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12 Abstract 

13 Annual soil moisture estimates are useful to characterize trends in the climate system, in the capacity of 

14 soils to retain water and for predicting land and atmosphere interactions. The main source of soil 

15 moisture spatial information across large areas (e.g., continents) is satellite-based microwave remote 

16 sensing. However, satellite soil moisture datasets have coarse spatial resolution (e.g., 25-50 km grids); 

17 and large areas from regional-to-global scales have spatial information gaps. We provide an alternative 

18 approach to predict soil moisture spatial patterns (and associated uncertainty) with higher spatial 

19 resolution across areas where no information is otherwise available. This approach relies on 

20 geomorphometry derived terrain parameters and machine learning models to improve the statistical 

21 accuracy and the spatial resolution (from 27km to 1km grids) of satellite soil moisture information 

22 across the conterminous United States on an annual basis (1991-2016). We derived 15 primary and 

23 secondary terrain parameters from a digital elevation model. We trained a machine learning algorithm 

24 (i.e., kernel weighted nearest neighbors) for each year. Terrain parameters were used as predictors and 

25 annual satellite soil moisture estimates were used to train the models. The explained variance for all 

26 models-years was >70% (10-fold cross-validation). The 1km soil moisture grids (compared to the 

27 original satellite soil moisture estimates) had higher correlations with field soil moisture observations 

28 from the North American Soil Moisture Database (n=668 locations with available data between 1991-

29 2013; 0-5cm depth) than the original product. We conclude that the fusion of geomorphometry 

30 methods and satellite soil moisture estimates is useful to increase the spatial resolution and accuracy of 

31 satellite-derived soil moisture. This approach can be applied to other satellite-derived soil moisture 

32 estimates and regions across the world.    

33
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36 Introduction

37 Continuous national to continental scale soil moisture information is increasingly needed to 

38 characterize spatial and temporal trends of terrestrial productivity patterns (e.g., production of food, 

39 fiber and energy). This is because soil moisture is a key variable regulating hydrological and 

40 biogeochemical cycles, and thus studying its spatial-temporal dynamics is crucial for assessing the 

41 potential impact of climate change on water resources [1-4]. Currently, the most feasible way to obtain 

42 national to continental soil moisture information is using remote sensing. Microwave remote sensing 

43 devices deployed on multiple earth observation satellites are able to quantify the dielectric constant of 

44 soil surface and retrieve soil moisture estimates [5].  However, there are spatial gaps of satellite-based 

45 soil moisture information and its current spatial resolution (> 1km grids) limits its applicability at the 

46 ecosystem-to-landscape scales to address the ecological implications of soil moisture dynamics [5-8]. 

47  Satellite soil moisture records are an effective indicator for monitoring global soil conditions 

48 and forecasting climate impacts on terrestrial ecosystems, because soil moisture estimates are required 

49 for assessing feedbacks between water and biogeochemical cycles [9-12]. In addition, accurate soil 

50 moisture information is critical to predict terrestrial and atmospheric interactions such as water 

51 evapotranspiration or CO2 emissions from soils [3, 13-15]. However, soil moisture information at 

52 spatial resolution of 1x1km pixels or less is not yet available across large areas of the world and the 

53 coarse pixel size (>1km pixels) of available satellite soil moisture records is limited for spatial analysis 

54 (i.e., hydrological, ecological) at small regional levels (e.g., county- to state). In addition, satellite soil 

55 moisture estimates are representative only of the first few 0-5 to 10 cm of top-soil surface [16]. 

56 Therefore, comparing multiple sources for satellite soil moisture and field soil moisture estimates is 

57 constantly required for precise interpretations of soil moisture spatial patterns [17-19]. 
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58 There is a pressing need for exploring statistical relationships across different sources of remote 

59 sensing information (e.g., topography and soil moisture) and developing alternative soil moisture 

60 spatial datasets (i.e., grids) to improve the continental-to-global spatial representation of soil moisture 

61 estimates [7]. Spatially explicit soil moisture estimates can be obtained across large areas with a spatial 

62 resolution between 25-50 km grids from radar-based microwave platforms deployed across different 

63 satellite soil moisture missions [20-21]. The availability of historical soil moisture records of these 

64 sources has increased during the last decade with unprecedented levels of temporal resolution (i.e., 

65 daily from years 1978-present) at the global scale. However, large areas constantly covered by snow, 

66 extremely dry regions or tropical rain forests (where there is a higher content of water above ground) 

67 lack of precise soil moisture satellite records due to sensor intrinsic limitations (e.g., saturation or 

68 noise) across these environmental conditions [22].

