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Abstract (150 max) 22 

Artificial neural networks overwrite previously learned tasks when trained sequentially, a 23 

phenomenon known as catastrophic forgetting. In contrast, the brain learns continuously, and 24 

typically learns best when new learning is interleaved with periods of sleep for memory 25 

consolidation. In this study, we used spiking network to study mechanisms behind catastrophic 26 

forgetting and the role of sleep in preventing it. The network could be trained to learn a complex 27 

foraging task but exhibited catastrophic forgetting when trained sequentially on multiple tasks. 28 

New task training moved the synaptic weight configuration away from the manifold representing 29 

old tasks leading to forgetting. Interleaving new task training with periods of off-line 30 

reactivation, mimicking biological sleep, mitigated catastrophic forgetting by pushing the 31 

synaptic weight configuration towards the intersection of the solution manifolds representing 32 

multiple tasks. The study reveals a possible strategy of synaptic weights dynamics the brain 33 

applies during sleep to prevent forgetting and optimize learning. 34 

 35 

Introduction 36 

Humans are capable of continuously learning to perform novel tasks throughout life without 37 

interfering with their ability to perform previous tasks. Conversely, while modern artificial 38 

neural networks (ANNs) are capable of learning to perform complicated tasks, ANNs have 39 

difficulty learning multiple tasks sequentially1-3. Sequential training commonly results in 40 

catastrophic forgetting, a phenomenon which occurs when training on the new task completely 41 

overwrites the synaptic weights learned during the previous task, leaving the ANN incapable of 42 

performing a previous task1-4. Attempts to solve catastrophic forgetting have drawn on insights 43 
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from the study of neurobiological learning, leading to the growth of neuroscience-inspired 44 

artificial intelligence (AI)5-7. While these approaches are capable of mitigating catastrophic 45 

forgetting in certain circumstances6, a general solution which can achieve human level 46 

performance for continual learning is still an open question. 47 

Historically, an interleaved training paradigm, where multiple tasks are presented within 48 

a common training dataset, has been employed to circumvent the issue of catastrophic 49 

forgetting4,8,9. In fact, interleaved training was originally construed to be an approximation to 50 

what the brain may be doing during sleep to consolidate memories; spontaneously reactivating 51 

memories from multiple interfering tasks in an interleaved manner9. Unfortunately, explicit use 52 

of interleaved training, in contrast to memory consolidation during biological sleep, imposes the 53 

stringent constraint that the original training data be perpetually stored for later use and 54 

combined with new data to retrain the network1,2,4,9. Thus, the challenge is to understand how the 55 

biological brain enables memory reactivation during sleep without access to past training data. 56 

Parallel to the growth of neuroscience-inspired ANNs, there has been increasing 57 

investigation of spiking neural networks (SNNs) which attempt to provide a more realistic model 58 

of brain functioning by taking into account the underlying neural dynamics and by using 59 

biologically plausible local learning rules10-13. A potential advantage of the SNNs, that was 60 

explored in our new study, is that local learning rules combined with spike-based communication 61 

allow previously learned memory traces to reactivate spontaneously and without interference 62 

during off-line processing – sleep. A common hypothesis, supported by a vast range of 63 

neuroscience data, is that the consolidation of memories during sleep occurs through local 64 

unsupervised synaptic changes enabled by reactivation of the neuron ensembles engaged during 65 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 10, 2020. ; https://doi.org/10.1101/688622doi: bioRxiv preprint 

https://doi.org/10.1101/688622
http://creativecommons.org/licenses/by/4.0/


4 
 

learning14. Indeed, spike sequence replay was observed in the neocortex15-17 following both 66 

hippocampal-dependent tasks15 and hippocampal-independent tasks18. 67 

 Here we used a multi-layer SNN with reinforcement learning to investigate whether 68 

interleaving periods of new task training with periods of noise-induced spontaneous reactivation, 69 

resembling sleep in the brain19-21, can circumvent catastrophic forgetting. The network could be 70 

trained to learn one of two complementary complex foraging tasks involving pattern 71 

discrimination but exhibits catastrophic forgetting when trained on the tasks sequentially. 72 

Significantly, we show that catastrophic forgetting can be prevented by periodically interrupting 73 

reinforcement learning on a new task with unsupervised sleep phases. While new task training 74 

alone moved synaptic weight configuration away from the solution manifold representing old 75 

tasks and towards the manifold specific for new task, interleaving new task training with 76 

unsupervised sleep replay allowed the synaptic weights to stay near the manifold specific for the 77 

old task and still to move towards its intersection with the manifold representing the new task. 78 

Our study predicts that sleep prevents catastrophic forgetting in the brain by forming joint 79 

synaptic weight representations suitable for storing multiple memories.  80 

 81 

Results 82 

Complementary complex foraging tasks can be robustly learned 83 

We modeled a simple 3-layer feedforward spiking neural network (see Figure 1A and Methods: 84 

Network Structure for details) simulating basic steps from sensory input to motor output in the 85 

brain. Excitatory synapses between the input (I) and hidden (H) layers were subjected to 86 

unsupervised learning (implemented as non-rewarded STDP)22,23 while those between the H and 87 
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output (O) layers were subjected to reinforcement learning (implemented using rewarded 88 

STDP)24-27 (see Methods: Synaptic plasticity for details). Unsupervised plasticity allowed 89 

neurons in layer H to learn different particle patterns at various spatial locations of the input 90 

layer I, while rewarded STDP allowed the neurons in layer O to learn motor decisions based on 91 

the type of the particle patterns detected in the visual field12. We trained the network on one of 92 

two complementary complex foraging tasks. In either task, the network learned to discriminate 93 

between a rewarded and a punished particle pattern in order to acquire as much of the rewarded 94 

patterns as possible. In the following we consider pattern discriminability (rewarded vs 95 

punished) as a measure of performance, with chance performance being 0.5.  96 

The paradigm for Task 1 is shown in Figure 1B. First, during an unsupervised learning 97 

period, all 4 types of 2-particle patterns (horizontal, vertical, positive diagonal, and negative 98 

diagonal) were present in the environment with equal densities. This was a period, equivalent to 99 

a developmental critical period in the brain, when the network learned the environmental 100 

statistics and formed, in layer H, high level representation of all possible patterns found at the 101 

different visual field locations (see Figure 2 for details). Unsupervised training was followed by 102 

a reinforcement learning period, equivalent to task specific training in the brain, during which the 103 

synapses between layers I and H were frozen but synapses from H to O were updated using a 104 

rewarded STDP rule. The reinforcement learning period was when the network learned to make 105 

decisions about which direction to move based on the visual input. Whether patterns were 106 

rewarded during reinforcement learning depended on the task – for Task 1 horizontal patterns 107 

were rewarded and negative diagonal patterns were punished (Figure 1D). During both the 108 

rewarded training and the testing periods only 2 types of patterns were present in the 109 

environment (e.g.  horizontal and negative diagonal for Task 1).  110 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 10, 2020. ; https://doi.org/10.1101/688622doi: bioRxiv preprint 

https://doi.org/10.1101/688622
http://creativecommons.org/licenses/by/4.0/


6 
 

After training Task 1, mean performance on Task 1 was 0.70 ± 0.2 while on Task 2 111 

(which has not been trained yet) was 0.53 ± 0.2 (chance level). Figure 1D shows examples of 112 

trajectories of the simulated agent at the beginning of (left) and after (right) reinforcement 113 

learning period. The naive agent moved randomly through the environment, but after training it 114 

moved to seek out horizontal patterns and largely avoid negative diagonal ones. The 115 

complementary paradigm for Task 2 (vertical patterns are rewarded and positive diagonal are 116 

punished) is shown in Figure 1C,E. These results demonstrate that the network is capable of 117 

learning and performing either one of the two complementary complex foraging tasks. 118 

To get an understanding of the policy developed by the network for each task, we 119 

computed the receptive field of each neuron in layer O with respect to the input from layer I (see 120 

schematic in Figures 2A/C) . This was done by first computing the receptive fields of all of the 121 

neurons in layer H with respect to I, then performing a weighted average where the weights were 122 

given by the synaptic strength from each neuron in layer H to the particular neuron in layer O. 123 

