position, as well as an animat’s initial orientation, 

673 was random. The original environment (see Fig 16(a)) had two rooms, which are connected 

674 by a gate. The animats’ goal was to travel between the two rooms in order to achieve a high 

675 fitness value. This design was adapted from the work of Koenig et al. [20]. As an additional 

676 dimension for evaluating reliability under environmental change, we tested all evolved MBs 

677 (the final generation) in additional environment designs (see Fig 16(b-e)). 

678 Fig 16. Environmental design. (a) The two-dimensional environment is based on a discrete grid 

679 architecture and contains two rooms. Animats draw a random starting position. Their orientation can 

680 be up, down, left, and right and is also randomly selected at initiation. (b-e) Four additional rooms 

681 were used to test the reliability of the animats. Red blocks mark the changes/additions in the room 
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682 and represent walls. In (d), all four gates count as possible rewards. In (e), only gates on the vertical 

683 mid-line provide rewards.

684 We chose MBs as a simplified model of an artificial brain, since the basic idea of an MB is 

685 to emulate the recurrent connectivity structure found in real neural networks in a simple 

686 manner, while being complex enough to represent a cognitive system [15]. Furthermore, a 

687 recent study showed that MBs can be very compatible against variations of artificial neural 

688 networks and even showed higher performance in general [16]. Nevertheless, it would, in 

689 principle, also be possible to use a finite state machine [20], or artificial neural networks [30] 

690 to solve these kinds of tasks. 

691 Experiment Design 

692 We selected G0.50 to be the baseline setup for evolution, to which we compared all other 

693 evolutionary setups. This was because G0.50 showed the highest reliability across group sizes. 

694 In sum, we came up with 15 different setups for the evolution of the animats. Using the 

695 MABE framework, we simulated each evolutionary setup 30 times. In each of these 30 

696 evolutions, the EA had 10,000 generations to converge on the final solution. 100 genomes 

697 were mutated and evaluated in each generation. Each of these evaluations was repeated 30 

698 times with different starting positions, orientation, and selection order (for the serial 

699 processing of the animats’ movement). After a genome was tested 30 times, it received a 

700 fitness score, which was computed based on the mean across the task performance of 30 

701 single animats, with one being picked randomly from each of the 30 random test runs. In 

702 addition, in setup Grandom the group size varied for each of the 30 tests (drawn randomly from 

703 72*[1, 0.95, 0.9, … , 0.1, 0.05, 0.01389]).
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704 The Simulated Life

705 The fitness function that determines the probability of a genome being reproduced 

706 depends on two factors. First, animats have to travel as often as possible through the gate 

707 (change the room) (see Fig 16). Second, the animats need to avoid colliding with each other. 

708 Fischer et al. [17] showed the formal definitions of the fitness function as a weighted sum of 

709 the penalty for collision and the reward for crossing the gate. The weight of the reward (factor 

710 1.0) is higher than the weight in the case of a penalty (factor 0.075). These weights need to 

711 be chosen carefully. If the penalty is too low or the reward is too high, animats will keep 

712 moving from one room to the other through the gate (herding effect) and ignore the penalty. 

713 On the other hand, given a high penalty and low reward, animats will evolve hardly any 

714 movement. To further reduce the herding effect around the gate, there is a refractory period 

715 of 100 timesteps after receiving a reward before an animat can receive another reward. Since 

716 each trial has a duration of 500 timesteps, any one animat can receive a total fitness score of 

717 at most 4 [17]. 

718 To further raise the task difficulty and to investigate the coordination and cooperation of 

719 animats in groups, we let animats co-exist in the same environment (in contrast to previous 

720 studies in this scope [15,18,21]). Currently, we have not implemented co-evolution and have 

721 only evaluated a genome by generating animats as identical clones (they have the same MB). 

722 There was no active knowledge exchange (“communication”) between animats in this study. 

723 Through the architecture of the animats, they have to develop the ability to distinguish which 

724 kind of sensory input to use for decision making. Sensors can only sense one position in front 

725 of (or on the side of) the animat and differentiate between static objects (walls) and dynamic 

726 objects (fellow animats), except for Gw=a. 