69 One valuable product that is affected by the aforementioned environmental conditions is the 

70 ESA-CCI (European Space Agency Climate Change Initiative) soil moisture product [20-21]. The 

71 ESA-CCI mission makes rapidly available long-term soil moisture estimates with daily temporal 

72 resolution from the 1978s to date, and it represents the state-of-the-art knowledge tool for assessing 

73 long term trends in the climate system. Modeling, validation and calibration frameworks are required 

74 for improving the spatial representation of this important dataset, and for predicting soil moisture 

75 patterns across areas where no satellite estimates are available.   

76  Currently, there is an increasing availability of fine-gridded information sources and modeling 

77 approaches that could be used for increasing the spatial resolution (hereinafter downscaling) of the 

78 ESA-CCI satellite soil moisture estimates (e.g., soil moisture predictions across <1x1km grids). 

79 Downscaling (and subsequently gap-filling) satellite soil moisture estimates has been the objective of 

80 empirical modeling approaches based on sub-grids of soil moisture related information such as soil 
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81 texture [23]. Other approaches followed environmental correlation methods and generated soil moisture 

82 predictions for satellite soil moisture estimates using both data-driven or hypothesis driven models and 

83 multiple sub-grids of ancillary information [24-26]. These sub-grids of information usually include 

84 vegetation related optical remote sensing imagery, gridded soil information, land cover classes and 

85 landforms [27-30]. Most of these approaches have been tested for specific study sites. Other studies 

86 have focused on applying a digital soil mapping approach (a reference framework for understanding the 

87 spatial distribution of soil variability [31]) and multiple upscaling methods for predicting soil moisture 

88 patterns at the continental scale [26, 32]; and an overview of multiple approaches for downscaling 

89 satellite soil moisture (e.g., empirically based, physically based) has been previously discussed [33].  

90 Here, we propose that digital terrain analysis (i.e., geomorphometry) can also be applied for empirically 

91 downscaling soil moisture satellite-based information across continental-to-global spatial scales. 

92  Geomorphometry is an emergent discipline in earth sciences dedicated to the quantitative 

93 analysis of land surface characteristics and topography [34-35]. Topography includes a diversity of 

94 hydrologically meaningful terrain parameters (i.e., slope, aspect, curvature) that aim to represent how 

95 the landscape physically constrains water inputs (e.g., rainwater, irrigation, overland flow) that reaches 

96 the soil surface [35-36]. At the landscape scale, soil moisture is partially controlled by topography 

97 related factors (i.e., slope, aspect, curvature) physically constraining soil water inputs and soil hydraulic 

98 properties (e.g., soil texture, structure). Based on these geomorphometry principles [35-39], we propose 

99 that it is possible to determine which terrain parameters are the strongest predictors of the spatial 

100 variability of satellite soil moisture. Statistically coupling the spatial variability of satellite soil moisture 

101 with hydrologically meaningful terrain parameters could be an alternative way to improve the spatial 

102 resolution and accuracy of satellite soil moisture estimates across the continental scale. This is possible 
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103 because topography (represented by terrain parameters) directly affects: 1) the angle of the satellite 

104 microwave signal at the soil surface; and 2) the overall distribution of water in the landscape. 

105 Topography is a major driver for soil moisture and topography surrogates (e.g., land form or 

106 elevation map) have been combined with other variables (e.g., climate, soils, vegetation and land use) 

107 for downscaling satellite soil moisture estimates [33]. However, the exclusive use of geomorphometry-

108 derived products for downscaling satellite soil moisture has not yet been explored from national-to-

109 continental scales. This approach is relevant to avoid statistical redundancies and potential spurious 

110 correlations when downscaled soil moisture is further used or analyzed with vegetation- or climate-

111 related variables (when these aforementioned variables were used for downscaling of satellite derived 

112 soil moisture). In this study, we show the potential of a soil moisture prediction framework purely 

113 based on geomorphometry derived products (digital terrain parameters). 

114 Our main objective is to generate a soil moisture prediction framework by coupling satellite soil 

115 moisture estimates with hydrologically meaningful terrain parameters as prediction factors. Coupling 

116 the complexity of topographic gradients and the multi-temporal nature of satellite soil moisture requires 

117 an approach that should account for non-linear relationships. Machine learning approaches could 

118 account for non-linearity based on probability and the ability of computer systems to reproduce and 

119 ‘learn’ (i.e., decide the best solution after multiple model realizations) from multiple modeling outputs 

120 (i.e., varying model parameters of combinations of training and testing random samples) [40]. 

121 Furthermore, machine learning is now a common component of geoscientific research leading the 

122 discovery of new knowledge in the earth system [41] including soil greenhouse gas fluxes [8, 42] and 

123 soil moisture estimates [43]. 