Figure 2A shows a representative example of the receptive field which developed after training 124 

on Task 1 for one specific neuron in layer O which controls movements to the upper-left 125 

direction. This neuron responded most robustly to bars of horizontal orientation (rewarded) in the 126 

upper-left quadrant of the visual field and, importantly, did not respond to bars of negative 127 

diagonal orientation (punished).  128 

Figure 2B shows examples of receptive fields of six neurons in layer H which synapse 129 

strongly onto the upper-left neuron in layer O (the neuron shown in Figure 2A). These neurons 130 

form high level representations of the input patterns, similar to the neurons in the higher levels of 131 

the visual system or later layers of a convolutional neural network28-30. The majority of these 132 

receptive fields revealed strong selection for the horizontal (i.e. rewarded) food particles in the 133 
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upper-left quadrant of the visual field. As a particularly notable example, one of these layer H 134 

neurons (Figure 2B; middle-right) preferentially responded to negative diagonal (i.e. punished) 135 

food particles in the bottom-right quadrant of the visual field. Thus, spiking in this neuron caused 136 

the agent to move away from these punished food particles. Similar findings after training on 137 

Task 2 are shown in Figures 2C and 2D. 138 

 139 

Catastrophic forgetting occurs following sequential but not interleaved training 140 

We next tested whether the network model could exhibit catastrophic forgetting by training 141 

sequentially on Task 1 (old task here) followed by Task 2 (new task) (Figure 3A). Following 142 

Task 2 training, performance on Task 1 was down to no better than chance (0.52 ± 0.02), while 143 

performance on Task 2 improved to 0.69 ± 0.03 (Figure 3 A,B). Thus, sequential training on a 144 

complementary task caused the network to undergo catastrophic forgetting of the task trained 145 

earlier, remembering only the most recent task.  146 

 Interleaved training was proposed as a solution for catastrophic forgetting4,8,9, so we 147 

added an Interleaved Task 1 and Task 2 (InterleavedT1,T2) training phase to our simulation 148 

(Figure 3A) to test whether it was a capable of learning Task 1 (now new task) without 149 

overwriting Task 2 (old task). For interleaved training we alternated short presentations of Task 150 

1 and Task 2 every 100 movement cycles. Figure 3B shows that, following InterleavedT1,T2 151 

training, the network achieved a performance of 0.65 ± 0.03 on Task 1 and a performance of 152 

0.67 ± 0.04 on Task 2. Therefore, InterleavedT1,T2 training allowed the network to relearn Task 1 153 

without forgetting what the network had just learned during training on Task 2. Note, we also 154 

tested InterleavedT1,T2 training right after the unsupervised phase and found the same high 155 

performance for both Task 1 and Task 2 (not shown).  156 
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 We identified task-relevant synapses after training on a given task (top 10% of synapses), 157 

and we traced the same set of synapses after training on the opposing task or after 158 

InterleavedT1,T2 training. The structure in the distribution of Task 1-relevant synapses following 159 

Task 1 training (Figure 3C, top-left) was destroyed following Task 2 training (top-middle; i.e., 160 

majority of Task 1-relevant synapses were reduced to zero after Task 2 training) but partially 161 

recovered following InterleavedT1,T2 training (top-right). Similarly, the structure in the 162 

distribution of Task 2-relevant synapses following Task 2 training (bottom-middle) was not 163 

present following Task 1 training (bottom-left) and was partially retained following 164 

InterleavedT1,T2 training (bottom-right).  165 

 To better understand the effect of InterleavedT1,T2 training on the synaptic weights, we 166 

trained a support vector machine (SVM; see Method: Support Vector Machine Training for 167 

details) with a radial basis function kernel to classify the synaptic weight configurations between 168 

layers H and O (i.e. those responsible for decision making) according to whether they serve to 169 

perform Task 1 or Task 2. Figure 3D shows the average distance from the decision boundary 170 

across trials for synaptic weights associated with Task 1, Task 2, and InterleavedT1,T2 training. 171 

While the SVM robustly classified the synaptic weight matrices from Task 1 and Task 2, the 172 

weight states after InterleavedT1,T2 training were significantly closer to the decision boundary 173 

(typically on the task 2 side). This indicates that the synaptic weight matrices from 174 

InterleavedT1,T2 training are a mixture of Task 1 and Task 2 states. 175 

 Figure 3E shows the trajectory of the synaptic weight distribution for the experiment in 176 

Figure 3A projected to 3-dimensions using principal components analysis (PCA). It can be seen 177 

that while synaptic weight matrices associated with Task 1 and Task 2 training cluster in distinct 178 
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regions of PC space, InterleavedT1,T2 training pushes the synaptic weights to an intermediate 179 

location between Task 1 and Task 2.   180 

 181 

Periods of sleep allow for sequential training without catastrophic forgetting 182 

Sleep is believed to be an off-line processing period when recent memories are replayed to avoid 183 

damage by new learning. Particularly for procedural (hippocampal-independent) memories, 184 

rapid-eye-movement (REM) sleep may organize neuronal activity to replay memory traces31. 185 

Can we implement a sleep like phase to our model to protect an old task and still accomplish new 186 

task learning without explicit re-training of the old task (e.g., without doing explicit interleaved 187 

training of Task 1 and Task 2)?   188 

Again, we first trained the network on Task 1 and Task 2 sequentially to illustrate 189 

occurrence of catastrophic forgetting (Figure 4A). At this point the network remembered the 190 

most recent task (i.e. Task 2) but Task 1 was forgotten. Next, we implemented a training phase 191 

consisted of alternating periods of training on Task 1 (considered to be a new task here) lasting 192 

100 movement cycles and periods of “sleep” of the same duration (we will refer to this training 193 

phase as InterleavedS,T1). To simulate sleep, the rewarded STDP rule was replaced by 194 

unsupervised STDP, ensuring a truly offline learning period, and hidden layer neurons were 195 

artificially stimulated by Poisson distributed spike trains in order to maintain spiking rates 196 

similar to that during task training (indeed, in vivo, activity of the neocortical neurons during 197 

REM sleep is similar to awake32; see Methods: Simulated Sleep for details). Importantly, no 198 

training on Task 2 (old task here) was performed at any time during InterleavedS,T1.  Figure 4B 199 

shows that following InterleavedS,T1 the network achieved a performance of 0.69 ± 0.02 on Task 200 

1 and a performance of 0.67 ± 0.03 on Task 2, comparable to both single task performances 201 
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following sequential training on Task 1 (0.70 ± 002) and Task 2 (0.69 ± 0.03) (Figure 1B/C) and 202 

exceeding those achieved through InterleavedT1,T2 training (Figure 3B). When durations of Task 203 

1 individual training episodes was increased significantly beyond 100 cycles during 204 

InterleavedS,T1, the network was only able to perform well on the new Task 1 while performance 205 

on the old Task 2 dropped to the chance level (not shown). 206 

We interpret these results as follows (see sections below for detailed synaptic 207 

connectivity analysis). Each episode of new Task 1 training improves Task 1 performance but 208 

damages synaptic connectivity responsible for old Task 2. If continuous Task 1 training is long 209 

enough, the damage to Task 2 becomes irreversible. Having a sleep phase after a short period of 210 

Task 1 training enables spontaneous forward (H->O) replay that preferentially benefits the 211 

strongest synapses. Thus, if Task 2 synapses are still strong enough, they are replayed and 212 

increase. To keep the protocol consistent with our previous experiments on InterleavedT1,T2 213 

training, we used a combination of sleep and Task 1 training – the same task that was initially 214 

trained to naïve network but overwritten during Task 2 training (i.e., entire sequence of events 215 

was T1 -> T2 -> InterleavedS,T1). However, we obtained the same results in an experiment when, 216 

after initial Task 1 training, Task 2 training was interleaved with sleep (i.e., T1 -> 217 

InterleavedS,T2), which prevented forgetting Task 1 while Task 2 was learned (see Extended Data 218 

