Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

Population codes of prior knowledge learned through environmental regularities

View ORCID ProfileSilvan C. Quax, View ORCID ProfileSander E. Bosch, View ORCID ProfileMarius V. Peelen, Marcel A. J. van Gerven
doi: https://doi.org/10.1101/688630
Silvan C. Quax
1Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Silvan C. Quax
  • For correspondence: s.c.quax@gmail.com
Sander E. Bosch
1Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
2Vrije Universiteit, Amsterdam, The Netherlands
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Sander E. Bosch
Marius V. Peelen
1Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Marius V. Peelen
Marcel A. J. van Gerven
1Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Preview PDF
Loading

ABSTRACT

How the brain makes correct inferences about its environment based on noisy and ambiguous observations, is one of the fundamental questions in Neuroscience. Prior knowledge about the probability with which certain events occur in the environment plays an important role in this process. Humans are able to incorporate such prior knowledge in an efficient, Bayes optimal, way in many situations, but it remains an open question how the brain acquires and represents this prior knowledge. The long time spans over which prior knowledge is acquired make it a challenging question to investigate experimentally. In order to guide future experiments with clear empirical predictions, we used a neural network model to learn two commonly used tasks in the experimental literature (i.e. orientation classification and orientation estimation) where the prior probability of observing a certain stimulus is manipulated. We show that a population of neurons learns to correctly represent and incorporate prior knowledge, by only receiving feedback about the accuracy of their inference from trial-to-trial and without any probabilistic feedback. We identify different factors that can influence the neural responses to unexpected or expected stimuli, and find a novel mechanism that changes the activation threshold of neurons, depending on the prior probability of the encoded stimulus. In a task where estimating the exact stimulus value is important, more likely stimuli also led to denser tuning curve distributions and narrower tuning curves, allocating computational resources such that information processing is enhanced for more likely stimuli. These results can explain several different experimental findings and clarify why some contradicting observations concerning the neural responses to expected versus unexpected stimuli have been reported and pose some clear and testable predictions about the neural representation of prior knowledge that can guide future experiments.

Competing Interest Statement

The authors have declared no competing interest.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY 4.0 International license.
Back to top
PreviousNext
Posted September 10, 2020.
Download PDF
Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Population codes of prior knowledge learned through environmental regularities
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Population codes of prior knowledge learned through environmental regularities
Silvan C. Quax, Sander E. Bosch, Marius V. Peelen, Marcel A. J. van Gerven
bioRxiv 688630; doi: https://doi.org/10.1101/688630
Reddit logo Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
Population codes of prior knowledge learned through environmental regularities
Silvan C. Quax, Sander E. Bosch, Marius V. Peelen, Marcel A. J. van Gerven
bioRxiv 688630; doi: https://doi.org/10.1101/688630

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Neuroscience
Subject Areas
All Articles
  • Animal Behavior and Cognition (4235)
  • Biochemistry (9135)
  • Bioengineering (6784)
  • Bioinformatics (24000)
  • Biophysics (12129)
  • Cancer Biology (9534)
  • Cell Biology (13778)
  • Clinical Trials (138)
  • Developmental Biology (7635)
  • Ecology (11701)
  • Epidemiology (2066)
  • Evolutionary Biology (15513)
  • Genetics (10644)
  • Genomics (14326)
  • Immunology (9482)
  • Microbiology (22839)
  • Molecular Biology (9090)
  • Neuroscience (48993)
  • Paleontology (355)
  • Pathology (1482)
  • Pharmacology and Toxicology (2570)
  • Physiology (3846)
  • Plant Biology (8331)
  • Scientific Communication and Education (1471)
  • Synthetic Biology (2296)
  • Systems Biology (6192)
  • Zoology (1301)