124 We postulate that the data fusion between satellite soil moisture with hydrologically meaningful 

125 terrain parameters can enhance the spatial resolution, representativeness and quality (i.e., accuracy) of 
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126 current coarse satellite soil moisture grids. We focus on the conterminous United States (CONUS) 

127 given the large availability of soil moisture records for validating purposes from the North American 

128 Soil Moisture Database (NASMD) [44]. This study provides insights for obtaining detailed soil 

129 moisture estimates relying on public sources of satellite information and a data-driven framework that 

130 could be reproduced and applied across the world. The novelty of this research relies on proposing an 

131 alternative approach for obtaining soil moisture gridded measurements across areas where no soil 

132 moisture information is available (i.e., from the ESA-CCI) and at a spatial resolution (i.e., 1km) 

133 determined by the topographic prediction factors. This approach can be applied to other satellite-

134 derived soil moisture estimates and regions across the world.

135

136 Materials and Methods

137 Our downscaling approach relied on a Digital Elevation Model (DEM), and satellite soil 

138 moisture records. Soil moisture information was acquired from the ESA-CCI [20-21]. The development 

139 and reliability (i.e., validation) of this remote sensing soil moisture product has been documented by 

140 previous studies [20-21, 45]. Our framework includes prediction factors for soil moisture from digital 

141 terrain analysis. These terrain predictors were derived across CONUS using 1km grids. Machine 

142 learning was used for generating soil moisture predictions (annual, 1991-2016) using as training data 

143 the satellite soil moisture estimates provided by the ESA-CCI. Field soil moisture observations from 

144 the North American Soil Moisture dataset were used for validating the soil moisture predictions based 

145 on digital terrain analysis (Figure 1). 

146
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159 Figure 1: Soil moisture prediction framework. The folders are the inputs and outputs and the ovals are 

160 methods for data preparation (data bases harmonization), modeling (for prediction) and validation (for 

161 assessing the reliability of soil moisture maps). 

162

163 Datasets and data preparation

164 We downscaled the ESA-CCI satellite soil moisture estimates between 1991 and 2016 and 

165 validated the downscaled information with field measurements (Supplementary Figure S1). The ESA-

166 CCI soil moisture product has a daily temporal coverage from 1978 to 2016 and a spatial resolution of 

167 ~27 km (Supplementary Figure S2).  Among several remotely sensed soil moisture products [16, 46-

168 50], we decided to use the ESA-CCI soil moisture product because it covers a larger period of time 
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169 compared with other satellite soil moisture products (e.g., NASA SMAP). We highlight that satellite 

170 soil moisture information is used for training a machine learning model for each year, and independent 

171 field soil moisture records area only used for validating the downscaled soil moisture predictions. 

172 For externally validating, we used the NASMD because it has been curated following a strict 

173 quality control calibrated for CONUS [44] (Supplementary Figure S1). This data collection effort 

174 consists of a harmonized and quality-controlled soil moisture dataset with contributions from over 2000 

175 meteorological stations across CONUS described by Quiring and colleagues [44]. The NASMD also 

176 include records of soil moisture registered in the International Soil Moisture Network (ISMN) [44, 51].  

177 The NASMD (unlike the ISMN) provides processed data from each station location in each network 

178 [44-19]. We used soil moisture records at 5 cm of depth (n = 5541 daily measurements) from 668 

179 stations with available soil moisture estimates at this depth because radar-based soil moisture estimates 

180 are representative for these first few centimeters of topsoil surface [16]. 

181 As prediction factors for soil moisture, we calculated hydrologically meaningful terrain 

182 parameters for CONUS using information from a radar-based DEM [52-53]. These terrain parameters 

183 are quantitative spatial grids representing the topographic variability that directly influence the water 

184 distribution across the landscape [35], which supports the physical link between soil moisture and 

185 topography. These parameters were the basis for downscaling satellite soil moisture records to 1km 

186 grids. This spatial resolution captures the major variability of topographic features across CONUS and 

187 is commonly used on large-scale ecosystem studies and soil mapping efforts [53-54].  

188 For the calculation of soil moisture prediction factors, we used automated digital terrain 

189 analysis using the System for Automated Geographical Analysis-Geographical Information System 

190 (SAGA-GIS) [36]. The automated implementation of SAGA-GIS for Geomorphometry (module for 

191 basic terrain analysis) includes a preprocessing stage to remove spurious sinks and reduce the presence 
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192 of other artifacts in the elevation gridded surface (e.g., false pikes or flat areas). After preprocessing the 

193 DEM, 15 hydrologically meaningful terrain parameters were generated for the CONUS from elevation 

194 data including primary (i.e., slope, aspect) and secondary parameters (i.e., cross-sectional curvature, 

195 longitudinal curvature, analytical hill-shading, convergence index, closed depressions, catchment area, 

196 topographic wetness index, length-slope factor, channel network base level, vertical distance to channel 

197 network, and valley depth index; Figure 2). The values of these terrain parameters (Supplementary 

198 Table S1) were harmonized with the ESA-CCI soil moisture values using as reference the central 

199 coordinates of the coarse soil moisture grids (Figure 1 inputs; see section 2.3). 