Figure 1). 219 

 We next traced “task-relevant” synapses, i.e. synapses identified in the top 10% 220 

distribution following training on that specific task (Figure 4C; compare to Figure 3C for 221 

InterleavedT1,T2 training). The structure in the distribution of Task 1-relevant synapses following 222 

Task 1 training (Figure 4C; top-left) was destroyed following Task 2 training (top-middle) but 223 

partially recovered following InterleavedS,T1 training (top-right). The structure in the distribution 224 
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of Task 2-relevant synapses following Task 2 training (bottom-middle) was not present 225 

following Task 1 training (bottom-left) and was partially retained following InterleavedS,T1 226 

training (bottom-right). Thus, sleep can preserve important synapses while incorporating new 227 

ones. 228 

 Figure 4D shows that the SVM robustly classified the synaptic weight states from Task 1 229 

and Task 2 while those from InterleavedS,T1 weight states fell significantly closer to the decision 230 

boundary. This indicates that, similar to InterleavedT1,T2, the synaptic weight matrices which 231 

result from InterleavedS,T1 training are a mixture of Task 1 and Task 2 states. The trajectory of 232 

the synaptic weights in PC space shown in Figure 4E provides a visualization of these dynamics. 233 

Importantly, the smoothness of this trajectory to its steady state suggests that Task 2 information 234 

is never completely erased during this evolution. We take this as evidence that InterleavedS,T1 235 

training is capable of integrating synaptic information relevant to Task 1 while preserving Task 2 236 

information.  237 

 238 

Receptive fields of decision-making neurons after sleep represent multiple tasks  239 

To observe that the network has learned both tasks after  InterleavedS,T1 training, we mapped the 240 

receptive fields of decision-making neurons in layer O (Figure 5; see Figure 2 for comparison). 241 

Figure 5A shows the receptive field for the neuron in layer O which controls movement in the 242 

upper-left direction. This neuron responds to both horizontal (rewarded for Task 1) and vertical 243 

(rewarded for Task 2) orientations in the upper-left quadrant of the visual field. Although it 244 

initially appears that this layer O neuron may also be responsive to diagonal patterns in this 245 

region, analysis of the receptive fields of neurons in layer H (Figure 5B) revealed that these 246 

receptive fields are selective to either horizontal food particles (left; rewarded for Task 1) or 247 
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vertical food particles (right; rewarded for Task 2) in the upper-left quadrant of the visual field. 248 

Other receptive fields were responsible for avoidance of punished particles for both tasks (see 249 

examples in Figure 5B, bottom-middle-right and bottom-middle-left). Thus, the network will 250 

utilize one of two distinct sets of layer H neurons, selective for either Task 1 or Task 2, 251 

depending on which food particles are present in the environment. 252 

 253 

Periods of sleep allow reintegration of new task without interference through 254 

renormalization of task-relevant synapses 255 

To visualize synaptic weight dynamics during InterleavedS,T1 training, traces of all synapses 256 

projecting to a single representative output layer neuron were plotted (figure 6A). At the onset of 257 

InterleavedS,T1 training (i.e. 240,000 aeons), the network was only able to perform on Task 2, 258 

meaning the strong synapses in the network were specific to this task. These synapses were 259 

represented by a cluster ranging from ~0.08 to ~0.4; the rest of synapses grouped near 0. As 260 

InterleavedS,T1 training progressed, Task 1 specific synapses moved to the strong cluster and 261 

some, presumably less important, Task 2 synapses moved to the weak cluster. After a period of 262 

time the rate of transfer decreased and the total number of synapses in each group stabilized, 263 

showing that the network is approaching equilibrium (Figure 6B). 264 

To visualize how sleep renormalizes task relevant synapses, we plotted two-dimensional 265 

weight distributions for Task 1->Task2 (Figure 6C) and Task 2 -> InterleavedS,T1 (Figure 6D) 266 

experiments (see Methods: 2-D Synaptic Weight Distributions for details). To establish a 267 

baseline, in Figure 6C (left) the weight state at the end of Task 1 training (X-axis) (see overall 268 

timeline of this experiment in Figure 4A) was compared to itself (Y-axis). This formed a 269 

perfectly diagonal plot. Most synapses were weak (red dots) with stronger synapses forming a 270 
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tail in the distribution. The next comparison (Figure 6C, middle) was between the weight state 271 

after Task 1 training (X-axis) and a time early on Task 2 training (Y-axis). At that time, synapses 272 

were only able to modify their strength slightly, causing most points to lie close to the diagonal. 273 

As training on Task 2 continued until maximum performance was reached, synapses moved far 274 

away from the diagonal (Figure 6C, right). Two trends were observed. A set of synapses that had 275 

a strength near zero following Task 1 training increased strength following Task 2 training 276 

(Figure 6D, right, red dots along Y-axis). At the same time, many strongly trained by Task 1 277 

synapses were depressed down to zero (Figure 6C, right, red dots along X-axis). The latter 278 

illustrates the effect of catastrophic forgetting - complete overwriting of the synaptic weight 279 

matrix caused performance of Task 1 to return to baseline after training on Task 2. 280 

Does sleep prevent overwriting of the synaptic weight matrix? The Figure 6D plots use 281 

the weight state at the end of training Task 2 as a reference that is compared to different times 282 

during InterleavedS,T1 training. The first two plots (Figure 6D, left/middle) are similar to those in 283 

Figure 6C. However, after InterleavedS,T1 training (Figure 6D, right) many synapses that were 284 

strong following Task 2 training were not depressed to zero but rather were pushed to an 285 

intermediate strength where they are still functional (note cluster of points parallel to X-axis; see 286 

also projection to 1D on the right side of the graph). Thus, InterleavedS,T1 training, combining 287 

new training on Task 1 with periods of unsupervised sleep, moved synapses in a way that 288 

preserved strong synapses from a previously learned task while also introducing new strong 289 

synapses to perform a new task. Since a significant fraction of the strong synapses from training 290 

on Task 2 were preserved (due to the sleep periods), performance on Task 2 remained high 291 

following InterleavedS,T1 training despite the fact that the networks received no new training 292 

examples of Task 2. 293 
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 294 

Periods of sleep push the network towards the intersection of the solution manifolds 295 

representing Task 1 and Task 2 specific weight configurations  296 

To visualize the approximate task-specific solution manifolds (MT1 and MT2) and their 297 

intersection (MT1∩T2) in synaptic weight space, we used multiple trials (with different 298 

initialization) of Task 1 and Task 2 training to sample the manifolds. Figure 7A shows (in kPCA 299 

space) that multiple different configurations of synaptic weights can provide high performance 300 

for a given task. For example, all red dots in Figure 7A represent the states with the same high 301 

level of performance for Task 1 (but not Task 2). In addition, cyan and green dots represent 302 

states with high level of performance for both Task 1 and Task2. We interpret these results as 303 

evidence that synaptic weight space includes a manifold, MT1 , where different configurations of 304 

weights (red, green, cyan dots) all allow for Task 1 to perform well. This manifold intersects 305 

with another one, MT2, where different weights configurations (blue, green, cyan dots) are all 306 

suitable for Task 2. Figures 7B and 7C show 2D projections of this space onto PCs 1 and 2 and 307 

PCs 1 and 3, respectively. From these projections, we can see that PC 1 seems to capture the 308 

extent to which a synaptic weight configuration is associated with Task 1 (positive values) or 309 

Task 2 (negative values), while PC 2 and PC 3 capture the variance in synaptic weight 310 

configurations associated with Task 1 and Task 2, respectively. Note, the trajectories through this 311 

space (red/blue lines) during InterleavedT1,T2 and InterleavedS,T1/T2 training would also belong to 312 

the respective task manifolds as performance on the old tasks was never lost in these training 313 

scenarios.   314 

 We calculated the distance from the current synaptic weight configurations to MT1 315 