727 Compared to the baseline setup, we included further control conditions in which animats 

728 did not receive the collision penalty and/or were not able to overlap. Those changes in the 

.CC-BY 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted July 2, 2019. ; https://doi.org/10.1101/688598doi: bioRxiv preprint 

https://doi.org/10.1101/688598
http://creativecommons.org/licenses/by/4.0/


PLOS Computational Biology –– FOR REVIEW 31 of 35

729 fitness function represented environmental rules which influenced the task difficulty. As a 

730 result, we were able to test dependencies between the evolution environment and the 

731 evolution of reliability. 

732 Post-Evolutional Evaluation

733 Reliability tests. The reliability tests were designed as follows: First, we selected the 30 

734 genomes of generation 10,000 (10k) for each of the 15 conditions. Second, each genome was 

735 tested across 21 conditions varying in group size. To this end, we created groups of animat 

736 clones of the respective test group size for each of the 30*15 genomes. Test group sizes were 

737 uniformly distributed between 1 and 72. The interval of the relative distribution is [0.0139, 

738 0.05, 0.1, …, 0.9, 0.95, 1.0]. A single animat is obviously not a group, but we treat it as one 

739 in order to simplify notation. 

740 In addition to the reliability tests across varying group sizes in the baseline task design 

741 (Original), we created four modified test environments, as shown in Fig 16 (Noisy Corners, 

742 Small Gate, 4 Rooms, 4 Messy Rooms). Moreover, we included three additional test 

743 conditions in which we varied the interaction properties of the animats (No Penalty, Blocked, 

744 Blocked and no penalty). Finally, we tested each of the 30*15*21 different configurations in 

745 each of the eight test environments. 

746 For the statistical analysis and the main reliability evaluations, we defined a reliability 

747 measure across group sizes in the Original environment design: R = 〈TF〉GS. The modified 

748 test environments represented four independent samples of possible environmental 

749 modifications and were only evaluated on their own for this reason. The results of the 

750 remaining three test conditions with varying interaction properties mainly served to highlight 

751 differences between the evolutionary setups, rather than testing reliability per se. 
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752 Brain complexity. To evaluate the complexity of the evolved MBs, we employed two 

753 complimentary measures provided by integrated information theory (IIT) [18,43], ΦMax and 

754 the associated number concepts ( ). A major advantage of the measures #Concepts(ΦMax)

755 developed within the IIT framework is that we can quantify the internal mechanisms (causal 

756 relations) of animats and their interactions (e.g., [44,45]), which let us construct premises on 

757 how the cognitive processes work. The core of IIT’s measures is an information theoretic, 

758 and probabilistic graph analysis [18] based on the state-to-state transition probabilities of the 

759 units, i.e., their update functions. Please refer to [18,19] for details on the evaluation. All 

760 calculations were conducted using the IIT Python package pyphi [23], which we used in our 

761 work to calculate ΦMax and the corresponding number of concepts. ΦMax represents the 

762 highest possible integrated information the system can achieve across all its subsets, which 

763 we used as an indicator for brain complexity. A concept is a set of physical mechanisms (e.g., 

764 neurons) that create integrated information [18]. Since the employed measures are state-

765 dependent, we evaluated ΦMax and the number of concepts for every state a MB experienced 

766 during a lifetime (one trial) and selected the maximum value over all states as in [19]. Fig S1 

767 (Supporting Information S2) shows by way of example that it is essential for high ΦMax in a 

768 system that many elements be integrated, meaning also maintaining feedback loops within 

769 the system. In this study, we only considered the brain complexity of the final generation 

770 (10k) due to the computational complexity of calculations using pyphi. 

771 Statistics. The evolved fitness values, the reliability R, and the IIT brain complexity 

772 measures were statistically evaluated across all evolutionary setups using a Kruskal-Wallis 

773 test, which showed a significant difference of the observed statistics between all groups taken 

774 together. Further, we used the Mann-Whitney-U test to evaluate the difference between pairs 

775 of evolutionary setups. Section S3 in the Supporting Information lists all statistical tests that 

776 are a subject of discussion in the results and discussion section. 
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