200

201 Data exploration

202 We used a principal component analysis (PCA) prior to modeling for data exploration and 

203 description of general relationships between soil moisture values and topography (represented by the 

204 aforementioned terrain parameters). The purpose was to simplify the dimensionality of the data set to 

205 identify the main relationships (between soil moisture and topographic parameters) driving our 

206 downscaling framework (Figure 1 methods). The PCA was implemented as in previous work [55], 

207 based on a reference value representing the 0.95-quantile of the variability obtained by randomly 

208 simulating 300 data tables of equivalent size on the basis of a normal distribution. This analysis was 

209 applied to the terrain parameters at the locations of the field stations in order to compare the 

210 relationship of the first PCA and the values of soil moisture from the ESA-CCI grids and from the field 

211 data. 

212

213 Model building

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 1, 2019. ; https://doi.org/10.1101/688846doi: bioRxiv preprint 

https://doi.org/10.1101/688846
http://creativecommons.org/licenses/by/4.0/


12

214 For this analysis we built a model for each downscaled soil moisture map. We used a machine 

215 learning kernel-based model (kernel weighted nearest neighbors, kknn) [56-57] to downscale satellite 

216 soil moisture (Figure 1 methods). The training dataset for each model/year were the annual values of 

217 the ESA-CCI soil moisture product. The kknn model has two main model parameters: the optimum 

218 number of neighbors (k) and the optimal kernel function (okf). First, we defined k, which is the number 

219 of neighbors to be considered for the prediction. Second, we selected the okf, which is a reference (e.g., 

220 triangular, epanechnikov, Gaussian, optimal) for the probability density function of the variable to be 

221 predicted. The okf is used to convert distances (i.e., Minkowski distance) into weights used to calculate 

222 the k-weighted average. These kknn model parameters (k and okf) were selected by the means of 10-

223 fold cross validation as previously recommended [58]. Cross-validation is a well-known re-sampling 

224 technique that divides data into 10 roughly equal subsets. For every possible parameter value (e.g., k 

225 from 1 to 50 and okf [triangular, epanechnikov, Gaussian, optimal]), 10 different models are generated, 

226 each using 90% of the data then being evaluated on the remaining 10%. To predict soil moisture 

227 information at 1 km of spatial resolution for each year (between 1991 and 2016), we selected the 

228 combination of optimal k and okf that lead to the highest correlation (between observed and predicted 

229 data) with the lowest root mean squared error (RMSE) after the cross-validation strategy. Thus, for 

230 each year we were able to predict soil moisture across 1x1 km grids (Figure 1 outputs). 

231

232 Validation using field observations across CONUS

233 Downscaled soil moisture grids were compared against field measurements and we computed the 

234 explained variance (r2 ) using a linear fit (observed vs predicted) for each field soil moisture location. 

235 Given the relatively low density and sparse spatial distribution of field data for validating 

236 (Supplementary Figure S1), we bootstrapped the independent validation using different sample sizes 
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237 (from 10 to 100% of data with increments each 10%) to avoid systematic bias associated with the 

238 spatial distribution and density of field soil moisture information.  We sampled (n = 1000) repeatedly 

239 the original and the downscaled soil moisture grids aiming to identify their correlation with the 

240 aforementioned validation dataset (i.e., observed vs predicted). 

241 We also computed the spatial structure (spatial autocorrelation) of the explained variance 

242 (correlation between geographical distance and variance of r2 values) for estimating an r2 map using an 

243 interpolation technique known in geostatistics as Ordinary Kriging [59]. Ordinary Kriging is a well-

244 known method for spatial interpolation based on the spatial structure or spatial autocorrelation of the 

245 variable of interest (the r2 values between the field observations and the predicted soil moisture values). 

246 The spatial autocorrelation is defined by the relationship between geographical distances and variance 

247 of values at a given distance, and it is commonly characterized using variograms. We followed an 

248 automated variogram parameterization (the optimal selection for the variogram parameters nugget, sill 

249 and range required to perform Ordinary Kriging) proposed in previous work [60]. 

250 As implemented in the automap package of R [60], the initial sill is estimated as the mean of the 

251 maximum and the median values of the semi-variance. The semi-variance is defined by the variance 

252 within multiple distance intervals. For modeling the spatial autocorrelation this algorithm iterates over 

253 multiple variogram model parameters selecting the model (e.g., spherical, exponential, Gaussian) that 

254 has the smallest residual sum of squares with the sample variogram. The initial range is defined as 0.10 

255 times the diagonal of the bounding box of the data. The initial nugget is defined as the minimum value 

256 of the semi-variance. Thus, the parameters used for obtaining a continuous map showing spatial trends 

257 in the r2 were: a Gaussian (normal) model form, a nugget value of 0.06 m3 m-3, a sill of 0.08 m3 m-3 and 

258 an approximate range of 428.7 km. This map was generated because it could provide insights about 

259 overall sources of modeling errors (e.g., environmental similarities in multiple areas showing low or 
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260 high explained variance) and their spatial distribution. All analyzes were performed in R [61] using 

261 public sources of data.  A reproducible example (code) for generating the soil moisture predictions in 

262 1km grids is provided as Supplementary Information S1. 