(Figure 7D), MT2 (Figure 7E), and MT1∩T2 (Figure 7F; see Methods: Distance from Solution 316 
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Manifolds for details). Figures 7D and 7E show that while Sequential (T1->T2 or T2->T1) 317 

training causes synaptic weight configurations to diverge quickly from its initial solution 318 

manifold (i.e. MT1 or MT2), both InterleavedT1,T2 and InterleavedS,T1/T2 training cause synaptic 319 

weight configurations to stay close to the initial solution manifold as the new task was learned. 320 

(Note, that we under sampled MT1 and MT2 , which explains initial distance increase.) 321 

Importantly, Figure 7F shows that while both InterleavedT1,T2 and InterleavedS,T1/T2 training cause 322 

synaptic weight configurations to smoothly converge towards MT1∩T2, Sequential training avoids 323 

this intersection entirely.  324 

In Figure 7G we show a schematic depiction of these results. The task-specific manifolds, 325 

MT1 and MT2, are roughly defined in 3D projection by two orthogonal elliptic paraboloids with 326 

opposite orientation, with an approximately ellipsoidal intersection, MT1∩T2. Figures 7H and 7I 327 

depict the trajectories the network takes in this space following Task 2 and Task 1 training, 328 

respectively. Sequential training causes the network to jump directly from one task-specific 329 

solution manifold to the other,  resulting in catastrophic forgetting. In contrast, interleaving new 330 

task training with sleep (InterleavedS,T1/T2 ) prevents catastrophic forgetting by keeping the 331 

network close to the old task solution manifold as it converges towards MT1∩T2 – a region capable 332 

a supporting both tasks simultaneously. 333 

 334 

Discussion 335 

In this study we report that a multi-layer SNN utilizing reinforcement learning may exhibit 336 

catastrophic forgetting upon sequential training of two complementary complex foraging tasks, 337 

but the problem is mitigated if the network is allowed, during new task training, to undergo 338 
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intervening periods of spontaneous reactivation which we consider to be equivalent to the replay 339 

observed during periods of sleep in biological systems. This scenario was effectively equivalent 340 

to explicit interleaved training of both tasks, however, no training data for the old task were 341 

required during “sleep”. At the synaptic level, training a new task alone led to complete 342 

overwriting of synaptic weights responsible for the previous task. In contrast, interleaving 343 

periods of reinforcement learning on a new task with periods of unsupervised learning during 344 

sleep preserved old task synapses damaged by new task training to avoid forgetting and 345 

enhanced new task synapses to allow new task learning. Thus, the network was pushed towards 346 

the intersection of the solution manifolds representing synaptic weight configurations associated 347 

with each task - an optimal compromise for performing both tasks. 348 

The critical role that sleep plays in learning and memory is supported by a vast, 349 

interdisciplinary literature spanning both psychology and neuroscience21,33-36. Specifically, it has 350 

been suggested that REM sleep supports the consolidation of non-declarative or procedural 351 

memories while non-REM sleep supports the consolidation of declarative memories21,35,37. In 352 

particular, REM sleep has been shown to be important for the consolidation of memories of tasks 353 

involving perceptual pattern separation, such as the texture discrimination task21,38. Despite the 354 

difference in the cellular and network dynamics during these two stages of sleep21,35, both are 355 

thought to contribute to memory consolidation through repeated reactivation, or replay, of 356 

specific memory traces acquired during learning19-21,33,34,37,39. These studies suggest that through 357 

replay, sleep can support the process of off-line memory consolidation to circumvent the 358 

problem of catastrophic forgetting. 359 

From mechanistic perspective, the sleep phase in our model protects old memories by 360 

enabling unsupervised learning - spontaneous replay of synapses responsible for previously 361 
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learned tasks. We previously reported that in the thalamocortical models, a sleep phase may 362 

enable replay of spike sequences learned in awake to improve post-sleep performance39,40 and to 363 

protect old memories from catastrophic forgetting41. Although in this work we model sleep and 364 

noise with spiking statistics similar to awake training, theoretical work from another group has 365 

also shown that noise causes implicit rehearsal of older memories which protects against 366 

interference42. Here we found, however, that a single episode of new task training using 367 

reinforcement learning could quickly erase an old memory to the point that it cannot be 368 

recovered by subsequent sleep. The solution was similar to how brain slowly learns procedural 369 

(hippocampal-independent) memories21,35,37,38,43. Each episode of new task training improves this 370 

task performance only slightly but also damages slightly synaptic connectivity responsible for 371 

the older task. Subsequent sleep phases enable replay that preferentially benefits the strongest 372 

synapses, such as those from old memory traces, to allow them to recover.  373 

We found that multiple distinct configurations of synaptic weights can support each task 374 

in our model, suggesting the existence of task specific solution manifolds in synaptic weight 375 

space. Sequential training of new tasks makes the network to jump from one solution manifold to 376 

another, enabling memory for the most recent task but erasing memories of the previous tasks. 377 

Interleaving new task training with sleep phases enables the system to evolve towards 378 

intersection of these manifolds where synaptic weight configurations can support multiple tasks 379 

(a similar idea was recently proposed in the machine learning literature to minimize catastrophic 380 

interference by learning representations that accelerate future learning44). From this point of view 381 

having multiple episodes of new task training interleaved with multiple sleep episodes allows 382 

gradual convergence to the intersection of the manifolds representing old and new tasks, while a 383 
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single long episode of new task learning would push the network far away from the old task 384 

manifold making it impossible to recover by subsequent sleep. 385 

Although classical interleaved training showed similar performance results in our model 386 

as interleaving training with sleep, we believe the latter to be superior on the following 387 

theoretical grounds. Classical interleaved training will necessarily cause the system to oscillate 388 

about the optimal location in synaptic weight space which can support both tasks because each 389 

training cycle uses a cost function specific to only a single task. While this can be ameliorated 390 

with a learning rate decay schedule, the system is never actually optimizing for the desired dual-391 

task state. Sleep, on the other hand, can support not only replays of the old task, but also support 392 

replays which are a mixture of both tasks42,45,46. Thus, through unsupervised learning during 393 

sleep replay, the system is able to perform approximate optimization for the desired dual-task 394 

state. 395 

While our model represents a dramatic simplification of any biological system, we 396 

believe that it captures some important processing steps of how animal and human brains interact 397 

with the external world. The primary visual system is believed to employ a sequence of 398 

processing steps when visual information is increasingly represented by neurons encoding higher 399 

level features28-30. This processing step was reduced to very simple convolution from input to 400 

hidden layer in our model. Subsequently, in the brain, associative areas and motor cortex are 401 

trained to make decisions based on reward signals released by neuromodulatory centers8,47-49. 402 

This was reduced in our model to synaptic projections from the hidden to output (decision 403 

making) layer implementing rewarded STDP to learn a task24-26. 404 

Our results are in line with a large body of literature suggesting that interleaved training 405 

is capable of mitigating catastrophic forgetting in ANNs4,8,9 and SNNs10,11. The novel 406 
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contribution from this study is that the data intensive process of interleaved training can be 407 

avoided in SNNs by inserting periods of noise-induced spontaneous reactivation – unsupervised 408 

learning – during new task training; similar to how brains undergo offline consolidation periods 409 

during sleep resulting in reduced retroactive interference to previously learned tasks21,43. In fact, 410 

our results are in line with previous work done in humans showing that perceptual learning tasks 411 

are subject to retroactive interference by competing memories without an intervening period of 412 

REM sleep37,38. Moreover, performance on visual discrimination tasks in particular have been 413 

shown to steadily improve over successive nights of sleep38, consistent with our findings that 414 

interleaving multiple periods of sleep with novel task learning leads to optimal performance on 415 

each task.  416 

 Our study predicts synaptic level mechanisms of how sleep-based memory reactivation 417 

can protect old memory traces during training of a new interfering memory task. It suggests the 418 

apparent loss of recall performance for older tasks in ANNs and SNNs after new training does 419 

not necessarily imply a complete erasure of the old task, but instead indicates that the old tasks 420 

decision states became unreachable by the associated inputs. Sleep can reverse the damage to 421 

synaptic connectivity by replaying the old memory traces without explicit usage of the old 422 

training data. 423 

 424 

Methods 425 

Environment. Foraging behavior took place in a virtual environment consisting of a 50x50 grid 426 

with randomly distributed “food” particles. Each particle was two pixels in length and could be 427 

classified into one of four types depending on its orientation: vertical, horizontal, positively 428 
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sloped diagonal, or negatively sloped diagonal. During the initial unsupervised training period, 429 

the particles are distributed at random with the constraints that each of the four types are equally 430 

represented and no two particles can be directly adjacent. During training and testing periods 431 

only the task-relevant particles were present. When a particle was acquired as a result of the 432 

virtual agent moving, it was removed from its current location (simulating consumption) and 433 

randomly assigned to a new location on the grid, again with the constraint that it not be directly 434 

adjacent to another particle. This ensures a continuously changing environment with a constant 435 

particle density. The density of particles in the environment was set to 10%. The virtual agent 436 

can see a 7x7 grid of squares (the “visual field”) centered on its current location and it could 437 

move to any adjacent square, including diagonally, for a total of eight directions. 438 

 439 

Network structure. The network was composed of 842 spiking map-based neurons (see 440 

Methods: Map-based neuron model below) 50,51, arranged into three feed-forward layers to 441 

mimic a basic biological circuit: a 7x7 input layer (I), a 28x28 hidden layer (H), and a 3x3 output 442 

layer (O) with a nonfunctional center neuron (Fig 1). Input to the network was simulated as a set 443 

of suprathreshold inputs to the neurons in layer I, equivalent to the lower levels of the visual 444 

system, which represent the position of particles in an egocentric reference frame relative to the 445 

virtual agent (positioned in the center of the 7x7 visual field). The most active neuron in layer O, 446 

playing the role of biological motor cortex, determined the direction of the subsequent 447 

movement. Each neuron in layer H, which can be loosely defined as higher levels of the visual 448 

system or associative cortex, received excitatory synapses from 9 randomly selected neurons in 449 

layer I. These connections initially had random strengths drawn from a normal distribution. Each 450 

neuron in layer H connected to every neuron in layer O with both an excitatory (Wij) and an 451 
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inhibitory (WIij) synapse. This provided an all-to-all connectivity pattern between these two 452 

layers and accomplished a balanced feed-forward inhibition 52 found in many biological 453 

structures 52-57. Initially, all these connections had uniform strengths and the responses in layer O 454 

were due to the random synaptic variability. Random variability was a property of all synaptic 455 

interactions between neurons and was implemented as variability in the magnitude of the 456 

individual synaptic events.  457 

 458 

Policy. Simulation time was divided up into epochs of 600 timesteps, each roughly equivalent to 459 

300 ms. At the start of each epoch the virtual agent received input corresponding to locations of 460 

nearby particles within the 7x7 “visual field”. Thus 48 of the 49 neurons in layer I received input 461 

from a unique location relative to the virtual agent. At the end of the epoch the virtual agent 462 

made a single move based on the activity in layer O. If the virtual agent moved to a grid location 463 

with a “food” particle present, the particle was removed and assigned to a randomly selected new 464 

location. 465 

 Each epoch was of sufficient duration for the network to receive inputs, propagate 466 

activity forward, produce outputs, and return to a resting state. Neurons in layer I which 467 

represent locations in the visual field containing particles received a brief pulse of excitatory 468 

stimulation sufficient to trigger a spike; this stimulation was applied at the start of each 469 

movement cycle (epoch). At the end of each epoch the virtual agent moved according to the 470 

activity which has occurred in layer O. 471 

 The activity in layer O controlled the direction of the virtual agent’s movement. Each of 472 

the neurons in layer O mapped onto a specific direction (i.e. one of the eight adjacent locations 473 

or the current location). The neuron in layer O which spiked the greatest number of times during 474 
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the first half of the epoch defined the direction of movement for that epoch. If there was a tie, the 475 

direction was chosen at random from the set of tied directions. If no neurons in layer O spiked, 476 

the virtual agent continued in the direction it had moved during the previous epoch. 477 

 There was a 1% chance on every move that the virtual agent would ignore the activity in 478 

layer O and instead move in a random direction. Moreover, for every movement cycle that 479 

passed without the virtual agent acquiring a particle, this probability was increased by 1%. The 480 

random variability promoted exploration vs exploitation dynamics and essentially prevented the 481 

virtual agent from getting stuck in movement patterns corresponding to infinite loops. While 482 

biological systems could utilize various different mechanisms to achieve the same goal, the 483 

method we implemented was efficient and effective for the scope of our study. 484 

 485 

Neuron models. For all neurons we used spiking model identical to the model used in 12,13 that 486 

can be described by the following set of difference equations 51,58,59: 487 

𝑉𝑛+1 = 𝑓𝛼(𝑉𝑛, 𝐼𝑛 + 𝛽𝑛), 488 

𝐼𝑛+1 = 𝐼𝑛 − 𝜇(𝑉𝑛 + 1) + 𝜇𝜎 + 𝜇𝜎𝑛, 489 

where Vn is the membrane potential, In is a slow dynamical variable describing the effects of 490 

slow conductances, and n is a discrete time-step (0.5 ms). Slow temporal evolution of In was 491 

achieved by using small values of the parameter μ << 1. Input variables βn and σn were used to 492 

incorporate external current In
ext (e.g. background synaptic input): βn = βeIn

ext, σn = σeIn
ext. 493 

Parameter values were set to σ = 0.06, βe = 0.133, σe = 1, and μ = 0.0005. The nonlinearity fα(Vn, 494 

In) was defined in the form of the piece-wise continuous function: 495 
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𝑓𝛼(𝑉𝑛, 𝐼𝑛) =  {
𝛼(1 − 𝑉𝑛)−1 + 𝐼𝑛,
𝛼 + 𝐼𝑛,
−1

   

𝑉𝑛 ≤ 0
0 < 𝑉𝑛 < 𝛼 + 𝐼𝑛 & 𝑉𝑛−1 ≤ 0
𝛼 + 𝐼𝑛 ≤ 𝑉𝑛 𝑜𝑟 𝑉𝑛−1 > 0,

 496 

where α = 3.65. 497 

 This model is very computationally efficient, and, despite its intrinsic low dimensionality, 498 

produces a rich repertoire of dynamics capable of mimicking the dynamics of Hodgkin-Huxley 499 

type neurons both at the single neuron level and in the context of network dynamics 51,58,60. 500 

 To model the synaptic interactions, we used the following piece-wise difference equation: 501 

𝐼𝑛+1
𝑠𝑦𝑛

= 𝛾𝐼𝑛
𝑠𝑦𝑛

+ {
(1 − 𝑅 + 2𝑋𝑅)𝑔𝑠𝑦𝑛/𝑊𝑗,

0,
   

𝑠𝑝𝑖𝑘𝑒𝑝𝑟𝑒

otherwise,
 502 

Here gsyn is the strength of the synaptic coupling, modulated by the target rate Wj of receiving 503 

neuron j. Indices pre and post stand for the pre- and post-synaptic variables, respectively. The 504 

first condition, spikepre, is satisfied when the pre-synaptic spikes are generated. Parameter γ 505 

controls the relaxation rate of synaptic current after a presynaptic spike is received (0 ≤ γ < 1). 506 

The parameter R is the coefficient of variability in synaptic release. The standard value of R is 507 

0.12. X is a random variable sampled from a uniform distribution with range [-1, 1]. Parameter 508 

Vrp defines the reversal potential and, therefore, the type of synapse (i.e. excitatory or inhibitory). 509 

The term (1-R+2XR) introduces a variability in synaptic release such that the effect of any 510 

synaptic interaction has an amplitude that is pulled from a uniform distribution with range [1-R, 511 

1+R] multiplied by the average value of the synapse. 512 

 513 

Synaptic plasticity. Synaptic plasticity closely followed the rules introduced in 12,13. A rewarded 514 