263

264 Results

265 The exploratory PCA showed that the first two PCs explained 33% of the total dataset variability 

266 (Supplementary Figure S3A), where the first PC explained 18% of total variability and at least five PCs 

267 were needed to explain 70% of total variability. The first PC was best correlated with elevation 

268 (r=0.82) and with the vertical distance to channel network (r=0.88).  Elevation varied negatively with 

269 soil moisture, as well as other secondary terrain parameters such as the base level channel network 

270 elevation (distance from each pixel to the closer highest point), while the valley depth index varied 

271 positively with soil moisture (Supplementary Figure S3B). The relative slope position (indicating the 

272 dominance of flat or complex terrain) and the topographic wetness index (which indicates areas where 

273 water tends to accumulate) were also correlated with soil moisture across the first 5 PCs. Thus, multiple 

274 terrain parameters varied positively and negatively with soil moisture values (Supplementary 

275 Information S2).     

276

277

278

279

280

281
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282

283

284

285 Figure 2. Elevation and hydrologically meaningful terrain parameters at 1x1km of spatial resolution 

286 derived using standard the SAGA-GIS basic terrain parameters module. These maps were normalized 

287 (between 0-1) and then used as prediction factors to downscale soil moisture across CONUS. 

288

289 Our framework to predict soil moisture based on topography and remote sensing was able to 

290 explain, on average 79±0.1% of the variability of satellite soil moisture information as revealed by the 
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291 cross-validation strategy. The root mean squared error (RMSE) derived from the cross-validation 

292 varied around 0.03 m3/m3, while the percentage of explained variance was in all cases above 70% 

293 (Table 1).  

294

295 Table 1. The cross-validation results for each year. This table shows the correlation, root mean squared 

296 error (RMSE), the number of training data available (n), the optimal kernel function (okf), and the 

297 optimal number of neighbors used for predicting to new data (k).

Model Year Correlation RMSE n okf k

1 1991 0.85 0.03 18058 triangular 18

2 1992 0.89 0.03 18429 triangular 16

3 1993 0.88 0.03 18107 triangular 18

4 1994 0.9 0.03 18367 triangular 16

5 1995 0.88 0.03 18385 triangular 18

6 1996 0.9 0.03 18454 triangular 15

7 1997 0.88 0.03 18428 triangular 15

8 1998 0.88 0.03 18540 triangular 16

9 1999 0.89 0.03 18542 triangular 15

10 2000 0.9 0.03 18547 triangular 15

11 2001 0.9 0.03 18523 triangular 15

12 2002 0.9 0.03 19170 triangular 16

13 2003 0.89 0.03 19132 triangular 16

14 2004 0.89 0.03 18934 triangular 16

15 2005 0.89 0.03 19132 triangular 16

16 2006 0.9 0.03 19131 triangular 16

17 2007 0.88 0.03 19142 triangular 16

18 2008 0.9 0.03 19136 triangular 16

19 2009 0.9 0.03 19142 triangular 16

20 2010 0.88 0.03 19245 triangular 18
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21 2011 0.9 0.03 19255 triangular 18

22 2012 0.9 0.03 19252 triangular 16

23 2013 0.89 0.03 19226 triangular 16

24 2014 0.89 0.03 19227 triangular 16

25 2015 0.88 0.03 19231 triangular 16

26 2016 0.88 0.03 19225 triangular 16

298

299 By applying the model coefficients to the topographic prediction factors across CONUS, we 

300 generated 26 cross-validated maps (for years 1991-2016) of mean annual soil moisture estimates in 

301 1x1km grids (Figure 3). The downscaled product shows a higher level of spatial variability due the 

302 increased spatial detail achieved by downscaling soil moisture to 1x1km grids (Supplementary Figure 

303 S4). Our predictions reveal a clear bimodal distribution of soil moisture values (e.g., from the east to 

304 the west, Figure 4) which is also evident in the original estimate (Supplementary Figure S5). The 

305 statistical comparison (squared correlation) between the original product and the downscaled product 

306 suggests a high level of agreement showing an r2 value of 0.72. 
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307

308 Figure 3. Annual means of soil moisture (1991-2016) downscaled to 1x1km grids across CONUS using 

309 terrain parameters as prediction factors. 