STDP rule 24-27 was operated on synapses between layers H and O while a standard STDP rule 515 
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operated on synapses between layers I and H. A spike in a post-synaptic neuron that directly 516 

followed a spike in a pre-synaptic neuron created a pre before post event while the converse 517 

created a post before pre event. Each new post-synaptic (pre-synaptic) spike was compared to all 518 

pre-synaptic (post-synaptic) spikes with a time window of 120 iterations. 519 

The value of an STDP event (trace) was calculated using the following equation 22,23: 520 

𝑝 =
−|𝑡𝑟 − 𝑡𝑝|

𝑇𝑐
, 521 

𝑡𝑟𝑘 = 𝐾𝑒𝑝 522 

where tr and tp are the times at which the pre- and post-synaptic spike events occurred 523 

respectively, Tc is the time constant and is set to 40 ms, and K is maximum value of the trace trk 524 

and is set to -0.04 for a post before pre event and 0.04 for a pre before post event. 525 

 A trace was immediately applied to synapse between neurons in layers I and H. However, 526 

for synapses between neurons in layers H and O the traces were stored for 6 epochs after its 527 

creation before being erased. During storage, a trace had an effect whenever there was a 528 

rewarding or punishing event. In such a case, the synaptic weights are updated as follows: 529 

𝑊𝑖𝑗 ← 𝑊𝑖𝑗 ∏ (1 +
𝑊𝑖0

𝑊𝑖
∗ ∆𝑘) ,

𝑡𝑟𝑎𝑐𝑒𝑠

𝑘

 530 

∆𝑘= 𝑆𝑟𝑝 (
𝑡𝑟𝑘

𝑡 − 𝑡𝑘 + 𝑐
)

𝑆𝑢𝑚𝑡𝑟

𝐴𝑣𝑔𝑡𝑟
, 531 

𝑆𝑢𝑚𝑡𝑟 = ∑
𝑡𝑟𝑘

𝑡 − 𝑡𝑘 + 𝑐
,

𝑡𝑟𝑎𝑐𝑒𝑠

𝑘

 532 

𝐴𝑣𝑔𝑡𝑟 ← (1 − 𝛿)𝐴𝑣𝑔𝑡𝑟 + 𝛿𝑆𝑢𝑚𝑡𝑟 , 533 
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where t is the current timestep, Srp is a scaling factor for reward/punishment, trk is the magnitude 534 

of the trace, tk is the time of the trace event, c is a constant (=1 epoch) used for decreasing 535 

sensitivity to very recent spikes, Wi = Σj Wij is the total synaptic strength of all connections from 536 

the neuron i in layer H to all neurons in layer O, Wi0 is a constant that is set to the initial value 537 

(target value) of Wi at the beginning of the simulation. The term Wi0/Wi helped to keep the output 538 

weight sum close to the initial target value. The effect of these rules was that neurons with lower 539 

total output strength could increase their output strength more easily. 540 

 The network was rewarded when the virtual agent moved to a location which contained a 541 

particle from a “food” pattern (horizontal in Task 1, vertical in Task 2) and Srp = 1,  and received 542 

a punishment of Srp = -0.001 when it moved to a location with a particle from a neutral pattern 543 

(negative/positive diagonal in Task 1/2). A small punishment of Srp = -0.0001 was applied if the 544 

agent moved to a location without a particle present to help the virtual agent learn to acquire 545 

“food” as rapidly as possible. During periods of sleep the network received a constant reward of 546 

Srp = 0.5 on each movement cycle. 547 

 To ensure that neurons in layer O maintained a relatively constant long-term firing rate, 548 

the model incorporated homeostatic synaptic scaling which was applied every epoch. Each 549 

timestep, the total strength of synaptic inputs Wj = Σi Wij to a given neuron in layer O was set 550 

equal to the target synaptic input Wj0 – a slow variable which varied over many epochs 551 

depending on the activity of the given neuron in layer O – which was updated according to: 552 

𝑊𝑗0 ← {
𝑊𝑗0(1 + 𝐷𝑡𝑎𝑟)

𝑊𝑗0(1 − 𝐷𝑡𝑎𝑟)
       

spike rate < target rate
spike rate > target rate

 553 

 To ensure that the net synaptic input Wj to any neuron was unaffected by plasticity events 554 

at the individual synapses at distinct timesteps and equal to Wj0, we implemented a scaling 555 
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process akin to heterosynaptic plasticity which occurs after each STDP event. When any 556 

excitatory synapse of neuron in layer O changed in strength, all other excitatory synapses 557 

received by that neuron were updated according to: 558 

𝑊𝑖𝑗 ← 𝑊𝑖𝑗

𝑊𝑗0

∑ 𝑊𝑖𝑗𝑖
 559 

 560 

Simulated Sleep. To simulate the sleep phase, we inactive the sensory receptors (i.e. the input 561 

layer of network), cut off all sensory signals (i.e. remove all particles from the environment), and 562 

decouple output layer activity from motor control (i.e. the output layer can spike but no longer 563 

causes the agent to move). We also change the learning rule between the hidden and output layer 564 

from rewarded to unsupervised STDP (see Methods: Synaptic Plasticity for details) as there is no 565 

way to evaluate decision-making without sensory input or motor output. 566 

 To simulate the spontaneous activity observed during REM sleep, we provided noise to 567 

each neuron in the hidden layer in a way which ensured that the spiking statistics of each neuron 568 

was conserved across awake and sleep phases. To determine these spiking rates, we recorded 569 

average spiking rates of neurons in the hidden layer H during preceding training of both Task 1 570 

and Task 2; these task specific spiking rates were then averaged to generate target spiking rates 571 

for hidden layer neurons. InterleavedS,T1 training consisted of alternating intervals of this sleep 572 

phase and training on Task 1, with each interval lasting 100 movement cycles (although no 573 

movement occurred). 574 

 575 

Support Vector Machine Training. A support vector machine with a radial basis function 576 

kernel was trained to classify synaptic weight configurations as being related to Task 1 or Task 577 
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2. Labeled training data were obtained by taking the excitatory synaptic weight matrices between 578 

the hidden and output layers from the last fifth of the Task 1 and Task 2 training phases (i.e. after 579 

performance had appeared to asymptote). These synaptic weight matrices were then flattened 580 

into column vectors, and the column vectors were concatenated to form a training data matrix of 581 

size number of features x number of samples. The number of features was equal to the total 582 

number of excitatory synapses between the hidden and output layer – 6272 dimensions. We then 583 

used this support vector machine to classify held out synaptic weight configurations from Task 1 584 

and Task 2 training, as well as ones which resulted from InterleavedT1,T2 and InterleavedS,T1 585 

training. 586 

 587 

2-D Synaptic Weight distributions (Figure 6). First for each synapse we found how its 588 

synaptic strength changes between two slices in time, where the given synapse’s strength at time 589 

slice 1 is the point’s X-value and strength at time slice 2 is its Y-value. Then we binned this 590 

space and counted synapses in each bin to make two dimensional histograms where blue color 591 

corresponds to a single synapse found in a bin and brown corresponds to the max of 50 synapses. 592 

These two-dimensional histograms assist in visualizing the movement of all synapses between 593 

the two slices in time that are specified by the timelines at the top of each plot. Conceptually, it is 594 

important to note that if a synapse does not change in strength between time slice 1 and time 595 

slice 2, then point the synapse corresponds to in this space will lie on the diagonal of the plot 596 

since the X-value will match the Y-value. If a great change in the synapse’s strength has 597 

occurred between time slice 1 and time slice 2, then the synapse’s corresponding point will lie 598 

far from the diagonal since the X-value will be distant from the Y-value. The points on the X- 599 
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(Y-) axis represent synapses that lost (gained) all synaptic strength between time slice 1 and time 600 

slice 2. 601 

 602 

Distance from Solution Manifolds (Figure 7). Each of the two solution manifolds (i.e. Task 1 603 

and Task 2 specific manifolds) were defined by the point-sets in synaptic weight space which 604 

were capable of supporting robust performance on that particular task, namely the sets MT1 and 605 

MT2. This included the synaptic weight states from the last fifth of training on a particular task 606 