310

311 We provided a visual comparison between the original satellite estimate and the downscaled 

312 results including both median and standard deviation values (Figure 4).  We also show the uncertainty 

313 of the original soil moisture product as reported by its developers and the r2 map from the validation 
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314 against field stations. The r2 map shows the lowest values across the Central Plains of the US and the 

315 lower Mississippi basin. The lower values in the r2 map are consistent with the high uncertainty values 

316 of the original satellite estimate (Figure 4). 

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333 Figure 4. Comparison of the original and the downscaled soil moisture products. Median (a, b) and 

334 standard deviation (c, d, sdev) values of satellite soil moisture and downscaled soil moisture values 
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335 (1991-2016). We show the uncertainty reported by the ESA-CCI soil moisture (e) and the explained 

336 variance map (r2) between field data and downscaled soil moisture (f).  

337

338

339 The r2 map provided insights about the relationship between soil moisture gridded surfaces and 

340 soil moisture field data. Higher r2 values were found across the east coast, the Northern Plains and 

341 water-limited environments across the western states. We found that our soil moisture downscaled 

342 output better correlates (nearly 25% improvement) with NASMD field observations when compared to 

343 the original soil moisture satellite estimates (Figure 5). 

344

345

346

347

348

349

350

351

352

353

354

355

356 Figure 5. Validation of soil moisture gridded estimates (original 27 and 1km grids) 
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357 against NASMD field observations. Dashed line represents the relationship of field stations and soil 

358 moisture gridded estimates at 27x27km, while black line represents the relationship between field 

359 stations and the downscaled 1x1km soil moisture product. In all cases (all sample sizes), the 1x1km 

360 product showed higher r2 with the NASMD than the ESA-CCI soil moisture estimates.

361

362 This improvement was consistent after repeating it using random samples and different sample 

363 sizes (from 10 to 90 % of available validation data) from the NASMD field observations (Figure 5). 

364 However, there is a sparse distribution of validation data and large areas of CONUS lack of field 

365 information for validating/calibrating soil moisture predictions (Figure 6). Considering the quality-

366 controlled records available from the NASMD across CONUS and the coarse scale of the ESA-CCI 

367 soil moisture product, our approach suggests an improvement in the spatial resolution (from 27 to 1km 

368 grids) of soil moisture estimates while maintaining the integrity of the original satellite values. 

369

370

371

372

373

374

375

376

377 Figure 6 Explained variances computed for each meteorological station of the NASMD and the 

378 corresponding pixel of our soil moisture predictions based on geomorphometry.

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 1, 2019. ; https://doi.org/10.1101/688846doi: bioRxiv preprint 

https://doi.org/10.1101/688846
http://creativecommons.org/licenses/by/4.0/


22

379

380 The original satellite values, the downscaled product and the ISMN dataset showed a similar 

381 correlation with the terrain predictors. For example, the first PCA (represented by the distance to 

382 channel network and elevation), was negatively correlated with field soil moisture, the satellite original 

383 product and our soil moisture predictions. The correlation values were r=-0.17,  r=-0.27, and r=-0.28 

384 respectively. These relationships showed a similar pattern in the statistical space (Figure 7).

385  

386 Figure 7 Relationships between the first PC of terrain parameters with soil moisture field data (a), with 

387 the ESA-CCI satellite product (b), and with the soil moisture predictions based on terrain parameters 

388 (c). 

389

390

391 Discussion

392 Our soil moisture downscaling framework was able to improve the spatial detail of ESA-CCI 

393 satellite soil moisture product and its agreement with field soil moisture records from the NASMD.  It 

394 is well known that topography has a direct influence on the overall water distribution across the 

395 landscape [38-39] and in the angle between satellite retrieval and the earth’s surface. Thus, we 
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396 demonstrated how a coarse scale satellite-based soil moisture product (27x27km of spatial resolution), 

397 in combination with hydrologically meaningful terrain parameters, can be coupled using machine 

398 learning algorithms to generate a fine-gridded and gap-free soil moisture product at the annual scale 

399 across CONUS. We found a correlation between field soil moisture estimates and topography that is 

400 similar to the correlation between satellite estimates and topography (Figure 7), suggesting that 

401 topography can be an effective predictor for direct soil moisture measurements (i.e., from microwave 

402 remote sensing). In contrast to previous downscaling efforts using vegetation and climate information 

403 [33, 62], we generated 26 annual soil moisture predictions (1991-2016, 1x1 km of spatial resolution) 

404 that are independent of ecological data (i.e., vegetation greenness) and climate information, (i.e., 

405 precipitation and temperature). This topography-based approach has the advantage that our soil 

406 moisture output could be further related to independent datasets of ecological or climate variables [63-

407 64]. Therefore, we provided an alternative (topography-based) approach to predict the satellite soil 

408 moisture patterns across finer spatial grids and in areas where no satellite soil moisture is available. 