(i.e. after performance on that task appeared to asymptote) and all of the synaptic weight states 607 

from the last fifth of both InterleavedT1,T2 and InterleavedS,T1/T2 training. The intersection of the 608 

two solution manifolds (i.e. the point-set MT1∩T2) was defined solely by the synaptic weight states 609 

from the last fifth of both InterleavedT1,T2 and InterleavedS,T1 training. As the network evolved 610 

along its trajectory in synaptic weight space, the distance from the current point in synaptic 611 

weight space, pt, to the two solution manifolds and their intersection were computed as follows: 612 

𝑑𝑛(𝑝𝑡, 𝑀𝜏) = min
𝑥 ∈ 𝑀

(𝑑𝑛(𝑝𝑡, 𝑥)). 613 

Here, d n is the n-dimensional Euclidean-distance function, where n is the dimensionality of 614 

synaptic weight space (i.e. n = 6272 here), Mτ is the point-set specific to the manifold or 615 

intersection in question (i.e. either MT1, MT2, or MT1∩T2), and x is a particular element of the 616 

point-set M. 617 
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769 

Figure 1. Network architecture and complementary foraging task structure. (A) The 770 
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network had three layers of neurons with a feed-forward connectivity scheme. Input from the 771 

“visual field” (7x7 subspace of 50x50 virtual environment) was simulated as a set of excitatory 772 

inputs to the input layer neurons representing the position of food particles in an egocentric 773 

reference frame relative to the virtual agent. Each hidden layer neuron received an excitatory 774 

synapse from 9 randomly selected input layer neurons. Excitatory synapses between input and 775 

hidden layer neurons were subject to unsupervised STDP, while those between hidden and 776 

output layer neurons were subject to rewarded STDP. Each output layer neuron received one 777 

excitatory and one inhibitory synapse from each hidden layer neuron. The most active neuron in 778 

the output layer (size 3x3) determined the direction of movement. (B) Mean performance (red 779 

line) and standard deviation (blue lines) over time: 100,000 aeons (1 aeon = 100 movement 780 

cycles) of unsupervised training (white), 50,000 aeons of Task 1 training (blue), and 10,000 781 

aeons of Task 1 (green) and Task 2 (yellow) testing. The y-axis represents the agent’s 782 

performance, or the probability of acquiring rewarded as opposed to punished particle patterns. 783 

The x-axis is time in aeons. Mean performance during testing on Task 1 was 0.70 ± 0.02 while 784 

Task 2 was 0.53 ± 0.02. (C) The same as shown in (B) except now for: 10,000 aeons of 785 

unsupervised training (white), 5000 aeons of Task 2 training (red), and 1,000 aeons of Task 1 786 

(green) and Task 2 (yellow) testing. Mean performance during testing on Task 1 was 0.51 ± 0.02 787 

while Task 2 was 0.71 ± 0.02. (D) Examples of trajectories through the environment at the 788 

beginning (left) and at the end (middle-left) of training on Task 1, with a zoom in on the 789 

trajectory at the end of training (middle-right), and the values of the task-relevant food particles 790 

(right). (E). The same as shown in (D) except now for Task 2.  791 

 792 
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793 

Figure 2. Receptive fields of output and hidden layer neurons determine the agent policy. 794 

(A) Left, Receptive field of the output layer neuron controlling movement to the upper-left 795 

direction following training on Task 1. This neuron can be seen to selectively respond to 796 

horizontal orientations in the upper-left quadrant of the visual field. Right, Schematic of 797 

connections between layers. (B) Examples of receptive fields of hidden layer neurons which 798 

synapse strongly onto the output neuron from (A) after training on Task 1. The majority of these 799 

neurons selectively respond to horizontal food particles in the upper-left quadrant of the visual 800 

field, with one neuron (middle-right) selectively responding to the presence of negative diagonal 801 

food particles in the bottom-right quadrant and the lack of negative diagonal food particles in the 802 

upper-left quadrant of the visual field. (C) The same as shown in (A) except following training 803 
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on Task 2. The upper-left decision neuron can be seen to selectively respond to vertical 804 

orientations in the upper-left quadrant of the visual field. (D) The same as shown in (B) except 805 

following training on Task 2. All of these neurons selectively respond to vertical food particles in 806 

the upper-left quadrant of the visual field. 807 

 808 
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817 

Figure 3. Sequential training on complementary tasks induces catastrophic forgetting 818 

which can be rescued by interleaved training. (A) Mean performance (red line) and standard 819 

deviation (blue lines) over time: 100,000 aeons of unsupervised training (white), 50,000 aeons of 820 

Task 1 training (blue), 10,000 aeons of Task 1 (green) and Task 2 (yellow) testing, 50,000 aeons 821 

of Task 2 training (red), 10,000 aeons of Task 1 (green) and Task 2 (yellow) testing, 50,000 822 

aeons of InterleavedT1,T2 training (purple), 10,000 aeons of Task 1 (green) and Task 2 (yellow) 823 

testing. (B) Mean and standard deviation of performance during testing on Task 1 (blue) and 824 

Task 2 (red) after each training period. Following Task 1 training, mean performance on Task 1 825 

was 0.69 ± 0.02 while Task 2 was 0.53 ± 0.02. Conversely, following Task 2 training, mean 826 

performance on Task 1 was 0.52 ± 0.02 while Task 2 was 0.69 ± 0.04. Following InterleavedT1,T2 827 
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training, mean performance on Task 1 was 0.65 ± 0.03 while Task 2 was 0.67 ± 0.04. (C) 828 

Distributions of task-relevant synaptic weights. The distributional structure of Task 1-relevant 829 

synapses following Task 1 training (top-left) is destroyed following Task 2 training (top-middle), 830 

but partially recovered following InterleavedT1,T2 training (top-right). Similarly, the distributional 831 

structure of Task 2-relevant synapses following Task 2 training (bottom-middle), which was not 832 

present following Task 1 training (bottom-left), was partially preserved following 833 

InterleavedT1,T2 training (bottom-right). (D) Box plots with mean (dashed green line) and median 834 

(dashed orange line) of the distance to the decision boundary found by an SVM trained to 835 

classify Task 1 and Task 2 synaptic weight matrices for Task 1, Task 2, and InterleavedT1,T2 836 

training across trials. Task 1 and Task 2 synaptic weight matrices had mean classification values 837 

of -0.069 and 0.069 respectively, while that of InterleavedT1,T2 training was 0.016. (E) Trajectory 838 

of H to O layer synaptic weights through PC space. Synaptic weights which evolved during 839 

InterleavedT1,T2 training (green dots) clustered in a location of PC space intermediary between 840 

the clusters of synaptic weights which evolved during training on Task 1 (red dots) and Task 2 841 

(blue dots). 842 
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844 

Figure 4. Periods of sleep interleaved with training on a new task can prevent catastrophic 845 

forgetting. (A) Task paradigm similar to that shown in (3A) but with 50,000 aeons of 846 

InterleavedS,T1 training (gray) instead of InterleavedT1,T2 training. Note that performance for Task 847 

2 remains high despite no Task 2 training during this period. (B) Mean and standard deviation of 848 

performance during testing on Task 1 (blue) and Task 2 (red) after each training period. 849 

Following Task 1 training, mean performance on Task 1 was 0.70 ± 0.02 while Task 2 was 0.53 850 

± 0.02. Conversely, following Task 2 training, mean performance on Task 1 was 0.52 ± 0.02 851 

while Task 2 was 0.69 ± 0.04. Following InterleavedS,T1 training, mean performance on Task 1 852 

was 0.69 ± 0.02 while Task 2 was 0.67 ± 0.03. (C) Distributions of task-relevant synaptic 853 

weights. The distributional structure of Task 1-relevant synapses following Task 1 training (top-854 
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left) is destroyed following Task 2 training (top-middle), but partially recovered following 855 

InterleavedS,T1 training (top-right). Similarly, the distributional structure of Task 2-relevant 856 

synapses following Task 2 training (bottom-middle), which was not present following Task 1 857 

training (bottom-left), was partially preserved following InterleavedS,T1 training (bottom-right). 858 