409 The downscaling process of satellite soil moisture from 27 to 1km grids across CONUS is 

410 supported on both internal (Table 1) and independent (Figure 5) validation frameworks to describe 

411 modeling performance.  Similar results have been found recently for specific study sites [65]. These 

412 values showed explained variances >70% and RMSE values considerably below (~0.03 m3 m-3) the 

413 satellite soil moisture mean of 0.22 m3 m-3, which is suitable for many applications [62], such as the 

414 detection of irrigation signals [66]. Our results obtained by the cross-validation strategy and ground 

415 validation supports the application of a topography-based model to predict satellite soil moisture 

416 estimates (Figure 4).  

417  Our results showed that higher soil moisture values could be found across lower elevations, areas 

418 with generally large and gentle slopes mainly across valley bottoms and across catchment areas where 
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419 water tends to accumulate. This interpretation could explain the short distance in the multivariate 

420 analysis of satellite soil moisture estimates to elevation and derived terrain parameters such as the 

421 vertical distance (of each pixel) to the nearest channel network, the valley depth index and the 

422 topographic wetness index. The multivariate analysis also suggested some degree of statistical 

423 redundancy between the topographic prediction factors (Supplementary Information S2) as they were 

424 derived from the digital elevation model by the means of geomorphometry [34-39]. For example, we 

425 found that the topographic wetness index is highly correlated with the length-slope factor (>0.80%), 

426 and this is because they are two secondary parameters that depend on slope [35]. Elevation and slope 

427 are respectively required for calculating the valley depth index and the topographic wetness index [36] 

428 and these terrain parameters varied closely with soil moisture in the multivariate space (Supplementary 

429 Information S2). Thus, understanding the main relationships between topographic prediction factors 

430 and soil moisture can be useful for reducing modeling complexity while increasing our capacity to 

431 interpret modeling results. 

432 The spatial detail of soil moisture estimates using 1km grids across the continental scale of 

433 CONUS is consistent with the variability of soil moisture patterns between the western and eastern 

434 United States. While drought scenarios have been recently reported for the western states [67] evidence 

435 of precipitation increase has been reported recently in the eastern states [68]. Our soil moisture 

436 downscaled estimates (Figure 3) revealed a soil moisture gradient across the Central Plains of CONUS 

437 and a clear separation of two major soil moisture data populations (i.e., soil moisture values with a 

438 bimodality distribution) from the drier west, to the humid east (Supplementary Figure S5). 

439 The original satellite soil moisture estimates also show this bimodal distribution but with a lesser 

440 extent (Supplementary Figure S2). The bimodal distribution of soil moisture could be explained by a 

441 negative soil moisture and precipitation feedback in the western CONUS and a positive soil moisture 
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442 and precipitation feedback in the eastern CONUS [64]. Furthermore, areas with soil moisture 

443 bimodality have been recognized across global satellite observations and climate models [69]. We 

444 identified areas of low agreement between our soil moisture predictions and field stations (lower r2 

445 values) across the transitional ecosystems (Figure 4) from drier to humid soil moisture environments 

446 (i.e., Central Plains and lower Mississippi basin). It is likely that these transitional areas drive changes 

447 in water availability in surface and subsurface hydrological systems [70]. The lower Mississippi basin, 

448 specifically the area across the surroundings of the Mississippi delta, is an example of a transitional 

449 area experiencing aquifer depletion [71] where both flooding events and droughts tend to occur within 

450 shorter distances that are not captured by the original satellite soil moisture information. These are the 

451 type areas where we found lower values of agreement (r2 values) between satellite and ground soil 

452 moisture observations.  These low correlation values can be also explained by the use of multiple soil 

453 moisture networks with different types of sensors and measurement techniques [19]. Also, the 

454 imperfections of prediction factors used for soil moisture spatial variability models represent a potential 

455 source of uncertainty.  

456  As any downscaling effort dependent on covariates (i.e., terrain parameters), our approach is 

457 vulnerable to data quality limitations such as the presence of systematic errors on these covariates. 

458 Other errors are derived from input data imperfections and difficulties meeting modeling assumptions. 

459 These errors in soil moisture modeling inputs increase the risk of bias and uncertainty propagation to 

460 subsequent soil moisture modeling outputs and soil mapping applications [72-74]. For example, 

461 elevation data surfaces derived from remote sensing data (such as the global DEM used here) could 

462 show artifacts (i.e., false pikes or spurious sinks) due to data saturation or signal noise that can be 

463 propagated to final soil moisture predictions [75]. We minimized this issue by using SAGA-GIS [36] as 

464 it has adopted methods for preprocessing and perform DEM quality checks [76] before deriving the 
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465 topographic prediction factors used in this study. Because input covariates could not be fully free of 

466 errors, we advocate for reporting information on bias and r2 values to inform about accuracy (Table 1) 

467 as important components for interpreting soil moisture predictions.

468 Our results suggest that the original coarse scale soil moisture product and the values of soil 

469 moisture from the NASMD (Figure 5) are difficult to compare in terms of spatial variability, as is 

470 highlighted in previous studies [19]. This is because a satellite soil moisture pixel from the ESA-CCI 

471 product provides a value across a larger area (27x27km) than a field measurement at a specific 

472 sampling location (defined by geographical coordinates). This scale dependent effect (27x27km vs 1:1 

473 field scale) is reduced (>25%) with soil moisture predictions across finer grids (1km). The downscaled 

474 soil moisture maps showed a higher agreement with field soil moisture records from the NASMD 

475 (Figure 5), supporting the applicability of this soil moisture product for applications that required 

476 higher spatial resolution. 

477 Our soil moisture predictions across 1km grids suggest that topography can be effectively used 

478 to improve the spatial detail and accuracy of satellite soil moisture estimates. Several studies have 

479 highlighted differences in spatial representativeness between ground-based observations and satellite 

480 soil moisture products [73, 77].  Other studies have shown that the spatial representativeness of the 

481 ESA-CCI soil moisture compared with field observations is higher from regional-to-continental scales 

482 than from ecosystem-to-landscape scales [78-79]. Therefore, large uncertainties of soil moisture spatial 

483 patterns (below 1km grids) needs to be resolved for assessing and better understanding the local 

484 variability of soil moisture trends.  We argue that currently there is an increasing availability of high-

485 quality digital elevation data sources with high levels of spatial resolution (e.g., 1-2 to 30 to 90m grids) 

486 across large areas of the world [80-81] that can be used to derive reliable hydrologically meaningful 

487 terrain parameters for predicting soil moisture.  The relationship of these terrain parameters and field 
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488 soil moisture (i.e., meteorological stations) is similar to the relationship between terrain parameters and 

489 satellite soil moisture gridded estimates (Figure 7). 

490 From a single information source (a remotely sensed DEM), we downscaled satellite records of 

491 soil moisture using a framework that theoretically is reproducible across multiple scales. The ultimate 

492 goal of reducing the multiple information sources for predicting soil moisture is to reduce the statistical 

493 redundancy in further modeling efforts (i.e., land carbon uptake models) and large-scale ecosystem 

494 studies (i.e., ecological niche modeling) that combine similar prediction factors for soil moisture (i.e., 

495 climate or vegetation indexes). These include models estimating water evapotranspiration trends [82] 

496 and process based global carbon models that could also benefit from more accurate and independent 

497 soil moisture inputs [74].  To improve the spatial representativeness of satellite soil moisture estimates, 

498 the number of studies developing new downscaling approaches based on prediction factors is rapidly 

499 expanding [26, 28, 62, 83]. There is a pressing need to solve the current uncertainty of soil moisture 

500 estimates to accurately understand how soil moisture is limiting the primary productivity of terrestrial 

501 ecosystems [6]. Therefore, our results provide an alternative applicable to continental scales for 

502 downscaling satellite soil moisture estimates based on hydrologically meaningful terrain parameters.

503 The novelty of this approach is that it could be applicable to multiple temporal resolutions (e.g., 

504 monthly or daily) as it generates independent models for each period of interest and at multiple spatial 

505 scales as the availability of terrain parameters for modeling purposes has increased substantially (i.e., 

506 meters) in the last decade. Increasing the temporal resolution of downscaled maps (i.e., from yearly to 

507 monthly predictions) is beyond the scope of this study, will increase computational costs, but are 

508 theoretically possible following this approach. While monthly or weekly (or even daily soil moisture 

509 datasets) are valuable sources for large scale earth system modeling, yearly averages are also valuable 

510 for detecting long term trends in the climate-land system. Rather than focusing on temporal variability 
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511 of soil moisture, our results provide insights for improving the spatial variability and consequently the 

512 spatial representation of soil moisture gridded surfaces derived from satellite information.  

513

514 Conclusion

515 Recent studies highlight the necessity of detailed soil moisture products to account for soil 

516 moisture limitation in terrestrial ecosystems. We developed a geomorphometry-based framework to 

517 couple satellite soil moisture records with hydrologically meaningful terrain parameters. We predicted 

518 (i.e., downscaled) soil moisture using 1x1km grids across CONUS at a yearly scale from 1991 to 2016. 

519 This gap-free soil moisture product improved the spatial detail of the original satellite soil moisture 

520 grids and the overall agreement (increased by >20%) of these grids with the NASMD field soil 

521 moisture records. Our findings suggest that digital terrain analysis can be applied to elevation data 

522 sources to derive hydrologically meaningful terrain parameters and use these parameters predict soil 

523 moisture spatial patterns. Our framework is reproducible across the world because it is based on 

524 publicly available DEMs, ground and satellite soil moisture data.

525
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