Task-relevant synapses were considered to be those which had a synaptic weight of at least 0.1 859 

following training on that task. (B) Box plots with mean (dashed green line) and median (dashed 860 

orange line) of the distance to the decision boundary found by an SVM trained to classify Task 1 861 

and Task 2 synaptic weight matrices for Task 1, Task 2, and InterleavedS,T1 training across trials. 862 

Task 1 and Task 2 synaptic weight matrices had mean classification values of -0.069 and 0.069 863 

respectively, while that of InterleavedS,T1 training was -0.0047. (C) Trajectory of H to O layer 864 

synaptic weights through PC space. Synaptic weights which evolved during InterleavedS,T1 865 

training (green dots) clustered in a location of PC space intermediary between the clusters of 866 

synaptic weights which evolved during training on Task 1 (red dots) and Task 2 (blue dots). 867 

 868 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 10, 2020. ; https://doi.org/10.1101/688622doi: bioRxiv preprint 

https://doi.org/10.1101/688622
http://creativecommons.org/licenses/by/4.0/


41 
 

 869 

Figure 5. Receptive fields following interleaved Sleep and Task 1 training reveal how the 870 

network can multiplex the complementary tasks. (A) Left, Receptive field of the output layer 871 

neuron controlling movement to the upper-left direction following interleaved sleep and Task 1 872 

training. This neuron has a complex receptive field capable of responding to horizontal and 873 

vertical orientations in the upper-left quadrant of the visual field. Right, Schematic of the 874 

connectivity between layers. (B) Examples of receptive fields of hidden layer neurons which 875 

synapse strongly onto the output neuron from (A) after interleaved Sleep and Task 1 training. 876 
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The majority of these neurons selectively respond to horizontal food particles (left half) or 877 

vertical food particles (right half) in the upper-left quadrant of the visual field, promoting 878 

movement in that direction and acquisition of the rewarded patters. A few neurons (bottom-879 

middle-left/right) can be seen to selectively respond to the presence of positive/negative diagonal 880 

food particles in the bottom-right quadrant of the visual field. Activation of these neurons will 881 

promote avoidance movement to the upper-left direction away from the punished patterns. 882 

 883 

 884 

 885 
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887 

Figure 6. Periods of sleep allow learning Task 1 without interference with old Task 2 888 

through renormalization of task-relevant synapses. (A) Dynamics of all incoming synapses to 889 

a single output layer neuron during InterleavedS,T1 training shows the synapses separate into two 890 

clusters.(B) Number of synapses in the strong (red) and weak (blue) clusters during 891 

InterleavedS,T1. (C) Two-dimensional histograms illustrating synaptic weights dynamics. For 892 

each plot, the x-axis represents synaptic weight after Task 1 training and the y-axis represents the 893 

synaptic weight at a different point in time(Scale bar: brown - 50 synapses/bin, blue - 1 894 
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synapse/bin. One-dimensional projections along top and right sides show the global distribution 895 

of synapses at the time slices for a given plot. If no training occurred between the time slices, a 896 

diagonal plot depicts that synaptic weights have not changed (left). After a small amount of Task 897 

2 training, all points lie near the diagonal (middle) indicating minimal changes to synaptic 898 

weights. Once Task 2 is fully trained (right), many synapses move far away from their original 899 

values. In particular, a red cluster along the x-axis indicates synapses which were strong after 900 

Task 1 training but were erased after Task 2 training. (D) Same as (C) except the x-axis refers to 901 

the end of Task 2 training. Again, a diagonal plot is attained when no training takes place 902 

between the time slices (left), and points lie near the diagonal when only a small amount of 903 

InterleavedS,T1 training occurs (middle). After a full period of InterleavedS,T1 training (right), 904 

weak synapses were recruited to support Task 1 (red cluster along the y-axis) and many Task 2 905 

specific synapses remained moderately strong (blue cluster along x-axis).  906 

 907 

 908 
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910 

Figure 7. Periods of sleep push the network towards the intersection of Task 1 and Task 2 911 

specific solution manifolds. (A-C) Low-dimensional visualizations of the synaptic weight 912 

configurations of 10 networks obtained through kPCA for 3-dimensions (A), 2-dimensions using 913 

PC 1 and PC 3 (B), and 2-dimensions using PC 1 and PC 3 (C). Synaptic weight configurations 914 

taken from the last fifth of Task 1 (red dots), Task 2 (blue dots), InterleavedT1,T2 (green dots), and 915 

InterleavedS,T1/T2 (cyan dots) training are shown. PC 1 characterizes good performance on Task 1 916 

(positively valued) or Task 2 (negatively valued) training. PC 2 (PC 3) characterizes the 917 

variability in Task 1 (Task 2) training. Trajectories resulting from InterleavedT1,T2 and 918 

InterleavedS,T1/T2 training following Task 1 (Task 2) training are shown in red (blue). (D-F) 919 

Average (solid lines) and standard deviation (shaded regions) of the n-dimensional Euclidean 920 
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distances between the current synaptic weight configuration and MT1 (D), MT2 (E), and MT1∩T2 921 

(F) during Sequential (orange), InterleavedT1,T2 (purple), and InterleavedS,T1/T2 (black) training. 922 

Following Task 2 (D) or Task 1 (E) training, Sequential training on the opposite task causes the 923 

synaptic weight configuration to diverge from the initial solution manifold, while InterleavedT1,T2 924 

and InterleavedS,T1/T2 training do not. (F) InterleavedT1,T2 and InterleavedS,T1/T2 training cause the 925 

synaptic weight configuration to converge to MT1∩T2 while Sequential training avoids this 926 

intersection. (G) Authors’ interpretation of the task-specific point-sets shown in (A-C) as 927 

solution manifolds MT1 (red) and MT2 (blue). MT1 and MT2 can be thought of as two oppositely 928 

oriented elliptic paraboloids which intersect orthogonally near the origin (MT1∩T2; dark green). 929 

(H,I) Sequential training (pink arrow) causes the network to jump from one solution manifold to 930 

the other while avoiding MT1∩T2, while InterleavedS,T1/T2 training (light green arrow) keep the 931 

network close to the initial solution manifold as it converges towards MT1∩T2. 932 

 933 

 934 

 935 

 936 

 937 

 938 

 939 

 940 

 941 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 10, 2020. ; https://doi.org/10.1101/688622doi: bioRxiv preprint 

https://doi.org/10.1101/688622
http://creativecommons.org/licenses/by/4.0/


47 
 

942 

Extended Data Figure 1. Interleaved training of two tasks and interleaving training new 943 

task with sleep both can integrate new tasks without catastrophic forgetting. (A). Mean 944 

performance (red line) and standard deviation (blue lines) over time: 100,000 aeons of 945 

unsupervised training (white), 50,000 aeons of Task 1 training (blue), 10,000 aeons of Task 1 946 

(green) and Task 2 (yellow) testing, 50,000 aeons of InterleavedT1,T2 training (pink), 10,000 947 

aeons of Task 1 (green) and Task 2 (yellow) testing. (B) Mean and standard deviation of 948 

performance during testing on Task 1 (blue) and Task 2 (red) after each training period. 949 

Following Task 1 training, mean performance on Task 1 was 0.69 ± 0.02 while Task 2 was 0.53 950 

± 0.02. Following InterleavedT1,T2 training, mean performance on Task 1 was 0.68 ± 0.03 while 951 

Task 2 was 0.64 ± 0.04. (C) Task paradigm similar to that shown in (A) but with 50,000 aeons of 952 

InterleavedS,T2 training (gray) instead of InterleavedT1,T2 training. (D) Mean and standard 953 

deviation of performance during testing on Task 1 (blue) and Task 2 (red) after each training 954 

period. Following Task 1 training, mean performance on Task 1 was 0.70 ± 0.02 while Task 2 955 
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was 0.53 ± 0.02. Following InterleavedS,T2 training, mean performance on Task 1 was 0.68 ± 956 

0.05 while Task 2 was 0.70 ± 0.03. 957 

 958 
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